付剛,沈振西,鐘志明
中國科學院地理科學與資源研究所 生態(tài)系統(tǒng)網(wǎng)絡觀測與模擬重點實驗室 拉薩高原生態(tài)系統(tǒng)研究站,北京 100101
西藏高原青稞三種植被指數(shù)對紅外增溫的初始響應
付剛,沈振西,鐘志明*
中國科學院地理科學與資源研究所 生態(tài)系統(tǒng)網(wǎng)絡觀測與模擬重點實驗室 拉薩高原生態(tài)系統(tǒng)研究站,北京 100101
氣候變暖影響著農作物生長及其植被指數(shù)。為了探討西藏高原青稞(Hordeum vulgare Linn. var. nudum Hook.f.)歸一化植被指數(shù)(normalized difference vegetation index,NDVI)、歸一化綠波段差值植被指數(shù)(normalized green difference vegetation index,GNDVI)和土壤調節(jié)植被指數(shù)(soil adjusted vegetation index,SAVI)對氣候變暖的初始響應,2014年5月在西藏達孜縣布設了一個紅外增溫實驗(3個水平,即對照,1 000和2 000 W紅外增溫)。通過對2014年6─9月利用農業(yè)多光譜相機獲取的3種植被指數(shù)和利用HOBO微氣候觀測系統(tǒng)獲取的兩個深度(5和20 cm)的土壤溫濕度的統(tǒng)計分析,探討了西藏高原青稞植被指數(shù)對紅外增溫的響應及其與土壤溫濕度的相互關系。結果表明,1 000和2 000 W的增溫使5 cm的土壤溫度(t5)分別升高了約1.62和1.77 ℃,使20 cm的土壤溫度(t20)分別升高了約1.16和1.43 ℃;相反使5 cm的土壤濕度(SM5)分別下降了約1.8%和14.1%,使20 cm的土壤濕度(SM20)分別下降了21.6%和14.7%。1 000 W的增溫使NDVI、GNDVI和SAVI分別增加了約2.4%、4.3%和0.5%;2 000 W的增溫則使NDVI、GNDVI和SAVI分別增加了約5.5%、5.3%和4.8%,盡管增加幅度并不顯著。單因子回歸分析表明,t5與NDVI(r2=0.110,P=0.026)和GNDVI(r2=0.254,P=0.000 4)為負相關,而與SAVI無關(r2=0.069,P=0.082);t20與GNDVI為負相關(r2=0.218,P=0.001),而與NDVI(r2=0.040,P=0.190)和SAVI(r2=0.014,P=0.443)無關;SM5與NDVI(r2=0.277,P=0.000 2)、GNDVI(r2=0.394,P=0.000 0)和SAVI(r2=0.208,P=0.002)為正相關。SM20與GNDVI為正相關(r2=0.193,P=0.003),而與NDVI(r2=0.059,P=0.107)和SAVI(r2=0.037,P=0.209)無關。多重回歸分析表明,SM5主導著NDVI、GNDVI和SAVI的變異。偏相關分析表明,NDVI、GNDVI和SAVI與SM5的相關系數(shù)分別為0.442(P=0.003)、0.412(P=0.007)和0.404(P=0.008);與SM20的相關系數(shù)分別為-0.042(P=0.792)、0.051(P=0.749)和-0.033(P=0.837);與 t5的相關系數(shù)分別為-0.154(P=0.332)、-0.019(P=0.907)和-0.170(P=0.282);與t20的相關系數(shù)分別為0.228(P=0.147)、-0.041(P=0.795)和0.268(P=0.086)。因此,紅外增溫引起的干旱抑制了青稞的生長,進而影響了植被指數(shù),即植被指數(shù)的不顯著變化可能與紅外增溫引起的土壤干旱有關。
青稞;歸一化植被指數(shù);歸一化綠波段差值植被指數(shù);土壤調節(jié)植被指數(shù);紅外增溫
植被指數(shù)能夠反映植被生長狀態(tài),常被用來反演植被生物量、植被蓋度,植被物候、生態(tài)系統(tǒng)碳通量等(Boelman等,2003;Fu等,2013;Shen等,2011;Yi等,2011)。準確掌握植被指數(shù)對氣候變暖的響應是準確預測氣候變化背景下植被生長的前提條件(Piao等,2011;Shen等,2014)。目前,常見的植被指數(shù)有歸一化植被指數(shù)(normalized difference vegetation index,NDVI)、增強型植被指數(shù)(enhanced vegetation index)、差值植被指數(shù)(difference vegetation index,DVI)、垂直植被指數(shù)(perpendicular vegetation index)、歸一化綠波段差值植被指數(shù)(normalized green difference vegetation index,GNDVI)和土壤調節(jié)植被指數(shù)(soil adjusted vegetation index,SAVI)等(Gitelson等,1996;Huete,1988;Zhang等,2013a)。雖然在各種植被指數(shù)中,NDVI是應用最廣泛的植被指數(shù),但是NDVI仍存在一些難以克服的缺點,如在高密度植被區(qū)域容易出現(xiàn)飽和以及易受大氣氣溶膠和下墊面的干擾等(Piao等,2011;Shen等,2014;Zhang等,2013a)。與NDVI相比,GNDVI對植被葉綠素含量的變化更敏感(Gitelson等,1996);而SAVI則減少了土壤和植被冠層的干擾(Huete,1988)。因此,NDVI、GNDVI和SAVI在反映植被特征方面存在一定的差異,它們對氣候變暖的敏感性可能不同。
因為植被指數(shù)反映的是植被生長狀態(tài),所以對植被生長有影響的環(huán)境因子都能夠影響植被指數(shù)的變化。在高寒地區(qū),低溫往往是限制植物生長的最重要的環(huán)境因子之一,因此,溫度升高一般會促進高寒植物的生長(Fu等,2015;Rustad等,2001)。盡管如此,溫度升高帶來的環(huán)境水分條件的變化也可能會限制高寒植物的生長(Fu等,2013)。最近的一些研究(Shen等,2014;Sun等,2013)表明,環(huán)境濕度條件而非環(huán)境溫度主導著青藏高原高寒生態(tài)系統(tǒng)的植被指數(shù)的變異。因此,氣候變暖是否一定會促進高寒植物的生長及其相關植被指數(shù)的增加還需要進一步的研究。
青藏高原是氣候變化最敏感的區(qū)域之一(Fu等,2015;Zhang等,2015)。為了研究高寒生態(tài)系統(tǒng)對氣候變暖的響應,在青藏高原上已經(jīng)開展了一些相關的實驗增溫研究(Dorji等,2013;Shen等,2015;Yu等,2014)。盡管如此,這些實驗增溫主要集中在森林和草地生態(tài)系統(tǒng),而缺少對農田生態(tài)系統(tǒng)的研究(Fu等,2015;Zhang等,2015)?;谶b感數(shù)據(jù),雖然很多研究已經(jīng)分析了青藏高原NDVI或EVI與氣候因子的關系(Fu等,2013;Shen等,2014;Sun等,2013;Zhang等,2013b),但是很少有研究報道了GNDVI和SAVI與土壤溫濕度的關系。此外,在青藏高原上,很少有研究報道了植被指數(shù)對實驗增溫的響應(Fu等,2013)。
青稞(Hordeum vulgare Linn. var. nudum Hook.f.)是青藏高原特有的主要農作物,具有耐寒、耐旱、耐瘠薄、生育期短、適應性強等優(yōu)異種性,用于制作糌粑,釀制青稞酒等(Dai等,2012;Liu等,2013;Ren等,2013)。本研究以西藏自治區(qū)拉薩市達孜縣農業(yè)生態(tài)試驗站的栽培青稞為研究對象,利用紅外增溫的方式探討了氣候變暖背景下青稞3種植被指數(shù)(NDVI,GNDVI和SAVI)對實驗增溫的初始響應,以期明確氣候變暖對西藏青稞生長及其相關植被指數(shù)的影響,從而為氣候變化背景下西藏青稞的田間管理提供科學依據(jù)。本研究的主要目的有:(1)探討植被指數(shù)的變異是否由環(huán)境濕度主導;(2)探討3個植被指數(shù)對實驗增溫的響應是否存在差異。
1.1 研究地概況
研究地位于青藏高原腹地──西藏自治區(qū)拉薩市達孜縣的中國科學院地理科學與資源研究所拉薩農業(yè)生態(tài)試驗站進行,地理位置為東經(jīng)91°20',北緯29°41'。海拔3688 m,屬高原季風溫帶半干旱氣候區(qū)。年平均氣溫為7.7 ℃,最熱月7月平均氣溫16.3 ℃,最冷月12月平均氣溫為-1.5 ℃,無霜期120~130 d。年均降水量425 mm,90%以上分布在雨季的6月中旬─9月下旬。
1.2 實驗設計
本研究采用紅外輻射器(165 cm×15 cm,Kalglo Electronics Inc, Bethlehem, Pennsylvania)升高環(huán)境溫度,輻射器距離地面高度約為1.7 m,增溫水平為3個,即空白對照,1000和2000 W輻射增溫,每個處理3個重復。增溫樣方大小為2 m×2 m,樣方間隔約為6~7 m。
青稞于2014年5月26日播種,同時開始增溫。行間距約為25 cm,播種量約為187.5 kg·hm-2。
利用HOBO微氣候觀測系統(tǒng)對5 cm的土壤溫度(t5)、土壤濕度(SM5);20 cm的土壤溫度(t20)和土壤濕度(SM20)進行了觀測。
1.3 農業(yè)多光譜相機(ADC)及植被指數(shù)計算
ADC相機具有紅、綠和近紅外3個波段,分別與TM的第2、3和4波段相近(Fu等,2013)。本研究基于以下3個公式分別計算了NDVI、GNDVI和SAVI:
式中,redρ 、greenρ 和nirρ 分別表示ADC光譜相機紅、綠和近紅波段的反射率。
1.4 統(tǒng)計分析
采用重復測量方差分析對日均t5、SM5、t20和SM20,NDVI,GNDVI和SAVI進行了統(tǒng)計。通過相關分析、單因子回歸分析和多重回歸分析探討了NDVI、GNDVI和SAVI與t5、SM5、t20和SM20的相互關系。
2.1 實驗增溫對土壤溫濕度的影響
總體而言,紅外增溫對土壤溫濕度無顯著影響,而觀測日期對土壤溫濕度有顯著影響;紅外增溫和觀測日期的交互作用對t20有顯著影響,對t5、SM5和SM20無顯著影響(表1)。1000和2000 W的紅外增溫使t5分別升高了約1.62和1.77 ℃,使t20分別升高了約1.16和1.43 ℃;相反使SM5分別下降了約1.8%和14.1%,使SM20分別下降了21.6%和14.7%。
表1 西藏高原青稞紅外增溫樣地5 cm土壤溫度、5 cm的土壤濕度、20 cm的土壤溫度和20 cm的土壤濕度的重復測量方差分析Table 1 Repeated measures analysis of variance for the main and interactive effects of infrared warming and measuring date on soil temperature at depth of 5 cm (t5), soil moisture at depth of 5 cm (SM5), soil temperature at depth of 20 cm (t20) and soil moisture at depth of 20 cm (SM20) in a highland barley in Tibet Plateau
土壤溫度和土壤濕度都表現(xiàn)出了顯著的時間變化(圖1)。與對照相比,1000 W的紅外增溫使日均 t5和 t20分別升高了約 1.13~2.19 ℃和0.95~1.67 ℃(圖1)。相反,1000 W的紅外增溫使日均SM20下降了約0.03~0.05 m3·m-3,同時使8月24日和9月9日的日均SM5分別下降了0.01和0.02 m3·m-3(圖1)。此外,1000 W的紅外增溫使6月17日、7月14日和7月26日的日均SM5分別增加了約0.01、0.004和0.002 m3·m-3(圖1)。與對照相比,2000 W的紅外增溫使日均t5和t20分別升高了約1.09~2.51 ℃和0.51~3.21 ℃(圖1)。相反,2000 W 的紅外增溫使日均 SM5和 SM20分別下降了約0.016~0.047 m3·m-3和0.020~0.046 m3·m-3(圖1)。
圖1 紅外增溫對西藏高原青稞5 cm土壤溫度、5 cm土壤濕度、20 cm土壤溫度和20 cm土壤濕度的影響(n=3)Fig. 1 Effects of infrared warming on soil temperature at depth of 5 cm (T5), soil moisture at depth of 5 cm (SM5), soil temperature at depth of 20 cm (T20) and soil moisture at depth of 20 cm (SM20) in a highland barley in Tibet Plateau(n=3)
2.2 實驗增溫對NDVI、GNDVI和SAVI的影響
總體而言,紅外增溫及其與觀測日期的交互作用對NDVI、GNDVI和SAVI無顯著影響,而觀測日期對NDVI、GNDVI和SAVI都有顯著影響(表2)。
表2 西藏高原青稞紅外增溫樣地歸一化植被指數(shù)、歸一化綠波段差值植被指數(shù)和土壤調節(jié)植被指數(shù)的重復測量方差分析Table 2 Repeated measures analysis of variance for the main and interactive effects of infrared warming and measuring date on normalized difference vegetation index(NDVI), green normalized difference vegetation index (GNDVI) and soil adjusted vegetation index (SAVI) in a highland barley in Tibet Plateau
1000 W 的紅外增溫使 NDVI、GNDVI和SAVI分別增加了約2.4%(0.013)、4.3%(0.009)和0.5%(0.002)。而2000 W的紅外增溫則使NDVI、GNDVI和SAVI分別增加了約5.5%(0.029)、5.3%(0.011)和4.8%(0.020)。
NDVI、GNDVI和SAVI都表現(xiàn)出了顯著的時間變化(圖2)。1000 W的紅外增溫使6月17日、7月26日和8月24日的NDVI分別增加了0.048、0.004和0.065,2000 W的紅外增溫使6月17日、7月26日、8月24日和9月9日的NDVI分別增加了約0.076、0.028、0.034和0.116。1000 W的紅外增溫使6月17日、7月14日、7月26日和8月24日的GNDVI分別增加了約0.026、0.005、0.010和0.027。2000 W的紅外增溫則使6月17日、7月26日、8月24日和9月9日的GNDVI分別增加了約0.031、0.010、0.018和0.025。1000 W的紅外增溫使6月17日和8月24日的SAVI分別增加了約0.024和0.059。2000 W的紅外增溫則使6月17日、7月26日、8月24日和9月9日的SAVI分別增加了約0.070、0.011、0.024和0.103。相反,1000 W的紅外增溫使7月14日和9月9日的NDVI分別減少了約0.010和0.044;9月9日的GNDVI減少了約0.024;7月14日、7月26日和9月9日的SAVI減少了約0.015、0.014和0.044。2000 W的紅外增溫則使7月14日的NDVI、GNDVI和SAVI分別減少了約0.107、0.031和0.110。
圖2 紅外增溫對西藏高原青稞歸一化植被指數(shù)、歸一化綠波段差值植被指數(shù)和土壤調節(jié)植被指數(shù)的影響(n=3)Fig. 2 Effects of infrared warming on normalized difference vegetation index(NDVI), green normalized difference vegetation index (GNDVI) and soil adjusted vegetation index (SAVI) in a highland barley in Tibet Plateau (n=3)
2.3 植被指數(shù)與土壤溫濕度的關系
單因子回歸分析表明,NDVI(r2=0.110,P=0.026)和 GNDVI(r2=0.254,P=0.0004)隨著t5的增加而降低,但是 SAVI下降趨勢不顯著(r2=0.069,P=0.082);GNDVI隨著t20的增加而降低(r2=0.218,P=0.001),但是 NDVI(r2=0.040,P=0.190)和SAVI(r2=0.014,P=0.443)的下降趨勢不顯著。相反,NDVI(r2=0.277,P=0.0002)、GNDVI(r2=0.394,P=0.0000)和SAVI(r2=0.208,P=0.002)都隨著 SM5的增加而增加;GNDVI隨著SM20的增加而增加(r2=0.193,P=0.003),NDVI(r2=0.059,P=0.107)和SAVI(r2=0.037,P=0.209)的增加趨勢不顯著(圖3)。
多重回歸分析表明,SM5解釋了 NDVI、GNDVI和SAVI的變異,即SM5主導著3個植被指數(shù)的變異。
偏相關分析表明,當 t5、t20和 SM20作為控制變量時,NDVI、GNDVI和SAVI與SM5的相關系數(shù)分別為0.442(P=0.003)、0.412(P=0.007)和0.404(P=0.008);當t5、t20和SM5作為控制變量時,NDVI、GNDVI和SAVI與SM20的相關系數(shù)分別為-0.042(P=0.792)、0.051(P=0.749)和-0.033(P=0.837);當t20、SM5和SM20作為控制變量時,NDVI、GNDVI和SAVI與t5的相關系數(shù)分別為-0.154(P=0.332)、-0.019(P=0.907)和-0.170(P=0.282);當t5、SM5和SM20作為控制變量時,NDVI、GNDVI和SAVI與 t20的相關系數(shù)分別為 0.228(P=0.147)、-0.041(P=0.795)和0.268(P=0.086)。
紅外增溫形成的暖干化環(huán)境與前人的研究一致(Bai等,2013;Rui等,2011;Yin等,2013)。如Wang等(2012)在海北高寒草甸的研究表明,紅外增溫增加了土壤溫度的同時減少了土壤濕度。Shen等(2014)的研究表明,在過去的十多年間(2000─2012),青藏高原總體上及其農田生態(tài)系統(tǒng)都呈暖干化趨勢。Zhang等(2013b)的研究則表明,在過去的10年間(2000─2009),西藏高原總體上為暖干化氣候變化趨勢。Fu等(2013)的研究也表明,在 2000─2012年間,西藏高原總體上為暖干化趨勢。
圖3 歸一化植被指數(shù)、歸一化綠波段差值植被指數(shù)和土壤調節(jié)植被指數(shù)與5 cm土壤溫度、5 cm土壤濕度、20 cm土壤溫度和20 cm土壤濕度的關系Fig. 3 Relationships between normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI) and soil adjusted vegetation index (SAVI) and soil temperature at depth of 5 cm (T5), soil moisture at depth of 5 cm (SM5), soil temperature at depth of 20 cm (T2o) and soil moisture at depth of 20 cm (SM20) in a highland barley in Tibet Plateau
紅外增溫沒有顯著影響 NDVI、GNDVI和SAVI,這表明短期的紅外增溫對這3個植被指數(shù)的影響無差別。前人對青藏高原植被指數(shù)變化與氣候變化的相關研究也表明植被指數(shù)對氣候變化的響應不顯著。如Sun等(2013)對青藏高原最大NDVI的研究表明,1982─2006年間,最大NDVI增加趨勢不顯著。Shen等(2014)對青藏高原生長季節(jié)最大EVI的研究表明,2000─2012年間最大EVI的降低趨勢不顯著。Fu等(2013)對西藏高原高寒草甸的研究表明,2000─2012年間,生長季節(jié)平均的NDVI的增加趨勢不顯著。Hu等(2011)對三江源區(qū)的研究表明,1982─2000年間,最大NDVI的變化不顯著。趙芳等(2011)同樣發(fā)現(xiàn)2000─2009年間三江源區(qū)NDVI和EVI無顯著變化。
NDVI、GNDVI和SAVI與土壤溫濕度的相互關系與前人的研究結果一致。如 Shen等(2014)的研究表明,青藏高原農田生態(tài)系統(tǒng)的最大EVI與空氣溫度為不顯著的負相關,而與相對濕度和水汽壓為顯著正相關,與飽和水汽壓為顯著負相關;總體而言,青藏高原空間平均的最大EVI與空氣溫度為不顯著負相關,而與相對濕度和水汽壓為顯著正相關。Fu等(2013)的研究表明,總初級生產力和地上生物量與空氣溫度為負相關,與土壤濕度為正相關。
土壤濕度對NDVI、GNDVI和SAVI的影響大于土壤溫度的影響,這與前人的研究結果一致。如Shen等(2014)的研究表明,空氣濕度主導著青藏高原最大EVI的空間變異。Sun等(2013)的研究表明,降水對青藏高原最大NDVI的影響大于空氣溫度的影響。Xu等(2008)的研究表明,青藏高原植被蓋度的變異主要受降水調控。周睿等(2007)的研究指出,青藏高原生長季節(jié)平均的EVI隨著年均降水量的增加顯著增加,但與年均溫無關。趙芳等(2011)也指出三江源區(qū)域的NDVI和EVI與降水的相關性大于與空氣溫度的相關性。
多重回歸分析和偏相關分析都表明,土壤濕度而非土壤溫度主導著NDVI、GNDVI和SAVI的變異,且這3個植被指數(shù)都隨著土壤濕度的增加而顯著增加。此外,實驗增溫降低了土壤濕度,而土壤干旱會抑制植物的生長(Carrara等,2004;Fu等,2013),進而影響植被指數(shù)。因此,NDVI、GNDVI和SAVI對紅外增溫的不顯著初始響應可能主要是由實驗增溫引起的土壤干旱引起的。
與土壤溫度相比,土壤濕度主導著歸一化植被指數(shù)、歸一化綠波段差值植被指數(shù)和土壤調節(jié)植被指數(shù)的變異,且這3個植被指數(shù)都隨著土壤濕度的增加而顯著增加。3個植被指數(shù)對紅外增溫的短期響應都沒有顯著變化,這可能與紅外增溫引起的土壤干旱有關。
BAI E, LI S L, XU W H, et al. 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics[J]. New Phytologist, 199(2): 441-451.
BOELMAN N T, STIEGLITZ M, RUETH H M, et al. 2003. Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra[J]. Oecologia, 135(3): 414-421.
CARRARA A, JANSSENS I A, YUSTE J C, et al. 2004. Seasonal changes in photosynthesis, respiration and NEE of a mixed temperate forest[J]. Agricultural and Forest Meteorology, 126(1-2): 15-31.
DAI F, NEVO E, WU D Z, et al. 2012. Tibet is one of the centers of domestication of cultivated barley[J]. Proceedings of the National Academy of Sciences of the United States of America, 109(42): 16969-16973.
DORJI T, TOTLAND O, MOE S R, et al. 2013. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet[J]. Global Change Biology, 19(2): 459-472.
FU G, SHEN Z X, SUN W, et al. 2015. A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau[J]. Journal of Plant Growth Regulation, 34(1): 57-65.
FU G, ZHANG X, ZHANG Y, et al. 2013. Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet[J]. Journal of Applied Remote Sensing, 7(1): doi: 10.1117/1.jrs.7.073505.
GITELSON A A, KAUFMAN Y J, MERZLYAK M N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 58(3): 289-298.
HU M Q, MAO F, SUN H, et al. 2011. Study of normalized difference vegetation index variation and its correlation with climate factors in the three-river-source region[J]. International Journal of Applied Earth Observation and Geoinformation, 13(1): 24-33.
HUETE A R. 1988. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 25(3): 295-309.
LIU Z F, YAO Z J, YU C Q, et al. 2013. Assessing crop water demand and deficit for the growth of spring highland barley in Tibet, China[J]. Journal of Integrative Agriculture, 12(3): 541-551.
PIAO S, CUI M, CHEN A, et al. 2011. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau[J]. Agricultural and Forest Meteorology, 151(12): 1599-1608.
REN X F, NEVO E, SUN D F, et al. 2013. Tibet as a potential domestication center of cultivated barley of China[J]. PLoS ONE, 8(5): doi: 10.1371/journal.pone.0062700.
RUI Y C, WANG S P, XU Z H, et al. 2011. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China[J]. Journal of Soils and Sediments, 11(6): 903-914.
RUSTAD L E, CAMPBELL J L, MARION G M, et al. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 126(4): 543-562.
SHEN M G, TANG Y H, CHEN J, et al. 2011. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 151(12): 1711-1722.
SHEN Z, FU G, YU C, et al. 2014. Relationship between the growing season maximum enhanced vegetation index and climatic factors on the Tibetan Plateau[J]. Remote Sensing, 6(8): 6765-6789.
SHEN Z X, LI Y L, FU G. 2015. Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet[J]. Applied Soil Ecology, 90: 35-40.
SUN J, CHENG G W, LI W P, et al. 2013. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau[J]. Remote Sensing, 5(4): 1894-1911.
WANG S P, DUAN J C, XU G P, et al. 2012. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow[J]. Ecology, 93(11): 2365-2376.
XU X K, CHEN H, LEVY J K. 2008. Spatiotemporal vegetation cover variations in the Qinghai-Tibet Plateau under global climate change[J]. Chinese Science Bulletin, 53(6): 915-922.
YI S H, ZHOU Z Y, REN S L, et al. 2011. Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai-Tibetan Plateau[J]. Environmental Research Letters, 6(4): doi: 10.1088/1748-9326/6/4/045403.
YIN H J, LI Y F, XIAO J, et al. 2013. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming[J]. Global Change Biology, 19(7): 2158-2167.
YU C Q, SHEN Z X, ZHANG X Z, et al. 2014. Response of soil C and N, dissolved organic C and N, and inorganic N to short-term experimental warming in an Alpine meadow on the Tibetan Plateau[J]. Scientific World Journal, doi: 10.1155/2014/152576.
ZHANG G L, ZHANG Y J, DONG J W, et al. 2013a. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(11): 4309-4314.
ZHANG L, GUO H D, JI L, et al. 2013b. Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau[J]. Journal of Applied Remote Sensing, 7(1): doi: 10.1117/1.jrs.7.073572.
ZHANG X Z, SHEN Z X, FU G. 2015. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau[J]. Applied Soil Ecology, 87: 32-38.
趙芳, 林恭華, 趙之重. 2011. 三江源區(qū)植被指數(shù)時空變化對水熱條件的響應[J]. 草業(yè)科學, 28(6): 1095-1100.
周睿, 楊元合, 方精云. 2007. 青藏高原植被活動對降水變化的響應[J].北京大學學報: 自然科學版, 43(6): 771-775.
Initial Response of Normalized Difference Vegetation Index, Green Normalized Difference Vegetation Index and Soil Adjusted Vegetation Index to Infrared Warming in Highland Barley of the Tibet
FU Gang, SHEN ZhenXi, ZHONG ZhiMing
Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Climatic warming affects the crop growth and its related vegetation indices. In order to understand the initial response of normalized difference vegetation index (NDVI), normalized green difference vegetation index (GNDVI) and soil adjusted vegetation index (SAVI) to climatic warming, a field warming experiment using infrared radiator was conducted in a highland barley located at the Dazi county of the Tibet since late May, 2015. There were three warming treatments, i.e., control, low (1000 W) and high (2000W) warming. The NDVI, GNDVI and SAVI were obtained using an agricultural digital camera during the period from June to September in 2015. Meanwhile, the soil temperature and soil moisture at depths of 5 cm and 20 cm were also obtained using HOBO microclimate observing systems. Then this study analyzed the response of NDVI, GNDVI and SAVI to infrared warming and the relationships between the three vegetation indices and soil temperature and moisture. The 1000 W and 2000 W infrared warming increased soil temperature at the depth of 5 cm (t5) by 1.62 ℃ and 1.77 ℃, and soil temperature at the depth of 20 cm (t20) by 1.16 ℃ and 1.43 ℃, but decreased soil moisture at the depth of 5 cm (SM5) by 1.8% and 14.1%, and soil moisture at the depth of 20 cm (SM20) by 21.6% and 14.7%, respectively. The 1000 W infrared warming increased NDVI by 2.4%, GNDVI by 4.3% and SAVI by 0.5%, whereas the 2000 W infrared warming increased NDVI by 5.5%, GNDVI by 5.3% and SAVI by 4.8%, although these changes were non-significant. Simple regression analyses showed that (1) NDVI (r2=0.110, P=0.026) and GNDVI(r2=0.254, P=0.000 4)decreased with increasing t5,whereas there was non-significant correlation between SAVI and t5(r2=0.069, P=0.082); (2) GNDVI decreased with increasing t20, (r2=0.218, P=0.001), whereas there were non-significant relationships between NDVI (r2=0.040, P=0.190), SAVI (r2=0.014, P=0.443) and t20; (3) NDVI (r2=0.277, P=0.000 2), GNDVI (r2=0.394, P=0.000 0) and SAVI (r2=0.208, P=0.002)increased with increasing SM5; and (4) GNDVI increased with increasing SM20(r2=0.193, P=0.003), whereas there were non-significant correlations between NDVI (r2=0.059, P=0.107), SAVI (r2=0.037, P=0.209) and SM20. Multiple regression analyses indicated that SM5dominated the variations of NDVI, GNDVI and SAVI. Partial correlation analyses demonstrated that (1) the correlation coefficients of NDVI, GNDVI and SAVI with SM5were 0.442 (P=0.003), 0.412 (P=0.007) and 0.404 (P=0.008); (2) with SM20were -0.042 (P=0.792), 0.051 (P=0.749) and -0.033 (P=0.837); (3) with t5were -0.154 (P=0.332), -0.019 (P=0.907) and -0.170 (P=0.282); and (4) with t20were 0.228 (P=0.147), -0.041 (P=0.795) and 0.268 (P=0.086), respectively. Therefore, the soil drying induced by infrared warming suppressed the growth of highland barley, which in turn affected vegetation indices. That is, the non-significant changes of the three vegetation indices may be due to the infrared warming-induced drying.
highland barley; normalized difference vegetation index; green normalized difference vegetation index; soil adjusted vegetation index; infrared warming
10.16258/j.cnki.1674-5906.2015.03.001
Q948
A
1674-5906(2015)03-0365-07
付剛,沈振西,鐘志明. 西藏高原青稞三種植被指數(shù)對紅外增溫的初始響應[J]. 生態(tài)環(huán)境學報, 2015, 24(3): 365-371. FU Gang, SHEN Zhenxi, ZHONG Zhiming. Initial Response of Normalized Difference Vegetation Index, Green Normalized Difference Vegetation Index and Soil Adjusted Vegetation Index to Infrared Warming in Highland Barley of the Tibet [J]. Ecology and Environmental Sciences, 2015, 24(3): 365-371.
國家自然科學基金項目(31370458);國家科技支撐項目(2011BAC09B03)
付剛(1984年生),男,助理研究員,博士,研究方向為全球變化與高寒生態(tài)系統(tǒng)。E-mail: fugang@igsnrr.ac.cn *通信作者:鐘志明(1971年生),男,助理研究員,研究方向為高寒農田生態(tài)系統(tǒng)與全球變化。E-mail: zhongzm@igsnrr.ac.cn
2014-11-06