• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Decentralized load frequency control for two-area interconnected power system

    2015-12-05 11:32:45WeiWANGHiromitsuOHMORI
    Control Theory and Technology 2015年2期

    Wei WANG,Hiromitsu OHMORI

    Department of System Design Engineering,Keio University,Kanagawa,Japan

    Received 15 September 2014;revised 27 April 2015;accepted 27 April 2015

    Decentralized load frequency control for two-area interconnected power system

    Wei WANG?,Hiromitsu OHMORI

    Department of System Design Engineering,Keio University,Kanagawa,Japan

    Received 15 September 2014;revised 27 April 2015;accepted 27 April 2015

    This paper proposes a decentralized output feedback control scheme applied to two-area interconnected power system.The controller synthesis problem is formulated as the scaled H∞control problem and a new LMI-based algorithm is proposed to compute the decentralized controller.The proposed controller provides robustness with regard to parametric uncertainties and also attenuates bounded exogenous disturbances in the sense of L2-gain.Simulation results clearly show the effectiveness of developed decentralized output feedback control scheme.

    Power system,decentralized control,output feedback control,robustness,LMI

    DOI 10.1007/s11768-015-4125-3

    1 Introduction

    For large-scale power system,which commonly consists of interconnected subsystems,the centralized control system is expensive to implement because of high communication cost and computational burden.

    On the contrary,in the decentralized control system,each localcontrollerdetermines the controlaction based on the local measurement only.That is,the decentralized control is a more effective way to resolve issues of communication delay and data loss.

    As a result,the decentralized control of large-scale power system has been paid much attention.

    Recently,several decentralized control methods have been developed.Major ones are the overlapping control scheme[1]and the homotopy[2]method.

    In[1],an overlapping control scheme is proposed to construct a decentralized state feedback control law for power system.A state feedback control system requires that all state variables are measurable and available.However,not all of the state variables are easily measured in practice.

    In[2],the synthesis problem is reduced into the feasibility problem of nonlinear matrix inequality(NMI).The NMIs will be solved iteratively by the idea of homotopy.

    This paper aims at developing a new decentralized output feedback control method for a two-machine power system.The closed-loop interconnected systemis equivalently represented as an interconnection of two closed-loop systems.Then,the synthesis problem is formulated as a scaled H∞control problem,and an LMI-based algorithm is proposed to compute the decentralized controller.

    The proposed decentralized controller enhances the disturbance attenuation performance in the sense ofL2-gain.

    Moreover,parameter uncertainties are taken into account in the controller design to achieve system robustness.The effectiveness of proposed method is verified by simulation results.

    2 System description

    In this section,we considera powersystem consisting of two machines connected by a tie line.

    The swing equation for theith generator(i=1,2)is[3]

    wherePmiis the mechanical input energy,PLiis the load disturbance,Ptie,ijis the tie line power flow directed from theith generator to thejth generator(j=1,2,j≠i),fsis the nominal frequency,Hiis the inertia constant,Diis the damping constant and Δfiis the frequency deviation.

    We suppose that eachHisatisfies[4]

    whereHi,0is the nominal value ofHi.

    Neglecting the transmission loss,we can write the tie line power flow in the form[3]

    whereEiandE jare the terminal voltage magnitudes,Bijis the susceptance between theith andjth nodes,δiand δjare the power angles of corresponding generators.

    The power angle δiis related to Δfi,and is given by

    Since small variations in load are expected during normal operation,we make the following two assumptions[1].

    Assumption 1Ei(t)≈Ei,0andE j(t)≈E j,0,whereEi,0andE j,0are the nominal values ofEiandE j,respectively.

    Assumption 2Each δiis close to its reference value,i.e.,

    where δi,0is the reference value of δi.

    The expression for the reference value ofPtie,ijis

    Under Assumption 1,the tie line powerflow deviation can be approximately expressed as

    wherehij(t)=sin[δi(t)? δj(t)]? sin(δi,0? δj,0).

    We use the trigonometric identities to expresshijas

    where δij(t)= δi(t)? δj(t)and δij,0= δi,0? δj,0.

    Under Assumption 2,we obtain the approximation

    We suppose thatPtie,ij,maxsatisfies[4]

    LetPLi,0denote the nominal value ofPLi.By performing simple algebraic manipulations,we have

    Without loss of generality,we assume the following condition on system(7).

    Assumption 3wiand its variation rate are bounded,i.e.,there exist known positive scalarsdiandvisuch that

    The turbine is assumed to be of the non-reheat type,and is modeled as[3]

    whereTtiis the turbine time constant,ΔPtiis the incremental change in value position.

    The mechanical-hydraulic governor can be represented as the first order system[3]

    whereRiandTgviare the regulation constant and governor time constant,respectively,anduiis the control input.

    By choosing the states for the first machine as

    the dynamic model can be written in state-space form as

    We choose the states for the second machine as

    The dynamic modelofthe second machine is omitted.

    3 Problem formulation

    As illustrated in Fig.1,we can obtain the augmented plantGp1(θ1)by interconnecting weight functions withG1(θ1),which represents the plant corresponding to(10).

    Fig.1 Block diagram of the generalized plant Gp1(θ1).

    The augmented plantGp1(θ1)can be expressed as an LPV model

    wherex1∈R7is the plant state vector and

    By normalization,T1can be written in the form

    By substituting(12)and(13)into the matrixA1(θ1),and performing matrix decomposition,we have

    in whichA1,0indicates the matrix with respect to nominal values of uncertain parametersT1andT12.

    Remark 1Δ1(θ1)has a block diagonal structure as

    where Δ12(θ1)= α1(T1)I2and

    In view of(12)–(15),it follows that

    hold for allq1=1,...,4.

    Substitution of(14)into the first equation of(11)yields

    wherewΔ1(t)= Δ1(θ1)zΔ1(t),zΔ1(t)=C1Δ,1x1(t).

    For the synthesis of static output feedback controller,the generalized plantGp1(θ1)is expressed as the interconnection of Δ1(θ1)with the nominal plant

    with γp1∈ R+.

    The generalized plantGp2(θ2),shown in Fig.2,is applied to synthesize a controller for the second machine.We express the generalized plantGp2(θ2)as

    Fig.2 Block diagram of the generalized plant Gp2(θ2).

    Problem 1The control task addressed in this paper is to find a static output feedback control law

    for the generalized plantGpi(θi),such that for a given positive value γ,the corresponding closed-loop interconnected system satisfies the following dissipation inequality:

    whereVis a nonnegative storage function and

    4 Decentralized controller synthesis

    We willpropose an LMI-based iterative algorithm similar to DK-iteration method,for the synthesis of decentralized controller.The static output feedback controller synthesis for each subsystem will individually proceed.

    4.1 Controller synthesis for the first machine

    We start by setting the initial value ofg1to be 1.

    Then,the initial guess for scaling matrices is given by

    The general synthesis procedure involves three steps.

    Step 1In theg1th iteration,we consider a strictly proper output feedback controllerK(g1)1(s)described by

    where ξ(g1)k1∈R7is the controller state vector.

    Remark 2Superscript(·)denotes the iteration index.

    We construct the following two scaling matrices:

    Remark 3We denote the set ofn×nsymmetric positive definite matrices by Sn++.

    Combining(18)and(20)leads to

    For simplicity,?denotes the symmetric item in a symmetric matrix and He(Λ)= ΛT+Λ.

    have

    Meanwhile,by performing a congruence transformation on(22)with diag{Π(g1)x1,I6,I7},we have

    The auxiliary variables are defined as[5]

    Note that all auxiliary variables are independent of θ1,q1.

    In summary,the LMI optimization problem is

    The set of optimal solutions is denoted by

    Step 2Let us consider scaling matrices of the form

    The bisection method is used to solve the following optimization problem:

    The set of optimal solutions is denoted by

    Through trial and error,we choose the design parameters as ε =0.5,γp1=1.61 and ρ1=0.01.

    For convenience,we denote

    Substitution of(17)into(32)leads to

    we have

    Therefore,we infer that

    which leads to

    such that

    Substitution of(16)into(34)leads to

    such that

    It is straightforward to show(29)holds for allq1. □

    Suppose that for allq1,there exists γ1∈ R+,l1∈ R+andP1∈S14++such that

    The LMI optimization problem to be solved is

    The set of optimal solutions is denoted by

    Corollary 1By Schur complement,we have

    4.2 Controller synthesis for the second machine

    The synthesized controller is expressed as

    Corollary 2Inequality(42)is equivalently to

    5 Performance evaluation

    We can obtain the closed-loop interconnected system illustrated in Fig.3,by combining the decentralized controller

    with the open-loop system given by(11)and(19).

    Fig.3 Closed-loop interconnected system.

    As shown in Fig.4,the whole closed-loop system is equivalently expressed as the interconnection of two closed-loop systems.

    Fig.4 Equivalent closed-loop interconnected system.

    wherexcl,i(t)=col(xi(t),xki(t)).

    wherexcl(t)=col(xcl,1(t),xcl,2(t))∈R24and

    Theorem 2The developed decentralized output feedback controller can make the closed-loop interconnected system

    1)internally stable in the absence of disturbances;and

    Differentiating(49)along the trajectories of(46)yields

    By means of the relationship

    is a continuously differentiable,positive definite and radially unbounded function.

    In view of(39)and(42),it is clear that for all θi∈ Θi,

    Case 1Supposewpis identically zero.

    In this case,we deduce from(52)that

    where ζi(t)=col(xcl,i(t),ˉwpi(t),0).

    Remark 7ζi(t)=0 ifxcl(t)=0.

    Based on Lyapunov stability theorem,there is no difficulty to prove that(a)holds.

    Case 2Supposewpis not identically zero.

    From(52),we can deduce that

    where

    For the closed-loop interconnected system,we construct a Lyapunov function candidate of the form

    Suppose thatxcl(0)=0 such thatV(0)=0.

    Integration of(57)on the interval[0,T]yields

    for allT>0.

    SinceV(T)≥0,and taking the limitT→∞,we have

    We will give another proof of Theorem 2 as follows.

    ProofIn view of(40)and(43),it follows that

    holds for allq1=1,...,4 andq2=1,2.

    By matrix factorization,(61)can be rewritten as

    From the inequality

    we have

    Based on above discussions,it follows that

    In view of bounded real lemma,it is clear that Theorem 2 holds. □

    for allq1=1,...,4 andq2=1,2.

    The LMI optimization problem to be solved is

    The set of optimal solutions is denoted by

    Based on bounded real lemma,we can confirm that

    1)in the absence of disturbances,the closed-loop interconnected system is internally stable;and

    6 Simulation results

    The system parameters are listed in Tables 1 and 2.

    Table 1 Machine parameters.

    Table 2 Tie line parameters.

    The nominal operating points are

    To evaluate the effectiveness of the proposed decentralized control scheme,simulations are carried out under different conditions.

    Case 1The uncertain parameters are modeled as

    The simulation results are shown in Figs.5 and 6.

    Case 2The uncertain parameters are modeled as

    The simulation results are shown in Figs.7 and 8.

    Case 3The uncertain parameters are modeled as

    The simulation results are shown in Figs.9 and 10.

    Fig.5 Responses of the first machine:Case 1.

    Fig.6 Responses of the second machine:Case 1.

    Fig.7 Responses of the first machine:Case 2.

    Fig.8 Responses of the second machine:Case 2.

    Fig.9 Responses of the first machine:Case 3.

    Fig.10 Responses of the second machine:Case 3.

    In simulations,w1is modeled as a rapidly changing signal,whilew2is modeled as a slowly changing signal.

    For convenience of analysis,load and tie line power deviations are expressed in terms of their actual values.

    From the simulation results,we can confirm that

    1)the frequencies are almost not influenced by irregular load variations and have been maintained close tofs;and

    2)the tie line power deviations stay within their acceptable ranges.

    7 Conclusions

    In this paper,a decentralized control approach is proposed for a two-area interconnected power system.We formulate the controller synthesis problem as a scaled H∞control problem and propose an LMI-based algorithm to compute the decentralized controller.The synthesized controller enhances the system robustness to parameter uncertainties and attenuates bounded exogenous disturbances in the sense ofL2-gain.Simulation results exhibit a satisfactory performance.As the next step,we will develop the decentralized output feedback control scheme for large-scale power system.

    [1]T.Suehiro,T.Namerikawa.Decentralized controlofsmartgrid by using overlapping information.Annual Conference of the Societyof-Instrument-and-Control-Engineers(SICE),Tokyo:Society of Instrument and Control Engineers,2012:125–130.

    [2]N.Chen,M.Ikeda,W.Gui.Design of robust H∞control for interconnected systems:a homotopy method.InternationalJournal of Control,Automation,and Systems,2005,3(2):143–151.

    [3]P.Kundur.Power System Stability and Control.New York:McGraw-Hill,1994.

    [4]M.Miyazaki,K.Liu,O.Saito.Robust decentralized control approach to the multi area frequency control problem of power systems.Transactions of the Institute of Electrical Engineers of Japan–Part C,2002,121(5):953–960.

    [5]F.Bianchi,H.De Battista,R.Mantz.Wind Turbine Control Systems:Principles,Modeling and Gain Scheduling Design.London:Springer,2006.

    the B.Sc.degree in automatic control from North China Electric Power University,China in 2008,and the M.Sc.degree in Electrical and Electronic Engineering from Chiba University,Japan in 2013.He is currently studying at the Graduate School of Keio University as a Ph.D.candidate.His research interests are decentralized control,robust control,nonlinear control and their applications in power system.E-mail:claudioceke@163.com.

    Hiromitsu OHMORIreceived the Bachelor’s Degree of Electrical Engineering,Master’s Degree of Electrical Engineering and Ph.D.from Keio University,Japan in 1983,1985 and 1988,respectively.From April 1988,he was the instructor of Department of Electrical Engineering,Keio University,Japan.From April 1991,he was an assistant professor of the same department.From April 1996,he was a associate professor of Department of System Design Engineering,Keio University.Currently,he is working as Professor at the same department.His research interests are in the field of adaptive control,robust control,nonlinear control and their applications.He is member of IEEE,SICE,ISCIE,IEE,IEICE,and EICA,etc.E-mail:ohm@sd.keio.ac.jp.

    ?Corresponding author.

    E-mail:claudioceke@163.com.

    ?2015 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    色综合站精品国产| 性色av乱码一区二区三区2| 最近最新免费中文字幕在线| 亚洲av电影不卡..在线观看| 亚洲国产精品合色在线| 3wmmmm亚洲av在线观看| 久久亚洲真实| 国产精品 欧美亚洲| 内射极品少妇av片p| 国产免费一级a男人的天堂| 美女免费视频网站| 香蕉久久夜色| 老汉色∧v一级毛片| 搡女人真爽免费视频火全软件 | 黑人欧美特级aaaaaa片| 女同久久另类99精品国产91| 国产主播在线观看一区二区| 丰满乱子伦码专区| 一区二区三区免费毛片| 高清在线国产一区| 欧美日韩福利视频一区二区| 欧美日韩中文字幕国产精品一区二区三区| 观看免费一级毛片| 亚洲久久久久久中文字幕| 在线看三级毛片| 欧美中文日本在线观看视频| 国内久久婷婷六月综合欲色啪| 制服人妻中文乱码| 中文字幕高清在线视频| 日本熟妇午夜| 久久香蕉精品热| 97碰自拍视频| 国产不卡一卡二| 欧美黑人欧美精品刺激| 淫秽高清视频在线观看| 欧美在线一区亚洲| 禁无遮挡网站| 久久久久久久精品吃奶| 亚洲无线观看免费| 99热精品在线国产| 少妇的逼水好多| 亚洲av五月六月丁香网| 精品一区二区三区人妻视频| 亚洲乱码一区二区免费版| 宅男免费午夜| 国产精品精品国产色婷婷| 精品久久久久久久末码| 女警被强在线播放| 老司机福利观看| 天堂网av新在线| 国产精品99久久久久久久久| 不卡一级毛片| 欧美一区二区精品小视频在线| 老汉色av国产亚洲站长工具| 免费在线观看亚洲国产| 欧美精品啪啪一区二区三区| 他把我摸到了高潮在线观看| 精品欧美国产一区二区三| 淫妇啪啪啪对白视频| 国产极品精品免费视频能看的| 久久久久久久久久黄片| 精品欧美国产一区二区三| 日韩大尺度精品在线看网址| 国产精品影院久久| 狠狠狠狠99中文字幕| 老司机福利观看| 亚洲色图av天堂| 男女做爰动态图高潮gif福利片| 老鸭窝网址在线观看| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 国产成年人精品一区二区| 青草久久国产| 国产亚洲精品综合一区在线观看| 久久精品国产自在天天线| 欧美激情在线99| 亚洲人成网站在线播| 免费无遮挡裸体视频| 男女做爰动态图高潮gif福利片| 亚洲精华国产精华精| 欧美国产日韩亚洲一区| 1000部很黄的大片| 黄色视频,在线免费观看| 首页视频小说图片口味搜索| av天堂中文字幕网| 99在线人妻在线中文字幕| 成人性生交大片免费视频hd| 国产成+人综合+亚洲专区| 亚洲成人中文字幕在线播放| 日韩欧美精品免费久久 | 午夜免费男女啪啪视频观看 | 亚洲国产精品久久男人天堂| 亚洲中文字幕一区二区三区有码在线看| 午夜免费观看网址| 一进一出抽搐动态| 亚洲最大成人中文| 日本 av在线| 日日干狠狠操夜夜爽| 内地一区二区视频在线| av在线蜜桃| 国产一区二区在线av高清观看| 国产成人av教育| 午夜日韩欧美国产| 国产不卡一卡二| 国产成人福利小说| 88av欧美| 成人一区二区视频在线观看| 在线观看舔阴道视频| 国产aⅴ精品一区二区三区波| 很黄的视频免费| 午夜激情欧美在线| 国产成人啪精品午夜网站| netflix在线观看网站| 国产精品亚洲一级av第二区| 午夜福利18| 少妇的逼好多水| 一个人观看的视频www高清免费观看| 51国产日韩欧美| 亚洲不卡免费看| 亚洲成av人片在线播放无| 国产视频一区二区在线看| 欧美bdsm另类| 久久久国产精品麻豆| 欧美成人一区二区免费高清观看| 级片在线观看| 亚洲av成人不卡在线观看播放网| 午夜亚洲福利在线播放| 真实男女啪啪啪动态图| 一级a爱片免费观看的视频| 亚洲欧美一区二区三区黑人| 99热这里只有是精品50| 欧美日本亚洲视频在线播放| 91久久精品国产一区二区成人 | 成人特级黄色片久久久久久久| 99在线人妻在线中文字幕| 久久久久性生活片| 国产老妇女一区| АⅤ资源中文在线天堂| 亚洲一区高清亚洲精品| 日本黄色视频三级网站网址| 欧美一区二区亚洲| 国产aⅴ精品一区二区三区波| 欧美一区二区精品小视频在线| 欧美一区二区亚洲| 天堂网av新在线| 欧美又色又爽又黄视频| 性色avwww在线观看| 日本一本二区三区精品| 99国产极品粉嫩在线观看| www.色视频.com| 一个人看的www免费观看视频| 在线观看日韩欧美| 日本一二三区视频观看| 成年免费大片在线观看| 亚洲在线观看片| 在线观看66精品国产| 丁香欧美五月| 久久久久久国产a免费观看| 高清毛片免费观看视频网站| 91麻豆av在线| 香蕉久久夜色| 精品人妻偷拍中文字幕| 午夜免费观看网址| 亚洲精华国产精华精| 色av中文字幕| 国产黄片美女视频| 国产精品av视频在线免费观看| 黄色视频,在线免费观看| 色综合欧美亚洲国产小说| 夜夜看夜夜爽夜夜摸| 综合色av麻豆| 国产色爽女视频免费观看| 亚洲精品亚洲一区二区| www.www免费av| 午夜视频国产福利| 国产精品一及| 国产69精品久久久久777片| 亚洲av二区三区四区| 有码 亚洲区| 中出人妻视频一区二区| 国产高潮美女av| 在线观看美女被高潮喷水网站 | 日本在线视频免费播放| 亚洲真实伦在线观看| 欧美zozozo另类| 亚洲av成人精品一区久久| 日本与韩国留学比较| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看 | 天堂av国产一区二区熟女人妻| 成人三级黄色视频| 亚洲欧美日韩高清专用| 国产乱人伦免费视频| 亚洲熟妇熟女久久| 黄色丝袜av网址大全| 日本免费一区二区三区高清不卡| 免费看十八禁软件| 小蜜桃在线观看免费完整版高清| 宅男免费午夜| 熟女少妇亚洲综合色aaa.| 免费在线观看影片大全网站| 免费看十八禁软件| 欧美精品啪啪一区二区三区| 精品久久久久久久毛片微露脸| 蜜桃久久精品国产亚洲av| 成人av一区二区三区在线看| 夜夜爽天天搞| 久久久久免费精品人妻一区二区| 久久精品影院6| 人妻久久中文字幕网| 免费在线观看影片大全网站| 亚洲五月天丁香| 国产伦精品一区二区三区四那| 国产一区在线观看成人免费| 国内精品久久久久久久电影| 亚洲电影在线观看av| 制服丝袜大香蕉在线| 人妻丰满熟妇av一区二区三区| www日本黄色视频网| 亚洲av免费高清在线观看| 欧美绝顶高潮抽搐喷水| 变态另类丝袜制服| 观看免费一级毛片| 亚洲美女视频黄频| 女人被狂操c到高潮| 国产一区二区三区视频了| 一夜夜www| 国产激情欧美一区二区| 国产一区在线观看成人免费| 国产亚洲欧美98| 国产午夜福利久久久久久| 狠狠狠狠99中文字幕| 成人欧美大片| 在线免费观看的www视频| 国产精品亚洲av一区麻豆| 999久久久精品免费观看国产| 一个人免费在线观看电影| 淫妇啪啪啪对白视频| 国产真人三级小视频在线观看| 麻豆成人午夜福利视频| 久久香蕉精品热| 国产伦人伦偷精品视频| 看黄色毛片网站| 一进一出好大好爽视频| 精品日产1卡2卡| 身体一侧抽搐| 国产成人影院久久av| 国产探花极品一区二区| 极品教师在线免费播放| 精品国内亚洲2022精品成人| 免费av不卡在线播放| 老司机午夜福利在线观看视频| 69av精品久久久久久| 国产成人av教育| 国产午夜精品论理片| 国产乱人视频| 五月玫瑰六月丁香| 啪啪无遮挡十八禁网站| 亚洲欧美精品综合久久99| 黄色丝袜av网址大全| 久久久久国产精品人妻aⅴ院| 亚洲精品日韩av片在线观看 | 青草久久国产| 国产精品电影一区二区三区| 欧美又色又爽又黄视频| 免费观看人在逋| 内地一区二区视频在线| 九九在线视频观看精品| 久久久久久久久久黄片| 亚洲成人久久爱视频| 夜夜看夜夜爽夜夜摸| 亚洲,欧美精品.| 国产麻豆成人av免费视频| 18+在线观看网站| 日韩精品青青久久久久久| 90打野战视频偷拍视频| 日韩大尺度精品在线看网址| 亚洲av免费在线观看| 熟女少妇亚洲综合色aaa.| 国产av在哪里看| 国产精品嫩草影院av在线观看 | 日本在线视频免费播放| 最新中文字幕久久久久| 亚洲精品456在线播放app | 免费在线观看影片大全网站| 给我免费播放毛片高清在线观看| 亚洲成人免费电影在线观看| 亚洲av第一区精品v没综合| 人人妻人人看人人澡| 欧美黄色片欧美黄色片| 亚洲第一欧美日韩一区二区三区| 日韩欧美国产在线观看| 日韩av在线大香蕉| 在线观看日韩欧美| 内地一区二区视频在线| ponron亚洲| 男人的好看免费观看在线视频| 手机成人av网站| 极品教师在线免费播放| 波多野结衣巨乳人妻| 国产精品一区二区三区四区久久| 国产成人a区在线观看| 一a级毛片在线观看| 日本撒尿小便嘘嘘汇集6| av在线蜜桃| 久久久久九九精品影院| 亚洲中文字幕日韩| 18禁裸乳无遮挡免费网站照片| 成年版毛片免费区| 久久亚洲真实| 亚洲精品一卡2卡三卡4卡5卡| 狠狠狠狠99中文字幕| 香蕉久久夜色| 国产伦人伦偷精品视频| 99国产精品一区二区三区| 欧美性猛交╳xxx乱大交人| 国产av麻豆久久久久久久| 美女高潮喷水抽搐中文字幕| 真实男女啪啪啪动态图| 精品国产美女av久久久久小说| 精品午夜福利视频在线观看一区| 国产一区在线观看成人免费| 校园春色视频在线观看| 亚洲美女视频黄频| 高清在线国产一区| 国产精品,欧美在线| 国产成人啪精品午夜网站| 精华霜和精华液先用哪个| 成年免费大片在线观看| 色在线成人网| 免费看日本二区| 女人高潮潮喷娇喘18禁视频| 国产日本99.免费观看| 精品人妻偷拍中文字幕| 中文字幕精品亚洲无线码一区| 国产高潮美女av| 精品欧美国产一区二区三| 亚洲国产高清在线一区二区三| 18美女黄网站色大片免费观看| 国语自产精品视频在线第100页| а√天堂www在线а√下载| 亚洲一区二区三区不卡视频| 免费观看人在逋| 成人永久免费在线观看视频| 国产成人福利小说| 97超级碰碰碰精品色视频在线观看| 少妇裸体淫交视频免费看高清| 亚洲aⅴ乱码一区二区在线播放| 级片在线观看| 又紧又爽又黄一区二区| 三级国产精品欧美在线观看| 欧美在线黄色| 偷拍熟女少妇极品色| 国产在视频线在精品| 国产真人三级小视频在线观看| 蜜桃亚洲精品一区二区三区| 精华霜和精华液先用哪个| 欧美丝袜亚洲另类 | av黄色大香蕉| 欧美黄色片欧美黄色片| 中文字幕久久专区| 男女床上黄色一级片免费看| 日日夜夜操网爽| 国产国拍精品亚洲av在线观看 | 国产欧美日韩一区二区三| 国产av一区在线观看免费| 国产伦精品一区二区三区视频9 | 一a级毛片在线观看| 国产v大片淫在线免费观看| 亚洲美女黄片视频| 午夜福利成人在线免费观看| 日韩欧美一区二区三区在线观看| 国产综合懂色| 99在线人妻在线中文字幕| 可以在线观看毛片的网站| 哪里可以看免费的av片| 一级毛片高清免费大全| 俄罗斯特黄特色一大片| 757午夜福利合集在线观看| 99国产精品一区二区蜜桃av| 婷婷精品国产亚洲av| 久久天躁狠狠躁夜夜2o2o| 变态另类成人亚洲欧美熟女| 一本久久中文字幕| 一进一出抽搐gif免费好疼| 欧美日韩福利视频一区二区| 日本五十路高清| 亚洲一区高清亚洲精品| avwww免费| www.熟女人妻精品国产| 88av欧美| 小蜜桃在线观看免费完整版高清| 国内毛片毛片毛片毛片毛片| 欧美激情久久久久久爽电影| 久久亚洲真实| 精品一区二区三区视频在线观看免费| 一级作爱视频免费观看| av中文乱码字幕在线| 国产69精品久久久久777片| 亚洲精品日韩av片在线观看 | 村上凉子中文字幕在线| 人妻久久中文字幕网| 久久这里只有精品中国| 亚洲人成网站高清观看| 久久精品综合一区二区三区| 久久精品亚洲精品国产色婷小说| 狠狠狠狠99中文字幕| 亚洲av五月六月丁香网| 国产精华一区二区三区| 91久久精品电影网| 夜夜夜夜夜久久久久| 美女大奶头视频| 人妻久久中文字幕网| 九九久久精品国产亚洲av麻豆| 在线播放国产精品三级| 欧美黄色片欧美黄色片| 波多野结衣巨乳人妻| 欧美一区二区亚洲| 国产精品99久久99久久久不卡| 午夜福利在线观看吧| 亚洲 欧美 日韩 在线 免费| 51国产日韩欧美| 欧美日本亚洲视频在线播放| 蜜桃久久精品国产亚洲av| 18禁国产床啪视频网站| 欧美最黄视频在线播放免费| 乱人视频在线观看| 激情在线观看视频在线高清| 俺也久久电影网| 悠悠久久av| 亚洲欧美激情综合另类| 一区福利在线观看| 国产色爽女视频免费观看| 九色成人免费人妻av| 亚洲中文日韩欧美视频| 岛国在线免费视频观看| 久久精品91蜜桃| 国产成人aa在线观看| 午夜影院日韩av| 亚洲男人的天堂狠狠| 黄片小视频在线播放| 99久久精品一区二区三区| 偷拍熟女少妇极品色| 老熟妇乱子伦视频在线观看| 国产亚洲精品久久久com| 国内精品美女久久久久久| 三级毛片av免费| 国产野战对白在线观看| 国产精品永久免费网站| 亚洲内射少妇av| 韩国av一区二区三区四区| 欧美成人性av电影在线观看| 精品电影一区二区在线| 在线看三级毛片| 午夜福利欧美成人| 男女那种视频在线观看| 九九热线精品视视频播放| 久久精品国产亚洲av涩爱 | 久久人妻av系列| 亚洲精品粉嫩美女一区| 欧美+日韩+精品| 成年免费大片在线观看| 婷婷精品国产亚洲av在线| 国产v大片淫在线免费观看| 免费av毛片视频| 免费观看精品视频网站| 国产成年人精品一区二区| xxx96com| 91av网一区二区| 国产欧美日韩一区二区三| 亚洲久久久久久中文字幕| 亚洲精品日韩av片在线观看 | 亚洲国产精品久久男人天堂| 丁香欧美五月| aaaaa片日本免费| 色噜噜av男人的天堂激情| 两个人看的免费小视频| 噜噜噜噜噜久久久久久91| 99久久九九国产精品国产免费| 禁无遮挡网站| 久久人人精品亚洲av| 国内久久婷婷六月综合欲色啪| 亚洲内射少妇av| 两性午夜刺激爽爽歪歪视频在线观看| 99riav亚洲国产免费| 亚洲专区中文字幕在线| 婷婷丁香在线五月| 一二三四社区在线视频社区8| 亚洲一区二区三区不卡视频| 99riav亚洲国产免费| 好男人电影高清在线观看| 99久久综合精品五月天人人| 在线免费观看的www视频| 欧美高清成人免费视频www| 男女视频在线观看网站免费| 久久久久久九九精品二区国产| 国产单亲对白刺激| 美女高潮喷水抽搐中文字幕| 一本综合久久免费| 国产精华一区二区三区| 国产午夜精品久久久久久一区二区三区 | 精品人妻一区二区三区麻豆 | 人妻丰满熟妇av一区二区三区| 18禁在线播放成人免费| 中文亚洲av片在线观看爽| 无人区码免费观看不卡| 国产伦精品一区二区三区视频9 | 亚洲18禁久久av| 搡老熟女国产l中国老女人| 成人无遮挡网站| 亚洲av成人不卡在线观看播放网| svipshipincom国产片| 麻豆国产97在线/欧美| 成人高潮视频无遮挡免费网站| 欧美成狂野欧美在线观看| 国产午夜精品久久久久久一区二区三区 | 99视频精品全部免费 在线| 午夜激情福利司机影院| 色综合亚洲欧美另类图片| 看黄色毛片网站| 亚洲精品影视一区二区三区av| 日韩免费av在线播放| 成人亚洲精品av一区二区| 99在线人妻在线中文字幕| 757午夜福利合集在线观看| 欧美色视频一区免费| 精品久久久久久,| 国产在线精品亚洲第一网站| 在线观看美女被高潮喷水网站 | 人人妻人人澡欧美一区二区| 久久久久精品国产欧美久久久| 淫秽高清视频在线观看| 久久国产精品影院| 精品无人区乱码1区二区| 国产蜜桃级精品一区二区三区| 看黄色毛片网站| 免费看十八禁软件| 国产三级在线视频| 日本在线视频免费播放| 丰满人妻一区二区三区视频av | 国产欧美日韩一区二区精品| 伊人久久精品亚洲午夜| 亚洲七黄色美女视频| 国产黄片美女视频| 欧美日韩乱码在线| 在线国产一区二区在线| 亚洲内射少妇av| 波多野结衣巨乳人妻| а√天堂www在线а√下载| 国产精品一区二区三区四区免费观看 | 国内揄拍国产精品人妻在线| 欧美国产日韩亚洲一区| 精品久久久久久久毛片微露脸| 女同久久另类99精品国产91| 欧美丝袜亚洲另类 | 欧美在线黄色| 国产精品野战在线观看| 久久精品91无色码中文字幕| 精品人妻1区二区| 两个人看的免费小视频| 69人妻影院| 12—13女人毛片做爰片一| 精品久久久久久成人av| a级毛片a级免费在线| 日本成人三级电影网站| 日本黄色片子视频| 深夜精品福利| 亚洲最大成人中文| bbb黄色大片| 欧美午夜高清在线| 香蕉久久夜色| 久久九九热精品免费| 国产真人三级小视频在线观看| 国产激情欧美一区二区| 精品久久久久久久末码| 国产三级在线视频| 日韩大尺度精品在线看网址| 99久久无色码亚洲精品果冻| 午夜免费成人在线视频| 天堂网av新在线| 亚洲黑人精品在线| 婷婷精品国产亚洲av在线| 亚洲av成人精品一区久久| 亚洲欧美日韩卡通动漫| 日韩精品青青久久久久久| 久久国产精品人妻蜜桃| 亚洲欧美日韩卡通动漫| 久久欧美精品欧美久久欧美| 国产色爽女视频免费观看| 最近最新中文字幕大全免费视频| 亚洲精品亚洲一区二区| 最近最新中文字幕大全电影3| 亚洲av第一区精品v没综合| 91字幕亚洲| 国产高清三级在线| 日韩av在线大香蕉| 人人妻人人澡欧美一区二区| 看免费av毛片| 国模一区二区三区四区视频| 亚洲国产精品999在线| 国产av麻豆久久久久久久| 日韩高清综合在线| 美女免费视频网站| 人人妻人人看人人澡| 欧美乱妇无乱码| 亚洲美女视频黄频| 欧美乱色亚洲激情| 99精品久久久久人妻精品| 欧美午夜高清在线| 少妇熟女aⅴ在线视频| 国产成人av教育| 国产成年人精品一区二区| 老司机在亚洲福利影院| 欧美黄色淫秽网站| 成年女人永久免费观看视频|