• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New adaptive vector control methods for induction motors with simpler structure and better performance

    2015-12-05 11:33:07KangZhiLIUMasashiYOKOOKeiichiroKONDOTadanaoZANMA
    Control Theory and Technology 2015年2期

    Kang-Zhi LIU,Masashi YOKOO,Keiichiro KONDO,Tadanao ZANMA

    Department of Electrical and Electronics Engineering,Chiba University,Chiba 263-8522,Japan

    Received 30 October 2014;revised 12 March 2015;accepted 13 March 2015

    New adaptive vector control methods for induction motors with simpler structure and better performance

    Kang-Zhi LIU?,Masashi YOKOO,Keiichiro KONDO,Tadanao ZANMA

    Department of Electrical and Electronics Engineering,Chiba University,Chiba 263-8522,Japan

    Received 30 October 2014;revised 12 March 2015;accepted 13 March 2015

    This paper deals with the vector control,including both the direct vector control(DVC)and the indirect vector control(IdVC),of induction motors.It is well known that the estimation of rotor flux plays a fundamental role in the DVC and the estimation of rotor resistance is vital in the slip compensation of the IdVC.In these estimations,the precision is significantly affected by the motor resistances.Therefore,online estimation of motor resistances is indispensable in practice.

    For a fast estimation of motor resistances,it is necessary to slow down the convergence rate of the current estimate.On the other hand,for a fast estimation of the rotor flux,it is necessary to speed up its convergence rate.It is very difficult to realize such a trade-off in convergence rates in a full order observer.

    In this paper,we propose to decouple the current observer from the flux observer so as to realize independent convergence rates.Then,the resistance estimation algorithm is applied to both DVC and IdVC.In particular,in the application to IdVC the flux observer needs not be used,which leads to a simpler structure.Meanwhile,independent convergence rates of current observer and flux observer yield an improved performance.A superior performance in the torque and flux responses in both cases is verified by numerous simulations.

    Induction motor,current observer,flux observer,parameter adaptation,indirect vector control,direct vector control

    DOI 10.1007/s11768-015-4153-z

    1 Introduction

    It is well-known that the vector control technology[1]has greatly contributed to the variable speed control and energy-saving of motor drives.There are mainly two kinds of vector control methods:direct vector control(DVC)and indirect vector control(IdVC)[1].Both methods are model-based and heavily depend on the motor parameters.The rotor resistance is needed both in the rotor flux estimation of DVC and in the slip frequencycomputation of IdVC.

    However,the stator and rotor resistances of an induction motor vary significantly with the operating temperature.The resistance uncertainty leads to the deviation of rotor flux estimate in DVC and the error of slip frequency in IdVC,thus results in torque errorin the steady state.

    1.1 Direct vector control

    In the DVC,the rotor flux is used in the transformation between the d-q frame and γ-δ frame,thus plays a fundamental role[1].Since the rotor flux cannot be measured,conventionally it is estimated based on its model[1,2]in an open-loop manner.Furthermore,flux estimation with correction term was studied in[2,3].

    It is well recognized that the precision of flux estimation depends heavily on the motor resistance(refer to equation(2)for the detail).The variation of rotor resistance causes a deviation of the frame,which results in errors in both flux and torque.In particular,reference[3]revealed that almost all types of open-loop flux observer(no matter full order or reduced order)are sensitive to the uncertainty of motor parameters.Even though this sensitivity may be alleviated to a certain degree with a current correction term added to the flux observer,parameter uncertainty still has a substantial influence on the precision of flux estimate.

    1.2 Indirect vector control

    The compensation of slip frequency is the core of the IdVC method,which controls the rotor flux(refer to Fig.1).The slip frequency

    is proportional to the rotor resistance Rr.Therefore,its variation directly affects the precision of rotor flux,compensation of the frequency of electrical source as well as the associated phase angle used in frame transformation.

    For the reasons stated above,it is difficult to achieve the desired control performance in vector controls withoutonline adaptation ofrotorparameters.Therefore,online estimation of resistance is indispensable in practice in order to achieve high performance.

    Fig.1 IdVC system.

    1.3 Existing adaptive methods

    As an approach to resolve such problem,one may add a parameter adaptation law to the control system.A rotorresistance identification method was proposed in[4],which is based on the model reference adaptive method and uses a rotor flux observer.However,a sinusoidal signal needs to be injected into the flux reference.Subject to the same condition of sinusoidal signal injection,reference[5]gave a method for the adaptation of stator and rotor resistances in the speed sensorless circumstance.Reference[6]proposed a parameter estimation method through algebraic computation only.However,this method cannot be applied before the induction motor reaches the steady state.

    Furthermore,a parameteradaptive rotorflux observer was proposed in[7].In this method,a fullorderobserver was used whose order is 4 and the computation is timeconsuming.What is more important is that,it is not possible to set independently the convergence rates of the stator current and the rotor flux.

    Moreover,in[8]a high performance flux observer with resistance adaptation was proposed.The problem with this method is that the degree of the control system is very high.A reduced order flux observer with stator resistance adaptation was introduced in[9],which uses the estimation error of back EMF(electromotive force)both in the flux observer and the resistance adaptation law.

    1.4 This paper

    As explained above,to achieve a high performance in the control of induction motors,parameter adaptation is desired.

    An outstanding feature in motor control is that,for a good resistance adaptation it is better to slow down the estimation speed of stator current.Meanwhile,in DVC it is desirable to speed up the estimation speed of rotor flux for a good torque response.In a word,independent estimation of resistance and flux is desired in the vector controls of induction motors.However,such trade-off is impossible for a full order observer.

    In this paper,a new parameter adaptation method for the stator and the rotor resistances and a new rotor flux observer will be proposed.The key idea is that,the flux reference is knownaprioriand the dynamics of stator current and rotor flux are decoupled when the flux is replaced by its reference in the dynamics of stator current.Hence,reduced order current and flux observers can be built.In the proposed method,the current observer can be tuned to a slow response while the flux observer can be tuned to a fast response.Slow response of the current observer contributes significantly to the resistance adaptation,while fast response of flux observer contributes to the performance improvement of DVC of induction motors.The used information are the current and voltage of stator,the reference of rotor flux and the rotor speed.

    Furthermore,in the application to IdVC only the statorcurrentobserverand resistance adaptation algorithm are used which yields a simpler vector control structure.Meanwhile,in the application to DVC a faster and robustresponse can be achieved because the convergence ratesofcurrentand flux observerscan be tuned independently.The proposed adaptive vector control methods are investigated via numerous simulations.It is verified that the performance is significantly improved even in the low torque and low speed range.

    In this paper,the estimates of both the state and the parameter are described by hatted notations such as?x,the reference of a signalxis described byx?.

    2 Models of induction motor

    In this paper,the scripts of different frames are omitted in the vectors of physical variable in order to simplify the notation.They are explicitly stated in the models below.The notations are standard and listed in Table 1 for the ease of reference.

    Table 1 Notations.

    2.1 Model in the d-q frame

    Taking the stator currents and rotor fluxes as the states,the model of an induction motor in thed-qframe is described by

    Here,the stator current vector is,rotor flux vector φrand stator voltage vector vsare given by

    respectively.Furthermore,the coefficient matrices are

    Furthermore,

    denote the ratios of resistance to inductance.In particular,ρsand ρrare the inverse time constants of the stator and rotor circuits.Moreover,

    Since the rotorflux in the d-q frame is used to calculate the phase angle which is used in the frame transformation in DVC(refer to Fig.2),this model is used in the application to DVC and the associated flux observer.

    Fig.2 DVC system with the proposed estimation method.

    2.2 Model in the γ-δ frame

    Meanwhile,in the γ-δ frame the model of stator current isand rotor flux φris described by

    in which the stator current is,rotor flux φrand stator voltage vsare respectively

    The current control is carried out in the γ-δ frame,and so this model is used in the resistance adaptation as well as the associated stator current observer.

    3 Simplified parameter adaptation

    Owing to(5),the stator current observer used for the adaptation ofparametersρr,ρsis constructed as follows:

    based on the model in γ-δ frame.Here,

    Let the tracking error of the rotor flux be

    then the equation aboutthe estimation errorofthe stator current is given by

    in which

    are the adaptation errors of the parameters.

    To derive an adaptation law for the parameters(ρs,ρr),we use the following Lyapunov candidate:

    Here,λsand λrare the gains used for tuning of the convergence rate of parameter adaptation.Differentiation of this function along the trajectory and substitution of(8)yields

    The adaptation law is determined as

    The first term is negative definite while the second term is indefinite.It has been verified the parameter adaptation works well except in the regeneration mode of induction motor,similar to[7].

    4 Rotor flux observer

    As is clear from the rotor flux model(2)in the d-q frame,the convergence rate cannot be changed if we directly use it to estimate the rotor flux.Here an idea based on the minimal order observer is adopted in order to accelerate the convergence of flux estimation.Concretely speaking,a new state

    is estimated instead by using the information of stator currentis,as described below:

    Here,the 2×2 matrix H is the observer gain.

    Next,to analyze the convergence of flux estimation and the effect of parameter uncertainty,the estimation error

    is defined.The error equation is easily obtained as

    in which ΔAij=Aij??Aij.

    In the open-loop case(i.e.,H=0),the observer dynamicsisgoverned by A22= ?ρrI+ωreJ and itsresponse is extremely oscillatory even in the rated operation because ωre? ρr.To alleviate this oscillation,we propose using the following observer gain to reduce the oscillation frequency:

    This gain H is a function of scalar h,and so the tuning is simple.

    Concrete calculation shows that(14)can be written as

    DiscussionThe 2nd and 3rd terms on the right side of(16)represent the effect of parameter error.When both Δρsand Δρrare made small enough via fast parameter adaptation,their influence is limited.

    Meanwhile,the 1st term on the right side dominates the dynamic response of the flux observer.Since the convergence rate is?(ρr+hωre)and the oscillation frequency is ωre? hρr,increasing h leads to a fast convergence while setting h close to ωre/ρrreduces the oscillation.Hence,it is suggested to set h≈ ωre/ρr,i.e.,it is better for the observer gain to vary with the motor speed.In practice,as the true value of parameter is unknown,we suggest using

    5 Application to vector controls

    The proposed current observer and resistance adaptation law are incorporated into the standard IdVC configuration in Fig.1 which is composed of a PI-PWM,a slip frequency control and a parameter adaptation law.Concretely speaking,the estimated rotor resistance is used in the computation of the slip frequency.

    On the other hand,the proposed flux and current observers and the resistance adaptation law are incorporated into the standard DVC configuration as shown in Fig.2 which is composed of PI-PWM controller,flux/current observers and parameter adaptation law.

    MATLAB is used in the simulation.The parameters of the induction motor are listed in Table 2 which come from a motor in our lab.

    Table 2 Simulation parameter.

    The reference torque is shown by a dotted line in all torque responses.Other simulation conditions are set as follows:

    .The magnetic excitation current is a constant.

    .The angular velocity is a constant.

    .The dead time of inverter is ignored.

    Simulations are carried out with respect to two scenarios:

    1)Rated case:ωrm=700 r·min?1,T?=10 N·m;

    2)Low torque and low frequency:ωrm=70 r·min?1,T?=1 N·m.

    Since in general the control is much more difficult at low speed and low torque situation,case 2)is used to test the capability limit of proposed control methods.

    6 Results of adaptive DVC

    The adaptation gains are set as λs= λr=1/4.The initial values of resistances are set as?ρs(0)=0.8ρs,?ρr(0)=0.8ρrwhich account for a 20%parameter error.Hereafter, φγr_est, φδr_estin the figures indicate the fluxes estimated by the flux observer,i.e.,?φγrand?φδr.

    The following three cases are shown in order to investigate the effect of the gains of current and flux observers.

    1)Case 1:h=0,K=0(w/o correction terms in both observers).

    2)Case 2:h=ωre/?ρr(0),K=0(with correction term in the flux observer only).

    3)Case 3:h=ωre/?ρr(0),K=?67(current observer with a slower convergence rate).

    In Case 1,the motor dynamics is directly used to estimate the current and flux which is usually used in practice.In Case 2,a current correction term is putted into the flux observer to improve the response of flux estimate.Comparison of these two cases illustrates the capability of the flux observer.Furthermore,the convergence rate of the current estimation is slowed down in Case 3 so as to validate the capability of the current observer in improving the parameter adaptation.

    The resistance estimation starts att=2 s.The responses of torque,flux as well as the parameter estimates are shown in Figs.3–8.Shown in the figures of parameter estimates are?Rs/Rsand?Rr/Rr,the ratios of estimated value and true value.Therefore,1 implies that the estimate coincides with the true value.

    In all simulations,it is seen that before the parameter adaptation there is a big tracking error in the torque response due to the deviation of orientation in the estimated flux vector,which is caused by uncertainty in the motor parameters.

    Fig.3 Torque response(DVC:700 r·min?1,10 N·m).(a)h=0,K=0.(b)h=14.3,K=0.

    Fig.4 Flux response(DVC:700 r·min?1,10 N ·m).(a)h=0,K=0.(b)h=14.3,K=0.

    Fig.5 Parameter estimates(DVC:700 r·min?1,10 N ·m).(a)h=0,K=0.(b)h=14.3,K=0.

    Fig.6 Torque response(DVC:70 r·min?1,1 N·m).(a)h=1.43,K=0.(b)h=1.43,K= ?67.

    Fig.7 Flux response(DVC:70 r·min?1,1 N·m).(a)h=1.43,K=0.(b)h=1.43,K= ?67.

    Fig.8 Parameter estimates(DVC:70 r·min?1,1 N·m).(a)h=1.43,K=0.(b)h=1.43,K= ?67.

    Discussion

    1)Rated case.

    Due to the effect of parameter adaptation(Fig.5(a))the estimated rotor flux converges to the true flux(Fig.4(a))in the steady state.As a result,the steady state value of the torque tracks the reference well(Fig.3(a)).However,in the transient the flux(?φδrin particular)responds quite oscillatory,which causes oscillation in the torque.This is because the open-loop flux observer has a rather weak damping in the rated speed range.

    This oscillation is suppressed efficiently by the introduction of the correction term(15)in the flux observer which strengthens the damping(Fig.4(b)and Fig.3(b)).However,the correction term in the flux observer has a negative effect on the parameter adaptation(Fig.5(b)).As is wellknown,excitation ofthe signalused in parameter adaptation contributes to the convergence of parameter estimation.In fact,persistent excitation is required for the asymptotic convergence of parameter estimate.However,the oscillation of flux estimate is eliminated by the correction term.In this sense,certain degree of oscillation should better be retained in the flux observer and the current observer as well.

    2)Low torque and low speed case.

    In this case,the negative influence of the correction term in flux observer is more serious.Both the torque response and the flux response get rather slow(Fig.7(a)and Fig.6(a)).However,a positive feedback in the current observer improves the convergence of parameter adaptation(Fig.8(b)),which yields improved flux and torque responses(Fig.7(b)and Fig.6(b)).In fact,the gain of current observer is chosen as such that moves the observer poles close to the imaginary axis(the openloop poles are around?67).

    3)Tuning of adaptation gain.

    As has been remarked,in the low speed operation the torque component of stator current(iδs)decreases which has a negative effect on the parameter adaptation.To overcome this difficulty,smaller gains are tried(λs= λr=0.1).The corresponding results are shown in Fig.9.It is obvious that the convergence of parameter adaptation gets faster.As a result,both flux and torque respond quickly.

    Fig.9 Responses of DVC(70 r·min?1,1 N·m:λs= λr=0.1).(a)Torque.(b)Flux.(c)Parameter estimates.

    7 Results of IdVC

    The torque reference is set as 1 N·m up to 0.8 s in order to build the necessary rotor flux.After that,it is switched to the assigned valueT?.The initial values ?Rr(0),?Rs(0)of the parameter estimates and the adaptation gains λs,λrare set the same as in the DVC simulations.The parameter adaptation starts att=2 s.

    The torque and the flux responses are shown in Fig.10 and Fig.11.It can be seen that both the torque and the rotor flux track their references satisfactorily.Furthermore,the parameter adaptation works well over a wide range from the rated speed and rated torque(Fig.10)to 10%of the rated values(Fig.11).

    Fig.10 Response of IdVC(700 r·min?1,10 N·m).(a)Torque.(b)Flux.(c)Parameter adaptation.

    Fig.11 Response of IdVC(70 r·min?1,1 N ·m).(a)Torque.(b)Flux.(c)Parameter adaptation.

    8 Conclusions

    In this paper,an independent estimation method has been proposed for the estimation of resistance and rotor flux based on decoupled current and flux observers.Furthermore,the guideline for the selection of observer gains as well as the adaptation gains has also been ex-posed.The proposed method shows a high performance when applied to the vector controls,including both direct and indirect,of induction motors.This method has the following outstanding features:1)the performance is quite good since fast convergence of resistance and flux can be achieved simultaneously to certain degree by slowing down the convergence rate of current observer while speeding up that of the flux observer;2)it has a very simple structure and is easy to implement because the order of the observers and adaptive law are minimal.

    [1]B.K.Bose.Modern Power Electronics and AC Drivers.Upper Saddle River:Prentice Hall,2001.

    [2]G.C.Verghese,S.R.Sanders.Observers for flux estimation in induction machines.IEEE Transactions on Industrial Electronics,1988,35(1):85–94.

    [3]P.L.Jansen,R.D.Lorenz.A physically insightful approach to the design and accuracy assessment of flux observers for field oriented induction machine drives.IEEE Transactions on Industry Applications,1994,30(1):101–110.

    [4]H.Sugimoto,S.Tamai.Secondary resistance identification of an induction-motor appplied model reference adaptive system and its characteristics.IEEE Transactions on Industry Applications,1987,23(2):296–303.

    [5]I.J.Ha,S.H.Lee.An online identification method for both stator and rotor resistances of induction motors without rotational transducers.IEEE Transactions on Industrial Electronics,2000,47(4):842–853.

    [6]C.C.Chan.An effective method for rotor resistance identification for high-performance induction motor vector control.IEEE Transactions on Industrial Electronics,1990,37(6):477–482.

    [7]H.Kubota,K.Matsuse.Adaptive flux observer of induction motor and its stability.Transactions of the Institute of Electrical Engineers Japan–Part D,1991,111(3):188–194(in Japanese).

    [8]S.H.Jeon,K.K.Oh,J.Y.Choi.Flux observers with online tunning of stator and rotor resistances for induction motors.IEEE Transactions on Industry Applications,2002,49(3):653–664.

    [9]M.Hinkkanen,L.Harnefors,J.Luomi.Reduced-order flux observers with stator-resistance adaptation for speed-sensorless induction motor drives.IEEE Transactions on Power Electronics,2010,25(5):1173–1183.

    Kang-Zhi LIUis a professor at the Department of Electrical and Electronic Engineering,Chiba University.He graduated from Northwestern Polytechnical University,China in 1984 and received his Ph.D.degree from Chiba University in 1991.He has authored and co-authored five books.His recent research interests include system integration of smart-grid,power systems,nonlinear control and robust control theories.E-mail:kzliu@faculty.chiba-u.jp.

    Masashi YOKOOgraduated from the Department of Electrical and Electronic Engineering,Chiba University in 2013,and is now a master course student at the department.His research interest is the control of motor drives.E-mail:myokoo@chiba-u.jp.

    Keiichiro KONDOis a professor at the Department of Electrical and Electronic Engineering,Chiba University.He received B.Sc.and Ph.D.degrees from the Faculty of Electrical Engineering,Waseda University in 1991 and 2000,respectively.His research interests are power electronics,AC motor drive,energy storage system,wireless power transmission and their applications to the railway vehicle traction.E-mail:kkondo@faculty.chibau.jp.

    Tadanao ZANMAis an associate professor at the Department of Electrical and Electronic Engineering,Chiba University.He received the B.Sc.,M.Sc.and Ph.D.degrees from Nagoya University in 1995,1997 and 2000,respectively.Hisresearch interestsinclude hybrid dynamical systems,especially,system control based on mixed logical dynamical systems and model predictive control.E-mail:zanma@chiba-u.jp.

    ?Corresponding author.

    E-mail:kzliu@faculty.chiba-u.jp.Tel.:+81-43-290-3340;fax:+81-43-290-3340.

    ?2015 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    91av网一区二区| 一进一出好大好爽视频| 可以在线观看的亚洲视频| 国产精品伦人一区二区| 久久久久久久久久成人| 国产男靠女视频免费网站| 九色成人免费人妻av| 九九热线精品视视频播放| 亚洲综合色惰| 免费人成视频x8x8入口观看| 麻豆av噜噜一区二区三区| 久久久久久久亚洲中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 在线看三级毛片| 最近手机中文字幕大全| 晚上一个人看的免费电影| 午夜视频国产福利| 99久久久亚洲精品蜜臀av| 91麻豆精品激情在线观看国产| 免费观看人在逋| 欧美色视频一区免费| 亚洲图色成人| 少妇高潮的动态图| 久久这里只有精品中国| 欧美成人a在线观看| 如何舔出高潮| 特级一级黄色大片| 午夜a级毛片| 国产黄色小视频在线观看| 欧美色欧美亚洲另类二区| 中文字幕av在线有码专区| 日韩欧美 国产精品| 深夜精品福利| 亚洲国产色片| 在线播放无遮挡| 亚洲精品在线观看二区| 综合色av麻豆| 欧美中文日本在线观看视频| 大香蕉久久网| 免费av毛片视频| 国产精品久久视频播放| 老女人水多毛片| 三级男女做爰猛烈吃奶摸视频| 一区福利在线观看| 男插女下体视频免费在线播放| 午夜久久久久精精品| 一级黄色大片毛片| 国产精品国产三级国产av玫瑰| 欧美成人一区二区免费高清观看| 最近在线观看免费完整版| 亚洲国产色片| 深爱激情五月婷婷| 嫩草影院精品99| 91av网一区二区| 美女黄网站色视频| 性插视频无遮挡在线免费观看| 久久久久性生活片| 免费人成视频x8x8入口观看| 人妻少妇偷人精品九色| 久久精品久久久久久噜噜老黄 | 亚州av有码| 亚州av有码| 亚洲精品粉嫩美女一区| 国产真实伦视频高清在线观看| 97在线视频观看| 国产精品一区www在线观看| 联通29元200g的流量卡| 天天躁夜夜躁狠狠久久av| 欧美一区二区国产精品久久精品| 日本黄色片子视频| 一个人看的www免费观看视频| 男人舔女人下体高潮全视频| 最近手机中文字幕大全| 国产在线男女| 午夜福利在线在线| 岛国在线免费视频观看| 又爽又黄a免费视频| 国产熟女欧美一区二区| 精品乱码久久久久久99久播| 国产人妻一区二区三区在| 99热精品在线国产| 午夜影院日韩av| 综合色丁香网| 国内久久婷婷六月综合欲色啪| 亚洲专区国产一区二区| 午夜a级毛片| 久久99热这里只有精品18| 日本免费一区二区三区高清不卡| av在线蜜桃| 日韩制服骚丝袜av| 国产欧美日韩一区二区精品| 亚洲国产日韩欧美精品在线观看| 色在线成人网| 毛片一级片免费看久久久久| 男女那种视频在线观看| 日韩av不卡免费在线播放| 舔av片在线| 亚洲成a人片在线一区二区| 国产伦一二天堂av在线观看| 国产精品av视频在线免费观看| 中国美女看黄片| 真实男女啪啪啪动态图| 又粗又爽又猛毛片免费看| 国产精品爽爽va在线观看网站| 熟女人妻精品中文字幕| 久久精品国产亚洲av涩爱 | www.色视频.com| 丰满乱子伦码专区| 俄罗斯特黄特色一大片| 给我免费播放毛片高清在线观看| 非洲黑人性xxxx精品又粗又长| 欧美日本视频| 久久久成人免费电影| 午夜免费激情av| 国产精品一区二区免费欧美| 99国产极品粉嫩在线观看| 国产高清视频在线观看网站| 欧美性猛交╳xxx乱大交人| 国产精品嫩草影院av在线观看| 亚洲三级黄色毛片| 自拍偷自拍亚洲精品老妇| 亚洲七黄色美女视频| 91久久精品国产一区二区成人| 深爱激情五月婷婷| 夜夜看夜夜爽夜夜摸| 日韩人妻高清精品专区| 免费av毛片视频| 精品久久久久久久久av| 一级a爱片免费观看的视频| 97超碰精品成人国产| 97热精品久久久久久| 黄色视频,在线免费观看| 精品久久久久久久久av| 国产精品一及| 美女大奶头视频| 午夜a级毛片| 久久人人爽人人爽人人片va| 久久6这里有精品| 日本a在线网址| 国产欧美日韩一区二区精品| av黄色大香蕉| 在线观看免费视频日本深夜| 成人三级黄色视频| 日韩三级伦理在线观看| 色哟哟·www| 91久久精品国产一区二区成人| 亚洲成人久久爱视频| 少妇的逼水好多| 寂寞人妻少妇视频99o| 日韩三级伦理在线观看| 69av精品久久久久久| 午夜激情欧美在线| 精品国内亚洲2022精品成人| 亚洲电影在线观看av| 国产精品久久久久久精品电影| 久久午夜福利片| 国产 一区 欧美 日韩| 国产精品国产高清国产av| 国产三级在线视频| a级毛片免费高清观看在线播放| 久久草成人影院| 婷婷精品国产亚洲av| 精品午夜福利在线看| 久久精品国产亚洲网站| 亚洲最大成人中文| 亚洲熟妇中文字幕五十中出| 色视频www国产| 黄色日韩在线| or卡值多少钱| 久久人妻av系列| 男女啪啪激烈高潮av片| 日本爱情动作片www.在线观看 | 网址你懂的国产日韩在线| 日韩欧美精品v在线| 91在线精品国自产拍蜜月| 真实男女啪啪啪动态图| 成人三级黄色视频| 在线免费十八禁| 又黄又爽又刺激的免费视频.| 国产伦一二天堂av在线观看| 成年女人毛片免费观看观看9| 亚洲人成网站高清观看| 欧美激情久久久久久爽电影| 在线观看av片永久免费下载| 伊人久久精品亚洲午夜| 最后的刺客免费高清国语| 美女被艹到高潮喷水动态| 一级a爱片免费观看的视频| 免费观看的影片在线观看| 国产亚洲精品综合一区在线观看| 日韩制服骚丝袜av| 啦啦啦啦在线视频资源| 三级国产精品欧美在线观看| 丝袜美腿在线中文| 日韩欧美在线乱码| 亚洲一级一片aⅴ在线观看| 精品无人区乱码1区二区| 国产精品国产高清国产av| 国产国拍精品亚洲av在线观看| 蜜桃亚洲精品一区二区三区| 日韩一本色道免费dvd| 深爱激情五月婷婷| 成人二区视频| 亚洲最大成人中文| 日韩精品有码人妻一区| а√天堂www在线а√下载| 免费在线观看成人毛片| 亚洲无线观看免费| 亚洲成人中文字幕在线播放| 日本爱情动作片www.在线观看 | 国产亚洲精品久久久久久毛片| 亚洲国产精品sss在线观看| 成人午夜高清在线视频| 啦啦啦啦在线视频资源| 日本免费一区二区三区高清不卡| 嫩草影院入口| 尾随美女入室| 亚洲18禁久久av| 蜜桃亚洲精品一区二区三区| 精品一区二区三区人妻视频| 一个人观看的视频www高清免费观看| 99久久成人亚洲精品观看| 色综合色国产| 综合色av麻豆| 午夜精品一区二区三区免费看| 亚洲国产精品sss在线观看| 国产欧美日韩一区二区精品| 国产视频一区二区在线看| 露出奶头的视频| 欧美国产日韩亚洲一区| 白带黄色成豆腐渣| 老熟妇仑乱视频hdxx| 久久亚洲国产成人精品v| 村上凉子中文字幕在线| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 中文在线观看免费www的网站| 久久久久国产精品人妻aⅴ院| 五月伊人婷婷丁香| 国产精华一区二区三区| 成年av动漫网址| 搡老熟女国产l中国老女人| 国产精品亚洲一级av第二区| 最好的美女福利视频网| 嫩草影院入口| 一本精品99久久精品77| 国产午夜福利久久久久久| 国产一区二区在线av高清观看| 热99re8久久精品国产| 搞女人的毛片| 91麻豆精品激情在线观看国产| 亚洲国产精品成人综合色| 级片在线观看| 又黄又爽又免费观看的视频| 亚洲精品日韩av片在线观看| 国产一区二区三区在线臀色熟女| 性欧美人与动物交配| 国产成人精品久久久久久| 日日摸夜夜添夜夜爱| 赤兔流量卡办理| 丰满的人妻完整版| 亚洲av不卡在线观看| 日韩欧美 国产精品| 一区二区三区免费毛片| 久久久久国产精品人妻aⅴ院| 色综合站精品国产| 99热这里只有是精品50| 亚洲av.av天堂| 国产视频内射| 此物有八面人人有两片| 成人性生交大片免费视频hd| 国产精品99久久久久久久久| eeuss影院久久| 最后的刺客免费高清国语| 欧美高清成人免费视频www| 亚洲乱码一区二区免费版| 亚洲精品影视一区二区三区av| 国产伦精品一区二区三区四那| 一a级毛片在线观看| 国产精品嫩草影院av在线观看| 91狼人影院| 国产一区二区三区av在线 | 国产成人a∨麻豆精品| 真实男女啪啪啪动态图| 色在线成人网| 国产亚洲av嫩草精品影院| 亚洲av中文字字幕乱码综合| 美女免费视频网站| 亚洲精品国产av成人精品 | 日本爱情动作片www.在线观看 | 亚洲熟妇中文字幕五十中出| 国产日本99.免费观看| 十八禁国产超污无遮挡网站| 免费观看在线日韩| 日日撸夜夜添| 日韩 亚洲 欧美在线| 久久久欧美国产精品| 国产一区二区在线观看日韩| 1024手机看黄色片| 亚洲欧美成人精品一区二区| 色在线成人网| 亚洲va在线va天堂va国产| 成人美女网站在线观看视频| 久久人人精品亚洲av| 欧美性猛交╳xxx乱大交人| 免费看日本二区| 久久欧美精品欧美久久欧美| 国产人妻一区二区三区在| 亚洲国产高清在线一区二区三| 一个人观看的视频www高清免费观看| 国产伦在线观看视频一区| 变态另类丝袜制服| 人妻丰满熟妇av一区二区三区| 搡女人真爽免费视频火全软件 | ponron亚洲| 一本一本综合久久| 亚洲中文字幕一区二区三区有码在线看| 色播亚洲综合网| 精品少妇黑人巨大在线播放 | 波多野结衣高清作品| 国内久久婷婷六月综合欲色啪| 欧美日韩精品成人综合77777| 免费在线观看成人毛片| 国产av在哪里看| 亚洲欧美中文字幕日韩二区| 国产精品一区二区性色av| 午夜福利在线观看吧| 免费看光身美女| 亚洲av一区综合| 91在线观看av| av在线天堂中文字幕| 99久久精品一区二区三区| 日本精品一区二区三区蜜桃| 亚洲在线观看片| 99热只有精品国产| 精品一区二区三区av网在线观看| 国产伦精品一区二区三区视频9| 精品日产1卡2卡| 美女大奶头视频| 欧美3d第一页| 无遮挡黄片免费观看| 热99re8久久精品国产| 一进一出抽搐gif免费好疼| 国产精品嫩草影院av在线观看| 亚洲中文字幕日韩| 给我免费播放毛片高清在线观看| 不卡一级毛片| 成人av在线播放网站| 久久精品91蜜桃| 午夜免费激情av| 国产视频一区二区在线看| 久久天躁狠狠躁夜夜2o2o| 久久久久国产精品人妻aⅴ院| 校园人妻丝袜中文字幕| 国产精品99久久久久久久久| 亚洲七黄色美女视频| 久久精品国产亚洲av涩爱 | 亚洲成a人片在线一区二区| 国产精品久久久久久亚洲av鲁大| 成人av在线播放网站| 免费在线观看影片大全网站| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区性色av| 男人和女人高潮做爰伦理| 亚洲欧美精品自产自拍| 1024手机看黄色片| 中文字幕av成人在线电影| 成人性生交大片免费视频hd| 此物有八面人人有两片| 夜夜夜夜夜久久久久| 人人妻,人人澡人人爽秒播| 亚洲成人久久爱视频| 精品人妻偷拍中文字幕| 老司机影院成人| av福利片在线观看| 欧美一区二区亚洲| 丝袜喷水一区| 精华霜和精华液先用哪个| 99久久精品国产国产毛片| 国产探花在线观看一区二区| 一进一出抽搐gif免费好疼| 成人无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 99久久无色码亚洲精品果冻| 欧美区成人在线视频| 亚洲精品国产av成人精品 | 非洲黑人性xxxx精品又粗又长| 此物有八面人人有两片| 免费看av在线观看网站| 久久精品久久久久久噜噜老黄 | 欧美中文日本在线观看视频| 国产不卡一卡二| 欧美高清性xxxxhd video| 午夜a级毛片| 国产精品永久免费网站| 国产成年人精品一区二区| 亚洲在线观看片| 哪里可以看免费的av片| 亚洲精华国产精华液的使用体验 | 又爽又黄无遮挡网站| 97人妻精品一区二区三区麻豆| 特大巨黑吊av在线直播| 色综合亚洲欧美另类图片| 国产综合懂色| 麻豆国产97在线/欧美| 午夜免费男女啪啪视频观看 | 日本成人三级电影网站| 精品欧美国产一区二区三| 麻豆久久精品国产亚洲av| or卡值多少钱| 亚洲欧美日韩东京热| 91久久精品国产一区二区成人| 亚洲av二区三区四区| 久久午夜福利片| 在线观看66精品国产| 最近手机中文字幕大全| 国产爱豆传媒在线观看| 在线看三级毛片| 亚洲精品日韩av片在线观看| 久久精品国产鲁丝片午夜精品| 国产精品免费一区二区三区在线| 成人综合一区亚洲| 亚洲性夜色夜夜综合| 不卡视频在线观看欧美| videossex国产| 夜夜看夜夜爽夜夜摸| 国产淫片久久久久久久久| 亚洲av中文av极速乱| 啦啦啦啦在线视频资源| 国产伦精品一区二区三区视频9| 一本精品99久久精品77| 女生性感内裤真人,穿戴方法视频| 亚洲精华国产精华液的使用体验 | 人妻久久中文字幕网| 日韩制服骚丝袜av| 联通29元200g的流量卡| 18禁在线播放成人免费| 三级经典国产精品| 日韩亚洲欧美综合| 人人妻人人澡欧美一区二区| 亚洲人成网站在线播| 国产精品,欧美在线| 国产精品电影一区二区三区| 我要搜黄色片| 变态另类成人亚洲欧美熟女| 国产淫片久久久久久久久| 99国产极品粉嫩在线观看| 极品教师在线视频| 91麻豆精品激情在线观看国产| 免费观看精品视频网站| 美女xxoo啪啪120秒动态图| 天天一区二区日本电影三级| 色播亚洲综合网| 久久精品91蜜桃| 最近2019中文字幕mv第一页| 国产精品99久久久久久久久| 免费观看人在逋| 一个人看的www免费观看视频| 99久久精品国产国产毛片| av天堂中文字幕网| 亚洲国产精品成人久久小说 | 一级毛片久久久久久久久女| 免费av不卡在线播放| 久久久色成人| 色在线成人网| 亚洲天堂国产精品一区在线| 丰满乱子伦码专区| 大香蕉久久网| 最近在线观看免费完整版| 亚洲真实伦在线观看| 成年av动漫网址| 国产一区亚洲一区在线观看| 日韩在线高清观看一区二区三区| 久久韩国三级中文字幕| 网址你懂的国产日韩在线| 在现免费观看毛片| 国产av在哪里看| 亚洲美女搞黄在线观看 | 国产免费男女视频| 一本久久中文字幕| 人人妻,人人澡人人爽秒播| 成人亚洲精品av一区二区| 国产私拍福利视频在线观看| 在线国产一区二区在线| 夜夜爽天天搞| 国产爱豆传媒在线观看| 成熟少妇高潮喷水视频| 国产亚洲91精品色在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美清纯卡通| 蜜臀久久99精品久久宅男| 成熟少妇高潮喷水视频| 18禁黄网站禁片免费观看直播| 欧美丝袜亚洲另类| 亚洲经典国产精华液单| 国国产精品蜜臀av免费| 一卡2卡三卡四卡精品乱码亚洲| 国产男靠女视频免费网站| 欧美丝袜亚洲另类| 此物有八面人人有两片| 日本黄色片子视频| 18禁黄网站禁片免费观看直播| 日本在线视频免费播放| 亚洲av美国av| 亚洲av成人精品一区久久| 国内揄拍国产精品人妻在线| 人妻少妇偷人精品九色| 99国产极品粉嫩在线观看| 性欧美人与动物交配| 国产一区二区在线观看日韩| 国产乱人偷精品视频| 精品午夜福利在线看| 久久人妻av系列| АⅤ资源中文在线天堂| 18+在线观看网站| 少妇裸体淫交视频免费看高清| 天天一区二区日本电影三级| 91在线精品国自产拍蜜月| 色综合色国产| 最近手机中文字幕大全| 一进一出抽搐gif免费好疼| 亚洲成人久久爱视频| 午夜福利在线在线| 啦啦啦啦在线视频资源| 3wmmmm亚洲av在线观看| 精品久久久久久久久久久久久| 婷婷六月久久综合丁香| 精品午夜福利视频在线观看一区| www日本黄色视频网| 亚洲图色成人| 99久久精品热视频| 老师上课跳d突然被开到最大视频| 色综合亚洲欧美另类图片| 日韩欧美国产在线观看| 俄罗斯特黄特色一大片| 日本黄色视频三级网站网址| 干丝袜人妻中文字幕| 亚洲av免费在线观看| 中文资源天堂在线| 99久久精品国产国产毛片| 国产一区二区三区av在线 | 国产午夜精品论理片| 国产爱豆传媒在线观看| 欧美另类亚洲清纯唯美| 国产精品三级大全| 亚洲av二区三区四区| 美女 人体艺术 gogo| 色综合亚洲欧美另类图片| 在线播放无遮挡| 99riav亚洲国产免费| 亚洲乱码一区二区免费版| av在线老鸭窝| 嫩草影院新地址| 国产极品精品免费视频能看的| 老司机午夜福利在线观看视频| 国产男人的电影天堂91| 日韩国内少妇激情av| 日本欧美国产在线视频| 3wmmmm亚洲av在线观看| 天堂av国产一区二区熟女人妻| 亚洲精品影视一区二区三区av| 波多野结衣高清无吗| 亚洲第一电影网av| 欧美性感艳星| 精品一区二区三区人妻视频| 国产v大片淫在线免费观看| 亚洲内射少妇av| 网址你懂的国产日韩在线| 精品无人区乱码1区二区| 国产蜜桃级精品一区二区三区| 亚洲人成网站在线观看播放| 精品久久久久久久末码| 婷婷精品国产亚洲av在线| 天堂影院成人在线观看| 日本免费a在线| 国产女主播在线喷水免费视频网站 | 免费人成视频x8x8入口观看| 免费av不卡在线播放| 1024手机看黄色片| av在线观看视频网站免费| 如何舔出高潮| 色综合亚洲欧美另类图片| 欧美一级a爱片免费观看看| 国产精品日韩av在线免费观看| av在线亚洲专区| 免费人成视频x8x8入口观看| 在线观看免费视频日本深夜| av女优亚洲男人天堂| 日产精品乱码卡一卡2卡三| 女的被弄到高潮叫床怎么办| 亚洲美女视频黄频| 人人妻人人看人人澡| 禁无遮挡网站| avwww免费| 日日摸夜夜添夜夜添av毛片| 久久国内精品自在自线图片| 色噜噜av男人的天堂激情| 亚洲成av人片在线播放无| 午夜精品在线福利| 久久这里只有精品中国| 国产精品亚洲美女久久久| 成人性生交大片免费视频hd| 香蕉av资源在线| 日韩成人伦理影院| 国产成人a∨麻豆精品| 三级国产精品欧美在线观看| 老司机影院成人| 村上凉子中文字幕在线| 中文字幕人妻熟人妻熟丝袜美| a级毛片a级免费在线| 日本-黄色视频高清免费观看| 亚洲人成网站在线播| 99九九线精品视频在线观看视频| 亚洲成人久久性| 一本精品99久久精品77|