• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氰根橋連的FeⅢMnⅡ鏈中磁性作用的調(diào)控

    2015-11-30 08:41:21鄭慧徐楊段春迎
    關(guān)鍵詞:國(guó)家自然科學(xué)基金配體磁性

    鄭慧 徐楊 段春迎

    氰根橋連的FeⅢMnⅡ鏈中磁性作用的調(diào)控

    鄭慧 徐楊 段春迎*

    (大連理工大學(xué)精細(xì)化工重點(diǎn)實(shí)驗(yàn)室,大連116024)

    基于三氰構(gòu)筑單元合成了兩個(gè)氰基橋聯(lián)的FeⅢ-MnⅡ一維鏈,{[Fe(Tp)(CN)3]2[Mn(bib)]}·CH3OH·2H2O(1)和{[Fe(pzTp)(CN)3]2[Mn(bib)]}·3H2O(2)。1和2中的雙之字鏈通過(guò)剛性的雙齒配體固定排列方式并連接成二維結(jié)構(gòu),鏈內(nèi)FeⅢ和MnⅡ之間的磁相互作用可以通過(guò)改變鏈中配體的位阻調(diào)控。

    氰基;之字鏈;雙齒配體;磁相互作用

    0 Introduction

    One-dimensional magnetic systems,especially single chain magnets(SCMs),are attracting considerable interest in the field of chemistry,physics and material science[1].Such materials present both spontaneous magnetization and quantum behavior, providing an ideal model for studying the coexistence of classic and quantum behavior[2-5].Moreover,SCMs can retain spin information over long periods of time, providing potential applications in high-density information storage,quantum computing,and spintronics[6-7].Thereinto,cyanide-bridged complexes are of particular interest,because their structures can be rationally designed utilizing the linear linking mode of cyano-bridge of cyanometallate[8-10].Moreover,it is possible to reasonably predict the type of magnetic interaction and in some cases the magnitude of the magnetic anisotropy with knowledge of the exchange interaction nature through the cyanide bridge[11-12].In these systems,metal ions with strong anisotropy are usually adopted.However,the apical directions of the metal ions are not uniform and are tilted with an angle in general case,which will decrease the blocking temperature of the system or destroy the SCMs behavior[13].Even if the apical directions ofmetal ions within one chain are parallel,the apical directions of metal ions in neighboring chains may be different.In this case,the anisotropy of the system is hard to increase because the neighboring chains rotate an angle relatively[14-15].To solve this problem,a rational way is to use structurally ditopic,magnetically inert rigid organic linkers,which will link the chain into two-dimensional networks without significant changing the nature of the chains.This rigid linker can control the arrangement of chains,and force the apical directions of metal ions to parallel with each other, maximizing the anisotropy of the whole system.In the same time,the interchain interactions could also be controlled via choosing ditopic linkers with different lengths and electric natures.With such strategy,we have synthesized light-responsive SCMs,whose magnetic properties can be tuned via light-induced charge transfer or spin-crossover[16].Both MnⅡions and FeⅢions possess differentredox valence states,and charge transfer properties between them have been reported[17]. We aimed to incorporating MnⅡions and paramagnetic FeⅢions into a cyanide-bridged{FeⅢ2MnⅡ}chain utilizing tricyanometallate building block.Moreover,a rigid ditopic linker was adopted to fix the orientation of the chains and link the chains to form a layer. With such strategy,two heterometallic Fe-Mn compounds,{[Fe(Tp)(CN)3]2[Mn(bib)]}·CH3OH·2H2O(1) (Tp=hydrotris(pyrazolyl)borate;bib=1,4-bis(1-imidazolyl)benzene)and{[Fe(pzTp)(CN)3]2[Mn(bib)]}·3H2O (2)(pzTp=tetrakis(pyrazolyl)borate),were synthesized. Unfortunately,no charge transfer was observed. However,the interchain linkage and apical directions of MnⅡions were fixed with the rigid linker,providing a chance to tune the intrachain magnetic interactions via changing the capping ligand of FeⅢions of cyanometallate building blocks.

    1 Experimental

    1.1 Materials and physicalmeasurements

    Manganese(Ⅱ)perchloratehexahydrate(Mn(ClO4)2· 6H2O,99%)and methanol(CH3OH)were ofanalytical grade from Tianjin Kemiou Chemical Reagent Co., Ltd.China.All chemical reagents were obtained from commercialsources and were used as received without further purication unless otherwise noted.The compounds Bu4N[Fe(Tp)(CN)3][18],Bu4N[Fe(pzTp)(CN)3][19]and ligand bib were synthesized by a modified literature method[20].Elemental analyses(carbon,hydrogen,and nitrogen)were carried out on an Elementar Vario ELⅢanalyzer.Infrared spectra were recorded as fine powder samples with a JASCO FT/IR-600 Plus spectrometer in the 400~4 000 cm-1region and a spectral resolution of 1 cm-1.Magnetic measurements of the samples were performed on a Quantum Design SQUID (MPMS XL-7)magnetometer.Data were corrected for the diamagnetic contribution calculated from Pascal constants.

    1.2 Preparation of complexes 1 and 2

    1.2.1 Synthesis of{[Fe(Tp)(CN)3]2[Mn(bib)]}·CH3OH· 2H2O(1)

    4.0 mL water solution of 0.05 mmol(18.1 mg) Mn(ClO4)2·6H2O was placed at the bottom in one side of an H-shaped tube,while 4.0 mL methanol solution of 0.1 mmol(58.9 mg)[Bu4N][Fe(Tp)(CN)3]and 0.4 mmol(84.0 mg)bib was placed in the other side. Then 4.0 mL methanol solution was layered upon solutions of both sides to provide diffusion pathway. Crystallization took several weeks and gave crystals in a yield of 55%based on Mn(ClO4)2·6H2O.Element analysis:Calcd.for C37H38B2Fe2MnN22O3(%):C 43.26, H 3.73,N 30.01;Found(%):C 43.21,H 3.89,N 29.13.IR(solid KBr pellet,ν/cm-1):3 443 vs,3 123 m, 2 508 w,2 134 s,2 123 s,1 632 s,1 530 s,1 501 m,1 408 s,1 313 s,1 262 w,1 214 m,1 116 s,1 064 s, 1048 s,988 w,961 m,929 w,836 m,769 m,766 s, 711 m,658 m,614 m,536 m,492 m.

    1.2.2 Synthesis of{[Fe(pzTp)(CN)3]2[Mn(bib)]}·3H2O (2)

    The preparation of complex 2 was carried out using a procedure similar to thatemployed for complex 1.[Bu4N][Fe(pzTp)(CN)3](0.1 mmol,65.5 mg)was used as the building block,and the red prisms crystals were obtained in a yield of 70%based on Mn(ClO4)2· 6H2O.Elementanalysis:Calcd.for C42H41B2Fe2MnN26O3(%):C 44.01,H 3.60,N 31.77;Found(%):C 44.09,H 3.65,N 31.70.IR(solid KBr pellet,ν/cm-1):3 439 vs,3 137 m,2 141 m,1 633 m,1 530 s,1 501 m,1 441 w, 1 408 s,1 388 m,1 307 s,1 243 w,1 213 s,1 107 s, 1 092 w,1 065 s,962 w,932 w,858 m,809 m,794 m, 768 s,655 m,614 m,536 m.

    1.3 Crystallographic refinement details

    The data was collected on a Bruker Smart APEXⅡX-diffractometer equipped with graphite monochromatic Mo Kαradiation(λ=0.071 073 nm)using the SMART and SAINT programs.Indexing and unit cell refinement were based on all observed reflections.The structures were solved in the space group by direct method and refined by the full-matrix least-squares fitting on F2using SHELXTL-97.All non-hydrogen atoms were treated anisotropically.Hydrogen atoms bound to carbon were placed in calculated positions using a riding model while those attached to some water lattice solvents were located in the difference Fourier map and refined using fixed isotropic thermal parameters based on their respective parent atoms. The details of crystallographic data for compounds 1 and 2 are listed in Table 1.Selected bond distances and angles are listed in Table 2,respectively.

    CCDC:1001946,1;1001947,2.

    Table 1 Selected crystal data and structure refinement parameters of 1 and 2

    Table 2 Selected bond distances(nm)and angles(°)in 1 and 2

    Continued Table 1

    2 Results and discussion

    2.1 Crystalstructure of compound 1 and 2

    Fig.1(a)Side view of 1D double zigzag chain of complex 1,(b)Side view of the 2D layer for complex 1; Hydrogen atoms and crystallization water molecules are omitted for clarity;Atoms not involved in bridging are omitted for clarity;Fe orange;Mn pink;C dark;N blue;B dark yellow

    Single-crystal X-ray diffraction analysis revealed that compound 1 crystallizes in a monoclinic P21/c space group.The crystal structure comprises neutral bimetallic[FeⅢ(Tp)(CN)3]2MnⅡ(bib)layers,with uncoordinated water and methanolmolecules located between the layers.In the neutral chain,the[Fe(Tp)(CN)3]-unit bridges two MnⅡions through two of its three cyanide groups in the cis position,whereas each MnⅡcoordinates to four nitrogen atoms from the CN-bridges,forming double zigzag chains(Fig.1a),which is similar to the reported examples[21-22].The neutral chains are further linked by bib ligands along the apical directions of the manganese centers to a layer framework(Fig.1b).The crystalunitconsists oftwo FeⅢcenters and one unique MnⅡcenter.Each FeⅢcenter is located in an octahedral environment with three nitrogen atoms from the tridentate Tp unit and threecyanide carbon atoms,whereas the coordination sites of the MnⅡcenter are occupied by two nitrogen atoms from the bidentate bib and four cyanide nitrogen atoms in an compressed N6coordination sphere.At 296 K,The Mn-NCNbond lengths are 0.220 2~0.224 1 nm and the Mn-Nbibbond distances are 0.221 7~0.221 8 nm,which are in good agreement with those observed previously in related compounds containing a high spin(HS)MnⅡion[13].The FeⅢ-C bond distances are 0.189 9~0.192 8 nm and 0.185 1~0.190 9 nm.The FeⅢ-N bond distances are 0.197 5~0.198 1 nm and 0.196 0~0.197 5 nm,for Fe1 and Fe2,respectively, which are typical values for LS FeⅢions.In neutral double zigzag chains,the square units exhibit two orientations of their mean planes(FeⅢ2MnⅡ2)with a 51.2°dihedralangle(here after denoted asφ).For the bond angles related to cyano bridge and metal ions, the N-C-Fe angles are 173.5°~174.8°,deviating slightly from the strict linearity.The C-N-Mn angles are 144.0°~156.0°,departing significantly from 180°.The shortest intrachain Fe-Mn,Mn-Mn,and Fe-Fe distancesare 0.498 5,0.689 9,and 0.691 6 nm,respectively, and the shortest interchain Fe-Mn,Mn-Mn,and Fe-Fe distances are 1.349,1.390,and 1.083 nm,respectively, along the b axis.The shortest interchain parallel pyrazolyl-pyrazolyl separation(0.362 nm)indicates that there exist weak interchainπ-πstacking interactions along the b axis.

    The structure of complex 2 is isostructuralto that of 1.The distortion of the square units in complex 2 is slightly smaller than that in complex 1 because the steric hindrance of[Fe(pzTp)(CN)3]-in 2 is larger than the[Fe(Tp)(CN)3]-unitin 1.Theφvalue is 47°,smaller than that in 1.At 296 K,the lengths of the Mn-NCNcoordination bonds are 0.222 6~0.224 5 nm and the Mn-Nbibbond distances are 0.223 9 nm and 0.224 8 nm,providing an elongated N6coordination environment.Within the cyano bridged squares,the N≡C-Fe bond angels are 174.4°and 175.6°,being nearly linear;whereas the C≡N-Mn angles are 147.6°~153.1°,departing slightly smaller from linearity than that of 1.The shortest intrachains of Fe-Mn,Fe-Fe, Mn-Mn are 0.507 5,0.712 0,and 0.706 8 nm.The shortest interchain Fe-Mn,Mn-Mn,and Fe-Fe distances are 1.122,1.350,and 1.066 nm along the b axis,separating by bib,respectively.There are weak interchain interactions from parallel quasi-eclipsed stacking pyrazolyl rings from adjacent chains along the b axis,and the shortest distance between them is 0.362 13 nm.

    2.2 Magnetic properties of complexes 1 and 2

    The temperature dependent magnetic susceptibilities ofcomplexes 1 and 2 in the form ofχT vs T plots were measured on polycrystalline samples in the range of2~300 K under the applied magnetic field of 1 000 Oe(Fig.2).TheχT values per FeⅢ2MnⅡunit at room temperature are 5.24 cm3·mol-1·K and 5.38 cm3·mol-1·K for 1 and 2,respectively.These values are a little larger than the spin-only value of 5.125 cm3·mol-1·K expected for the magnetically dilute system including one high-spin MnⅡion(S=5/2)and two low-spin FeⅢions(S=1/2),where the spin-only value is calculated by assuming gMn=gFe=2.0.However,this is not surprising and simply indicates that the persistence of a residual unquenched orbital contribution due to the2T2gstate of low-spin FeⅢatoms.The effective g value of FeⅢis often found to be different from 2.0 because of an important orbital contribution.As the temperature is lowered,theχT value gradually decreases until 25 K,where a value of 3.70 cm3·mol-1·K is attained.Upon further cooling,theχT value sharply decreases to 1.26 cm3·mol-1·K at 2 K for 1.For 2, theχT values decrease smoothly down to 4.33 cm3·mol-1·K at 50 K and then abruptly reaching 1.33 cm3·mol-1·K at 2 K.The magnetic susceptibilities data conform well to the Curie-Weiss law of 2~300 K, which gives the Curie constant of 5.35 cm3·mol-1·K for 1 and 5.29 cm3·mol-1·K for 2,respectively.The negative Weiss temperatures(θ=-15.610 K for 1 and θ=-10.726 K for 2)suggest the presence of a dominant antiferromagnetic coupling between FeⅢand MnⅡions via the cyanide bridge within the 2D layer.

    Fig.2 Temperature dependence ofχT for the complexes 1((Ⅱ))and 2(□)measured at 1 000 Oe;The solid line represents the best fit obtained with the model in Fig.3

    For compound 1 and 2,to simplify the simulation model,the double zigzag chain structure could be treated as a 1D chain model(see Fig.3)and the Hamiltonian can be described as the following:H=-2J (S1S2+S1S3+S2S4+S3S4+S4S5+S4S6+S5S7+S6S7+S7S8+S7S9+ S8S10+S9S10+S10S11+S10S12+S11S1+S12S1),where S1=S4=S7= S10=5/2,S2=S3=S5=S6=S8=S9=S11=S12=1/2,and J is the coupling parameter between neighboring FeⅢand MnⅡ. An excellent agreement with the experimental data is obtained by calculating the susceptibility data with the MAGPACK package[21],with the following set of parameters:J=-7.64 cm-1,g=gFe=gMn=2.09 with R= 1.99×10-4{R=∑[(χMT)obs-(χMT)cal]2/∑(χMT)obs2}for 1, and J=-3.78 cm-1,g=gFe=gMn=2.04 with R=2.16×10-5for 2,respectively.As expected on the basis of their structural similarity,the magnetic behaviors of the two complexesare essentially identical.The above behaviors were consistent with an intramolecular FeⅢ-MnⅡantiferromagnetic interaction,which can be rationalized in terms of the magnetic orbitals ofthe low-spin FeⅢand high-spin MnⅡcenters.An arrangement that normally gives rise to antiferromagnetic coupling.However, because of the enhancement of the steric effect of the tridentate ligand in[LM(CN)3]-building blocks,the coupling constant J in compound 1 is over twice as large as in 2.Therefore,the tridentate ligand in [LM(CN)3]-building blocks plays a role in constructing molecule magnets,which not only greatly affects the structure of the resulting magnetic assemblies,but also induces a diverse hindrance effecting the different magnetic interactions.Because the steric hindrance of pzTp in 2 is larger than Tp in 1,the bond lengths of Mn-NCNin 2 are larger than that in 1.Such difference results in that the antiferromagnetic interaction between FeⅢ-MnⅡions in 1 is larger than that in 2.

    The field dependence of the magnetization(0~50 kOe)measured at 1.8 K is shown in Fig.4.The magnetization increases almost linearly with the applied magnetic field,reaching a value of 3.01Nβfor 1 and 3.38Nβfor 2 at 50 kOe.This behavior is consistent with the antiferromagnetic behavior of 1 and 2.

    Fig.3 Representation of the magnetic exchange pathways between neighboring metal ions in 1 and 2

    Fig.4 Field dependence of the magnetization at 1.8 K for complexes 1((Ⅱ))and 2(□)

    3 Conclusions

    In summary,two isostructural cyano-bridged {FeⅢ2MnⅡ}2D layers were synthesized.The interchain linkage and apical directions of MnⅡcould be fixed via the rigid ditopic ligand bib.The antiferromagnetic interaction between FeⅢand MnⅡions could be tuned by changing the capping ligand of FeⅢions with different steric hindrances.Such results provide a strategy to synthesize 1D magnetic systems with tunable intrachain magnetic interactions.

    References:

    [1](a)Caneschi A,Gatteschi D,Lalioti N,et al.Angew.Chem. Int.Ed.,2001,40:1760-1763

    (b)Miyasaka H,Julve M,Yamashita M,et al.Inorg.Chem., 2009,48:3420-3437

    [2](a)Zhang X M,Wang Y Q,Wang K,et al.Chem.Commun., 2011,47:1815-1817

    (b)Miyasaka H,Madanbashi T,Sugimoto K,et al.Chem. Eur.J.,2006,12:7028

    (c)Bai Y L,Tao J,Wernsdorfer W,et al.J.Am.Chem.Soc., 2006,128:16428-16429

    [3](a)Coronado E,Mascarós J R G and Gastaldo C M.J.Am. Chem.Soc.,2008,130:14987-14989

    (b)Zhang Y Z,Tong M L,Chen X M,et al.Angew.Chem. Int.Ed.,2006,45:6310-6314

    (c)Venkatakrishnan T S,Sahoo S,Bréfuel N,et al.J.Am. Chem.Soc.,2010,132:6047-6057

    (d)Coulon C,Clérac R,Wernsdorfer W,etal.Phys.Rev.Lett., 2009,102:167204-167207

    [4](a)Lescouzec R,Vaissermann J,Ruiz-Prez C,et al.Angew. Chem.,2003,115:1521-1524;Angew.Chem.Int.Ed.,2003, 42:1483-1486

    (b)Toma L M,Lescouzec R,Lloret F,et al.Chem.Commun., 2003,24:1850-1851

    where r is the radial mode number, nr=n1/n2, n1 and n2 are the refractive indices of microcavity and ambient materials, respectively, η(r) is the Airy function solution and equals 2.338 if r=1, L is the polarization characteristic coefficient and L=1/nr for TM modes and L=nr for TE modes.

    (c)Wang S,Zuo J L,Gao S,et al.J.Am.Chem.Soc.,2004, 126:8900-8901

    (d)Toma L M,Lescouzec R,Lloret F,et al.J.Am.Chem. Soc.,2006,128:4842-4853

    [5](a)Ferbinteanu M,Miyasaka H,Wernsdorfer W,et al.J.Am. Chem.Soc.,2005,127:3090-3099

    (b)Lescouzec R,Toma M L,Vaissermann J,etal.Coord.Chem. Rev.,2005,249:269-27291

    (c)Kou H Z,Ni Z H,Liu C M,et al.New J.Chem.,2009,33: 2296-2299

    [6](a)Rinehart J D,Long J R.Chem.Sci.,2011,2:2078-2085

    (b)Sun H L,Wang Z M,Gao S.Coord.Chem.Rev.,2010, 254:1081-1101

    (c)Aubin S M J,Sun Z,Pardi L,et al.Inorg.Chem.,1999, 38:5329-5340

    (b)Zuo J L,Bartlett B M,You X Z,et al.J.Am.Chem.Soc., 2006,128:7162-7163

    (c)Kostakisa G E,Perlepesb S P,Blatovc V A,et al.Acc. Chem.Res.,2005,38:325-334

    (d)Berseth P A,Sokol J J,Shores M P,et al.J.Am.Chem. Soc.,2000,122:9655-9662

    [8]Kostakisa G E,Perlepesb S P,Blatovc V A,et al.Acc.Chem. Res.,2005,38:325-334

    [9]Berseth P A,Sokol J J,Shores M P,et al.J.Am.Chem.Soc., 2000,122:9655-9622

    [10]Wen H R,Zuo J L,et al.Inorg.Chem.,2006,45:582-590

    [11](a)Liu T,Dong D P,Kanegawa S,et al.Angew.Chem.Int. Ed.,2012,51:4367-4370

    (b)Wang S,Zuo J L,Zhou H C,et al.Angew.Chem.Int. Ed.,2004,43:594-597

    (c)Dong D P,Liu T,Zheng H,et al.Inorg.Chem.Comm., 2012,24:153-156

    [12]Zhang Y Z,Wang B W,Sato O,et al.Chem.Commun., 2010,46:6959-6961

    [13]Song X J,Muddassir M,Chen Y,et al.Dalton Trans.,2013, 42:1116-1121

    [14]Bogani L,Vindigni A,Sessoli R,et al.J.Mater.Chem., 2008,18:4750-4758

    [15](a)Harris T D,Bennett M V,Clérac R,et al.J.Am.Chem. Soc.,2010,132:3980-3988

    (b)Bernot K,Bogani L,Caneschi A,et al.J.Am.Chem.Soc., 2006,128:7947-7956

    (c)Clérac R,Miyasaka H,Yamashita M,et al.J.Am.Chem. Soc.,2002,124:12837-12844

    [16](a)Liu T,Zheng H,Kang S,et al.Nat.Commun.,2013,4: 2826-2833

    (b)Liu T,Zhang Y J,Kanegawa S,et al.Angew.Chem.Int. Ed.,2010,49:8645-8648

    (c)Liu T,Zhang Y J,Kanegawa S,et al.J.Am.Chem.Soc., 2010,132:8250-8251

    [17]Ohkoshi S,Tokoro H,Utsunomiya M,et al.J.Phys.Chem. B,2002,106:2423-2425

    [18]Lescou?zec R,Vaissermann J,Lloret F,et al.Inorg.Chem., 2002,41:5943-5945

    [19]LI Dong-Feng(李東峰),Clérac R,Parkin S,et al.Inorg. Chem.,2006,45:5251-5253

    [20]Vlahakis J Z,Mitu S,Roman G,etal.Bioorganic&Medicinal Chemistry,2011,19:6525-6545

    [21]DONG Da-Peng(董大鵬),LIU Tao(劉濤),ZHENG Hui(鄭慧),et al.Scince China B:Chem.(中國(guó)科學(xué):化學(xué)),2012,55 (6):1018-1021

    [22]CHEN Man-Sheng(陳滿生),LUO Li(羅莉),SUN Wei-Yin (孫為銀),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2010,16(12):2227-2232

    Tuning Intrachain Magnetic Interactions of Cyanide-bridged FeⅢMnⅡChain

    ZHENG Hui XU Yang DUAN Chun-Ying*
    (State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,116024,China)

    Two cyanide bridged FeⅢ-MnⅡdouble zigzag chains{[Fe(Tp)(CN)3]2[Mn(bib)]}·CH3OH·2H2O(1)and {[Fe(pzTp)(CN)3]2[Mn(bib)]}·3H2O(2)were synthesized utilizing tricyanometallate building blocks.The chains were further linked via long ditopic ligand to form two dimensional compounds.With the alignment of chains fixed by the rigid ditopic linker,the intrachain magnetic interactions between FeⅢand MnⅡcould be further tuned via changing the capping ligand of FeⅢions.CCDC:1001946,1;1001947,2.

    cyanide;zigzag chain;ditopic linker;magnetic interactions

    0614.7

    A

    1001-4861(2015)07-1460-07

    10.11862/CJIC.2015.177

    2015-04-07。收修改稿日期:2015-05-08。

    國(guó)家自然科學(xué)基金(No.91122031)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:cyduan@dlut.edu.cn;會(huì)員登記號(hào):S06N6732S1406。

    猜你喜歡
    國(guó)家自然科學(xué)基金配體磁性
    常見(jiàn)基金項(xiàng)目的英文名稱(一)
    我校喜獲五項(xiàng)2018年度國(guó)家自然科學(xué)基金項(xiàng)目立項(xiàng)
    2017 年新項(xiàng)目
    自制磁性螺絲刀
    基于配體鄰菲啰啉和肉桂酸構(gòu)筑的銅配合物的合成、電化學(xué)性質(zhì)及與DNA的相互作用
    磁性離子交換樹(shù)脂的制備及其對(duì)Cr3+的吸附
    國(guó)家自然科學(xué)基金項(xiàng)目簡(jiǎn)介
    新型三卟啉醚類配體的合成及其光學(xué)性能
    一種新型磁性指紋刷的構(gòu)思
    基于Schiff Base配體及吡啶環(huán)的銅(Ⅱ)、鎳(Ⅱ)配合物構(gòu)筑、表征與熱穩(wěn)定性
    国产高潮美女av| 久久精品亚洲精品国产色婷小说| 欧美精品啪啪一区二区三区| 免费观看的影片在线观看| 亚洲av成人不卡在线观看播放网| 国产精品一及| 国产激情欧美一区二区| 99久久久亚洲精品蜜臀av| 国产成人欧美在线观看| 色播亚洲综合网| 曰老女人黄片| 国产黄色小视频在线观看| 看黄色毛片网站| 久久精品91无色码中文字幕| 国产亚洲精品av在线| xxxwww97欧美| 国产精品久久视频播放| 欧美精品啪啪一区二区三区| 岛国视频午夜一区免费看| 亚洲中文字幕日韩| 脱女人内裤的视频| 亚洲欧美一区二区三区黑人| av天堂中文字幕网| 欧美日韩一级在线毛片| 亚洲精品粉嫩美女一区| 国产伦精品一区二区三区视频9 | 日韩欧美一区二区三区在线观看| 亚洲欧美精品综合久久99| 色综合亚洲欧美另类图片| 欧美绝顶高潮抽搐喷水| 亚洲欧美精品综合久久99| 午夜激情欧美在线| 日本 av在线| 手机成人av网站| 又爽又黄无遮挡网站| 男女之事视频高清在线观看| 波多野结衣高清无吗| 欧美不卡视频在线免费观看| 亚洲一区高清亚洲精品| 又紧又爽又黄一区二区| 国产精品久久电影中文字幕| 欧美性猛交╳xxx乱大交人| 亚洲中文字幕一区二区三区有码在线看 | 成年免费大片在线观看| 一本综合久久免费| 国产麻豆成人av免费视频| 19禁男女啪啪无遮挡网站| www.自偷自拍.com| 国产成人av激情在线播放| 中国美女看黄片| 婷婷六月久久综合丁香| 欧美日韩瑟瑟在线播放| 午夜福利成人在线免费观看| 欧美在线一区亚洲| 丁香欧美五月| 免费看光身美女| 国产激情久久老熟女| 18美女黄网站色大片免费观看| 999久久久精品免费观看国产| 18美女黄网站色大片免费观看| av天堂在线播放| 国产亚洲精品综合一区在线观看| 精品久久久久久久末码| 国产91精品成人一区二区三区| 亚洲av中文字字幕乱码综合| 亚洲一区高清亚洲精品| 99在线视频只有这里精品首页| 成人三级黄色视频| 99视频精品全部免费 在线 | 国产 一区 欧美 日韩| 我要搜黄色片| 久久天堂一区二区三区四区| 18禁观看日本| 三级男女做爰猛烈吃奶摸视频| 亚洲av电影不卡..在线观看| 男插女下体视频免费在线播放| 精品国产三级普通话版| 激情在线观看视频在线高清| 国产成人av激情在线播放| 久久草成人影院| 日本 欧美在线| 天堂√8在线中文| 日韩人妻高清精品专区| 又黄又粗又硬又大视频| 欧美3d第一页| 狠狠狠狠99中文字幕| 亚洲激情在线av| 一区二区三区激情视频| 看片在线看免费视频| 男插女下体视频免费在线播放| 美女黄网站色视频| 亚洲乱码一区二区免费版| 色老头精品视频在线观看| 精品日产1卡2卡| 免费观看的影片在线观看| 亚洲av成人av| 天堂av国产一区二区熟女人妻| 国产成人影院久久av| 91麻豆精品激情在线观看国产| 一本综合久久免费| 99热精品在线国产| 国产成人一区二区三区免费视频网站| 亚洲国产欧洲综合997久久,| 99久久久亚洲精品蜜臀av| 亚洲av成人一区二区三| 精品久久久久久久久久久久久| 亚洲av熟女| 色综合站精品国产| 国产精品,欧美在线| 亚洲国产精品999在线| 黑人操中国人逼视频| av黄色大香蕉| 免费看十八禁软件| 在线观看美女被高潮喷水网站 | 国产精品,欧美在线| 九九在线视频观看精品| 亚洲男人的天堂狠狠| 成人性生交大片免费视频hd| 久久天躁狠狠躁夜夜2o2o| 亚洲国产欧洲综合997久久,| 村上凉子中文字幕在线| 身体一侧抽搐| 国产精品99久久99久久久不卡| 99精品久久久久人妻精品| 成年女人永久免费观看视频| 国内精品久久久久久久电影| 听说在线观看完整版免费高清| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧美人成| 久久人人精品亚洲av| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久人妻蜜臀av| av视频在线观看入口| 岛国视频午夜一区免费看| 97碰自拍视频| www.自偷自拍.com| 国产精品亚洲一级av第二区| 国产激情偷乱视频一区二区| 成人三级做爰电影| 欧美色视频一区免费| 欧美性猛交╳xxx乱大交人| 天堂动漫精品| 欧美一区二区精品小视频在线| 国产精品99久久久久久久久| 黑人欧美特级aaaaaa片| 欧美性猛交╳xxx乱大交人| 91字幕亚洲| svipshipincom国产片| 亚洲欧美激情综合另类| 好男人在线观看高清免费视频| 欧美在线一区亚洲| 长腿黑丝高跟| 久久久国产欧美日韩av| 国产精品1区2区在线观看.| 久久午夜综合久久蜜桃| 后天国语完整版免费观看| 一个人免费在线观看的高清视频| 一级毛片精品| 草草在线视频免费看| 久久精品国产综合久久久| 国产成年人精品一区二区| 国产男靠女视频免费网站| 国产亚洲精品av在线| 午夜福利在线观看吧| 日韩精品中文字幕看吧| 精品国产美女av久久久久小说| 操出白浆在线播放| 麻豆国产97在线/欧美| www.自偷自拍.com| 成年版毛片免费区| 精品熟女少妇八av免费久了| 叶爱在线成人免费视频播放| 国产精品乱码一区二三区的特点| 三级男女做爰猛烈吃奶摸视频| 狠狠狠狠99中文字幕| 午夜福利免费观看在线| 免费av毛片视频| 丁香六月欧美| 国产v大片淫在线免费观看| 精品欧美国产一区二区三| 啪啪无遮挡十八禁网站| 黄片小视频在线播放| 国产主播在线观看一区二区| av中文乱码字幕在线| 久久香蕉精品热| 不卡av一区二区三区| 99热这里只有精品一区 | 亚洲国产精品sss在线观看| 欧美日韩综合久久久久久 | 国产黄色小视频在线观看| 嫩草影视91久久| 欧洲精品卡2卡3卡4卡5卡区| 综合色av麻豆| 午夜影院日韩av| 国产男靠女视频免费网站| 人人妻,人人澡人人爽秒播| 亚洲国产精品sss在线观看| 久久精品国产亚洲av香蕉五月| 精品国产超薄肉色丝袜足j| 亚洲av五月六月丁香网| 国产亚洲精品一区二区www| 老司机福利观看| 99精品久久久久人妻精品| 亚洲五月婷婷丁香| 性色avwww在线观看| 国产亚洲精品久久久com| 国产成人一区二区三区免费视频网站| 搡老妇女老女人老熟妇| av国产免费在线观看| 日韩人妻高清精品专区| 身体一侧抽搐| 国产乱人视频| 国产一区在线观看成人免费| 国产精品久久久人人做人人爽| 国产一区二区三区视频了| 亚洲熟女毛片儿| 级片在线观看| 日本三级黄在线观看| 淫妇啪啪啪对白视频| a级毛片a级免费在线| 偷拍熟女少妇极品色| 中亚洲国语对白在线视频| 亚洲aⅴ乱码一区二区在线播放| 免费高清视频大片| 国产精品九九99| 99国产综合亚洲精品| 色综合亚洲欧美另类图片| 久久精品aⅴ一区二区三区四区| 久久人人精品亚洲av| 两个人的视频大全免费| 国产极品精品免费视频能看的| svipshipincom国产片| 成年女人毛片免费观看观看9| 国产淫片久久久久久久久 | 国产欧美日韩精品一区二区| 天堂网av新在线| 99热这里只有精品一区 | 国产精品九九99| 精品久久久久久,| 在线国产一区二区在线| 后天国语完整版免费观看| 99在线视频只有这里精品首页| 免费人成视频x8x8入口观看| 亚洲国产欧美一区二区综合| 国产淫片久久久久久久久 | 国产精品一区二区三区四区免费观看 | 美女黄网站色视频| 99re在线观看精品视频| 国内久久婷婷六月综合欲色啪| 国产私拍福利视频在线观看| av福利片在线观看| 欧美日韩瑟瑟在线播放| 一区二区三区国产精品乱码| 亚洲av成人精品一区久久| 超碰成人久久| 欧美日韩黄片免| 成人精品一区二区免费| 国产精品野战在线观看| 99久久精品一区二区三区| 麻豆一二三区av精品| 亚洲专区字幕在线| 国产精品久久电影中文字幕| 亚洲av第一区精品v没综合| 噜噜噜噜噜久久久久久91| 免费高清视频大片| 欧美日韩中文字幕国产精品一区二区三区| 国产av麻豆久久久久久久| 国产av一区在线观看免费| 亚洲人成电影免费在线| 在线观看美女被高潮喷水网站 | 成人无遮挡网站| 成年女人永久免费观看视频| 欧美性猛交黑人性爽| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产看品久久| 亚洲国产看品久久| 88av欧美| 国产成年人精品一区二区| 19禁男女啪啪无遮挡网站| 亚洲精品美女久久久久99蜜臀| 久久久久亚洲av毛片大全| 最好的美女福利视频网| 美女午夜性视频免费| 精品国产美女av久久久久小说| 日韩国内少妇激情av| 日韩欧美国产在线观看| 一二三四社区在线视频社区8| 99国产极品粉嫩在线观看| 精品福利观看| 亚洲国产精品合色在线| 白带黄色成豆腐渣| av在线蜜桃| 亚洲成人中文字幕在线播放| 久久久久国产一级毛片高清牌| 国产精品女同一区二区软件 | 久久精品国产99精品国产亚洲性色| 十八禁网站免费在线| 草草在线视频免费看| 国产精品久久久久久精品电影| 身体一侧抽搐| 国产高潮美女av| 91字幕亚洲| 国产毛片a区久久久久| 又黄又粗又硬又大视频| 久久久精品大字幕| 国产1区2区3区精品| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品久久男人天堂| 91久久精品国产一区二区成人 | 麻豆久久精品国产亚洲av| 国产精品影院久久| 久久这里只有精品中国| 哪里可以看免费的av片| 叶爱在线成人免费视频播放| 成年女人永久免费观看视频| 国产高清有码在线观看视频| 国产精华一区二区三区| 黄色片一级片一级黄色片| 欧美中文综合在线视频| 看黄色毛片网站| 精品不卡国产一区二区三区| 精华霜和精华液先用哪个| 国产91精品成人一区二区三区| 国产精品久久久久久亚洲av鲁大| 久久久久久人人人人人| 国产一区二区在线观看日韩 | 日本黄色视频三级网站网址| 国产亚洲精品久久久com| 国产私拍福利视频在线观看| 亚洲国产精品999在线| 亚洲片人在线观看| 亚洲无线观看免费| 99久久99久久久精品蜜桃| 桃红色精品国产亚洲av| 国产麻豆成人av免费视频| 免费大片18禁| 久久中文字幕人妻熟女| 一边摸一边抽搐一进一小说| 国产精品亚洲av一区麻豆| 最近最新中文字幕大全电影3| 亚洲精品乱码久久久v下载方式 | 婷婷丁香在线五月| 中国美女看黄片| 一进一出抽搐动态| 久久久久国产一级毛片高清牌| 欧美一级毛片孕妇| 午夜成年电影在线免费观看| 国产1区2区3区精品| 三级男女做爰猛烈吃奶摸视频| 成人特级黄色片久久久久久久| 搡老熟女国产l中国老女人| 中文字幕最新亚洲高清| 亚洲人与动物交配视频| a级毛片在线看网站| 精品欧美国产一区二区三| 亚洲欧美日韩卡通动漫| 一个人免费在线观看的高清视频| 欧美黑人欧美精品刺激| 国产三级黄色录像| 欧美黑人巨大hd| 1024手机看黄色片| 99久久国产精品久久久| 精品午夜福利视频在线观看一区| 免费在线观看成人毛片| 99热这里只有是精品50| 亚洲欧美精品综合一区二区三区| 欧美日韩综合久久久久久 | 母亲3免费完整高清在线观看| 国产精品 国内视频| av女优亚洲男人天堂 | 欧美日韩精品网址| 亚洲专区中文字幕在线| 亚洲熟妇熟女久久| 最近最新免费中文字幕在线| 在线看三级毛片| 久久伊人香网站| 国内精品久久久久精免费| 亚洲自偷自拍图片 自拍| 日韩中文字幕欧美一区二区| 欧美+亚洲+日韩+国产| 亚洲精品一区av在线观看| 在线永久观看黄色视频| 91在线精品国自产拍蜜月 | 美女大奶头视频| 一a级毛片在线观看| 国产伦精品一区二区三区视频9 | 免费看a级黄色片| 变态另类丝袜制服| 黄色视频,在线免费观看| 色播亚洲综合网| 又爽又黄无遮挡网站| 欧美一级a爱片免费观看看| 不卡av一区二区三区| 免费在线观看影片大全网站| avwww免费| 久久香蕉国产精品| 欧美在线一区亚洲| 久久午夜综合久久蜜桃| 免费搜索国产男女视频| 国产精品美女特级片免费视频播放器 | 一区福利在线观看| 国产爱豆传媒在线观看| 国产精品香港三级国产av潘金莲| 亚洲国产精品sss在线观看| 色综合亚洲欧美另类图片| 欧美+亚洲+日韩+国产| 色综合亚洲欧美另类图片| 长腿黑丝高跟| 国产成人影院久久av| 国产亚洲欧美98| 91麻豆av在线| 欧美乱码精品一区二区三区| 又紧又爽又黄一区二区| 一进一出好大好爽视频| 国产真人三级小视频在线观看| 国产一级毛片七仙女欲春2| 亚洲欧美日韩无卡精品| а√天堂www在线а√下载| a在线观看视频网站| 成熟少妇高潮喷水视频| 天天一区二区日本电影三级| 国产精品1区2区在线观看.| 久久久久久人人人人人| 悠悠久久av| 国产伦精品一区二区三区视频9 | 亚洲国产精品成人综合色| 国产成人av教育| 91老司机精品| 亚洲中文字幕一区二区三区有码在线看 | 国产单亲对白刺激| 久久九九热精品免费| 国产精品永久免费网站| www日本在线高清视频| avwww免费| 午夜福利高清视频| 久久久久久大精品| 成人性生交大片免费视频hd| 在线观看日韩欧美| www.熟女人妻精品国产| 男插女下体视频免费在线播放| 五月玫瑰六月丁香| 一本一本综合久久| 操出白浆在线播放| 精品国内亚洲2022精品成人| 国产亚洲av高清不卡| 好男人电影高清在线观看| 深夜精品福利| 午夜精品久久久久久毛片777| 亚洲无线在线观看| 欧美成狂野欧美在线观看| 禁无遮挡网站| 国产精品久久久久久精品电影| 免费看a级黄色片| 极品教师在线免费播放| 老司机午夜福利在线观看视频| 免费观看精品视频网站| 婷婷精品国产亚洲av在线| av黄色大香蕉| www日本黄色视频网| 欧美色欧美亚洲另类二区| 国语自产精品视频在线第100页| 国产一区在线观看成人免费| 天天躁日日操中文字幕| 中文字幕高清在线视频| 久久精品91蜜桃| 少妇裸体淫交视频免费看高清| 日本黄色片子视频| 99久久99久久久精品蜜桃| 99国产极品粉嫩在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久成人av| 国产精品1区2区在线观看.| 丰满人妻一区二区三区视频av | 久久午夜亚洲精品久久| 国产精品 欧美亚洲| 日本黄大片高清| 波多野结衣高清作品| 国产成人aa在线观看| 级片在线观看| 老司机在亚洲福利影院| 精品国产乱码久久久久久男人| 久久久久性生活片| 白带黄色成豆腐渣| 亚洲片人在线观看| 一进一出抽搐动态| 真人做人爱边吃奶动态| 日韩免费av在线播放| 免费搜索国产男女视频| 精品久久久久久久久久久久久| 天天一区二区日本电影三级| 欧美+亚洲+日韩+国产| 18禁美女被吸乳视频| av黄色大香蕉| 亚洲成人精品中文字幕电影| 亚洲五月天丁香| 热99re8久久精品国产| 国产精品99久久99久久久不卡| 日韩欧美三级三区| 三级毛片av免费| 欧美日韩瑟瑟在线播放| 日本免费a在线| 亚洲欧美日韩高清在线视频| 日韩欧美 国产精品| 99riav亚洲国产免费| 亚洲av成人一区二区三| 国产不卡一卡二| 免费大片18禁| 亚洲第一电影网av| 日韩免费av在线播放| 国产精品精品国产色婷婷| 国产精品 欧美亚洲| 999精品在线视频| 亚洲精品色激情综合| 一级a爱片免费观看的视频| 久久久久国内视频| 搡老熟女国产l中国老女人| 亚洲av成人av| 日本在线视频免费播放| 狂野欧美白嫩少妇大欣赏| 午夜福利在线观看吧| 亚洲欧美日韩高清专用| 婷婷亚洲欧美| 国产一区二区三区在线臀色熟女| 国产精品电影一区二区三区| 伊人久久大香线蕉亚洲五| 亚洲成av人片免费观看| 久久久久国产精品人妻aⅴ院| 狠狠狠狠99中文字幕| netflix在线观看网站| 亚洲av成人不卡在线观看播放网| 嫩草影院入口| 手机成人av网站| 欧美乱妇无乱码| 精品国产亚洲在线| 日韩av在线大香蕉| 无限看片的www在线观看| 露出奶头的视频| 亚洲欧美日韩东京热| 国产亚洲欧美在线一区二区| 中文资源天堂在线| 日本免费a在线| 国产精品一区二区三区四区免费观看 | 18禁观看日本| 毛片女人毛片| 日本五十路高清| 国内精品久久久久久久电影| 国产av在哪里看| 97超级碰碰碰精品色视频在线观看| 婷婷精品国产亚洲av在线| 九色成人免费人妻av| 国产97色在线日韩免费| 韩国av一区二区三区四区| 欧美黄色淫秽网站| 桃色一区二区三区在线观看| 激情在线观看视频在线高清| 国产黄a三级三级三级人| 舔av片在线| 亚洲国产精品sss在线观看| 欧美黄色淫秽网站| 日韩免费av在线播放| 免费高清视频大片| 两个人看的免费小视频| 在线观看66精品国产| 国产精品女同一区二区软件 | 看黄色毛片网站| 久久精品91蜜桃| av欧美777| 中国美女看黄片| www.精华液| 免费一级毛片在线播放高清视频| 看免费av毛片| 女人高潮潮喷娇喘18禁视频| 亚洲欧美一区二区三区黑人| 99久久精品一区二区三区| 国产高潮美女av| 亚洲av第一区精品v没综合| 亚洲欧美日韩高清在线视频| 在线十欧美十亚洲十日本专区| 最近最新免费中文字幕在线| 精品无人区乱码1区二区| 欧美日韩瑟瑟在线播放| 亚洲精品国产精品久久久不卡| 一级作爱视频免费观看| 黑人操中国人逼视频| 99国产极品粉嫩在线观看| 99久久精品国产亚洲精品| 精品国产亚洲在线| 久久久成人免费电影| 精品一区二区三区av网在线观看| 不卡一级毛片| 18禁美女被吸乳视频| 老司机福利观看| 夜夜看夜夜爽夜夜摸| 欧美日韩乱码在线| 在线播放国产精品三级| 成人高潮视频无遮挡免费网站| 国产爱豆传媒在线观看| 美女高潮喷水抽搐中文字幕| 热99re8久久精品国产| 国产精品一区二区三区四区免费观看 | 午夜福利在线观看免费完整高清在 | 欧美一级毛片孕妇| 97人妻精品一区二区三区麻豆| 在线看三级毛片| 丁香欧美五月| 精品久久久久久成人av| or卡值多少钱| 99久久精品一区二区三区| 日韩三级视频一区二区三区| 淫妇啪啪啪对白视频| 色综合亚洲欧美另类图片| 国产单亲对白刺激| 国产精品久久久久久亚洲av鲁大| 国产黄a三级三级三级人| 国产综合懂色|