• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OSCILLATION CRITERIA FOR SECOND-ORDER NEUTRAL DELAY DYNAMIC EQUATIONS ON TIME SCALES??

    2015-11-30 09:18:01LuhongYe
    Annals of Applied Mathematics 2015年2期

    Luhong Ye

    (School of Math.and Computational Sciences,Anqing Teachers College, Anqing 246011,Anhui,E-mail:leaf07@163.com)

    OSCILLATION CRITERIA FOR SECOND-ORDER NEUTRAL DELAY DYNAMIC EQUATIONS ON TIME SCALES??

    Luhong Ye

    (School of Math.and Computational Sciences,Anqing Teachers College, Anqing 246011,Anhui,E-mail:leaf07@163.com)

    In this paper,we consider a class of second-order neutral delay dynamic equations on a time scale T.By means of Riccati transformation technique,we establish some new oscillation criteria in two different conditions.The obtained results enrich the well-known oscillation results for some dynamic equations.

    oscillation;second-order neutral delay dynamic equations;time scales

    2000 Mathematics Subject Classification 34K40;34K11;34C10

    Ann.of Appl.Math.

    31:2(2015),236-245

    1 Introduction

    The theory of time scales,which has recently received a lot of attentions,was introduced by Stefan Hilgan in his Ph.D.Thesis in 1988 in order to unify continuous and discrete analysis.Not only can this theory of the so-called dynamic equations unify the theories of differential equations and difference equations but also it is able to extend these classical cases to cases in between,e.g.,to the so-called q-difference equations.A time scale T is an arbitrary closed subset of the reals,and the cases when this time scale is equal to the reals or to the integers represent the classical theories of differential and of difference equations. Many other interesting time scales exist,and they give rise to many applications.

    In recent years there has been much research activity concerning the oscillation and nonoscillation of solutions to different types of dynamic equations on time scales.We refers the readers to the papers[1-5]and the references cited therein.

    In this paper,we are concerned with oscillation of solutions to the second-order neutral delay dynamic equation

    on a time scale T,where Z(t)=x(t)+p(t)x(δ(t)).

    To study asymptotic behavior of solutions,we suppose that the time scale T under consideration is not bounded above,that is,it is a time scale interval of the form[t0,∞) with t0∈T.

    Throughout this paper,the following conditions are assumed to hold:

    (H1)γ≥1 is an odd positive integer,r(t)>0,q(t)≥0 and 0≤p(t)≤1 are real-valued rd-continuous positive functions defined on T;

    (H2)δ:T→T is an rd-continuous function such that δ(t)≤t,δ(t)→∞as t→∞;

    (H3)τ:T→T is an rd-continuous and increasing function such that τ(t)≤t,τ(t)→∞as t→∞;

    (H4)f,ψ∈C(R,R),xf(x)>0 and ψ(x)>0 for x≠0,and there exist positive constants k and L such that f(x)/(|x|γ-1x)≥k and ψ(x)≤L-1for x≠0.

    We consider the two following cases

    By a solution to(1.1),we mean a nontrivial real-valued function x∈[tx,∞),tx≥t0, which has the properties x(t)+p(t)x(δ(t))∈[tx,∞)and r(t)ψ(x(t))|ZΔ(t)|γ-1ZΔ(t)∈[tx,∞),tx≥t0,and satisfies(1.1)for all t≥tx.Our attention is restricted to those solutions to(1.1)which exist on some half line[tx,∞)and satisfy sup{|x(t)|:t≥t1}>0 for any t1≥tx.A solution x(t)to(1.1)is said to be oscillatory if it is neither eventually positive nor eventually negative.Otherwise it is called nonoscillatory.The equation itself is called oscillatory if all its solutions are oscillatory.

    In this paper we use the Riccati transformation technique to obtain several oscillation criteria for(1.1)when(1.2)or(1.3)holds on time scales.We apply a simple consequence of Keller’s chain rule,and the inequality

    where A and B are nonnegative constants,to derive sufficient conditions for oscillation of all solutions to(1.1).

    2 Some Preliminaries on Time Scales

    A time scale T is an arbitrary nonempty closed subset of the real numbers R.On any time scale T,we define the forward and backward jump operators by

    A point t∈T,t>inf T,is said to be left-dense if ρ(t)=t,right-dense if t<sup T and σ(t)=t,left-scattered if ρ(t)<t and right-scattered if σ(t)>t.The graininess functionμ for a time scale T is defined byμ(t):=σ(t)-t.

    A function f:T→R is called an rd-continuous function provided that it is continuous at right-dense points in T and its left-sided limits exist(finite)at left-dense points in T.The set of rd-continuous functions f:T→R is denoted by Crd=Crd(T)=Crd(T,R).

    The set of functions f:T→ R that are differentiable and whose derivatives are rdcontinuous function is denoted byThe function H(t,s)is an rd-continuous function if H is an rd-continuous function in t and s.

    A function p:T→ R is called positively regressive(we write p∈R+)if it is an rdcontinuous function and satisfies 1+μ(t)p(t)>0 for all t∈T.

    We say that f is increasing,decreasing,nondecreasing,and nonincreasing on[a,b]if t1,t2∈[a,b]and t2>t1imply f(t2)>f(t1),f(t2)<f(t1),f(t2)≥f(t1),and f(t2)≤f(t1), respectively.

    Let f be a differentiable function on[a,b].Then f is increasing,decreasing,nondecreasing,and nonincreasing on[a,b]if fΔ(t)>0,fΔ(t)<0,fΔ(t)≥0,and fΔ(t)≤0 for all t∈[a,b),respectively.

    For a function f:T→R(the range R of f may be actually replaced by any Banach space)the(delta)derivative is defined by

    if f is continuous at t and t is right-scattered.If t is not right-scattered then the derivative is defined by

    provided that this limit exists.

    A function f:[a,b]→R is said to be differentiable if its derivative exists,and a useful formula is

    We make use of the following product and quotient rules for the derivative of the product f g and the quotient f/g(where ggσ≠0)of two differentiable functions f and g

    For t0,b∈T,and a differentiable function f,the Cauchy integral of fΔis defined by

    An integration by parts formula reads

    and infinite integral is defined as

    3 Main Results

    In this section,we give some oscillation criteria for(1.1).In order to prove our main results,we use the following formula

    which is a simple consequence of Keller’s chain rule.

    For simplicity,we introduce the following notations:

    Now we state and prove the main results.

    Theorem 3.1Let(1.2)hold.Assume that there exists a positive rd-continuous Δ-differentiable function α(t)such that

    where(αΔ(s))+=max{0,αΔ(s)}.Then every solution to(1.1)is oscillatory on[t0,∞).

    Proof Suppose that(1.1)has a nonoscillatory solution x(t).Without loss of generality, we may assume that x(t)>0,x(τ(t))>0 and x(δ(t))>0 for all t≥t1≥t0,then Z(t)>0, in view of(1.1)we have

    and this implies that r(t)ψ(x(t))|ZΔ(t)|γ-1ZΔ(t)is an eventually decreasing function.We first show that ZΔ(t)>0.Otherwise,suppose that there exists an integer t2≥t1such that r(t1)ψ(x(t1))(ZΔ(t1))γ=-c<0,then we have

    for t≥t2≥t1,hence

    In view of(1.2),we have

    This contradicts the fact that Z(t)>0 for all t≥t1.So ZΔ(t)>0 holds.

    Since x(t)≤Z(t),we see that

    Define a function w(t)by

    then w(t)>0.Using(2.5)and(2.6),we have

    In view of(3.3),(3.6)and(3.8),we have

    Using ZΔ(t)>0 and the Keller’s chain rule,we obtain

    Then for t≥t2sufficiently large,we have

    It follows from(3.9),(3.11)and(3.12)that

    where(αΔ(t))+=max{0,αΔ(t)}.

    Since ZΔ(t)>0,we have Z(τ(σ(t)))≥Z(τ(t)),which implies that

    where λ=(γ+1)/γ.

    Set

    Using inequality(1.4)we have

    Thus,from(3.13)and(3.15)we obtain

    Integrating(3.16)from t2to t we obtain

    which yields

    for all large t,which contradicts(3.2).The proof is completed.

    Remark 3.1From Theorem 3.1,we can establish different sufficient conditions for oscillation of(1.1)by different choices of α(t).For instance,if α(t)=t and α(t)=1 for t≥t1,we have the following results respectively.

    Corollary 3.1 Assume that(1.2)holds.If

    then every solution to(1.1)is oscillatory on[t0,∞).

    Corollary 3.2 Assume that(1.2)holds.If

    then every solution to(1.1)is oscillatory on[t0,∞).

    Example 3.1 Consider the following equation

    where T is a time scale and γ>1,τ and δ are nonnegative constants.

    Here r(t)=tγ-1,p(t)=1/(t+τ),τ(t)=t-τ,δ(t)=t-δ,q(t)=t-2(1-1/t)-γand f(x)=xγ.Then

    so(1.2)holds.

    By choosing α(s)=s and L=k=1,we have

    then every solution to the equation is oscillatory by Theorem 3.1.

    Let D0≡{(t,s)∈T2:t>s≥t0}and D≡{(t,s)∈T2:t≥s≥t0}.The function H∈Crd(D,R)is said to belong to the class R if

    (i)H(t,t)=0,t≥t0,H(t,s)>0 on D0;

    (ii)H has a continuous Δ-partial derivative HΔs(t,s)on D0with respect to the second variable.(H is an rd-continuous function if H is an rd-continuous function in t and s.)

    Theorem 3.2Let(1.2)hold.Assume that α(t)is as defined in Theorem 3.1 and H:D→R are rd-continuous functions such that H belongs to the class R and

    where C(t,s)=HΔs(t,s)+H(t,s)(αΔ(s))+/ασ.Then every solution to(1.1)is oscillatory on[t0,∞).

    Proof Suppose that x(t)is a nonoscillatory solution to(1.1).Without loss of generality, we may assume x(t)>0 for all t≥t1≥t0,then x(τ(t)),x(δ(t))and Z(t)are positive.We proceed as in the proof of Theorem 3.1 to prove that there exists a t2≥t1such that(3.13) holds for t≥t2.From(3.13),we have

    Using integration by parts formula(2.7),we have

    where H(t,t)=0.Substituting(3.20)into(3.19),we get

    Therefore,by(1.4)we have

    where C(t,s)=HΔs(t,s)+H(t,s)(αΔ(s))+/ασ.

    Then for all t≥t2,we have

    That is,

    which implies that

    for all large t,which contradicts(3.18).Then every solution to(1.1)is oscillatory.The proof is completed.

    As an immediate consequence of Theorem 3.2,we have the following corollary.

    Corollary 3.3Assume that(1.2)holds and α(t)is as defined in Theorem 3.1.Let assumption(3.18)in Theorem 3.2 be replaced by

    where C(t,s)is defined as in Theorem 3.2.Then every solution to(1.1)is oscillatory on [t0,∞).

    By choosing suitable functions H and h we can establish some oscillation criteria for (1.1)on different types of time scales.If H(t,s)=(t-s)mwith m>1,H belongs to the class R.Now,we claim that

    then we can obtain the following Kamenev-type oscillation criteria for(1.1).

    Corollary 3.4 Let(1.2)hold.Assume that α(t)is as defined in Theorem 3.1.If for m>1

    where K(t,s)=(t-s)m(αΔ(s))+/ασ-m(t-σ(s))m-1.Then every solution to(1.1)is oscillatory on[t0,∞).

    Theorem 3.3 Let(1.3)hold.If

    Then(1.1)is oscillatory.

    Proof Suppose that(1.1)has a nonoscillatory solution such that x(t),x(τ(t))and x(σ(t))are all positive for all t≥t1≥t0,then Z(t)>0.From the proof of Theorem 3.1, we see that ZΔ(t)>0 or ZΔ(t)<0.

    Case 1 ZΔ(t)>0 for t≥t1,then it is the case of Theorem 3.1 by choosing α(t)= πγ(τ(t)).Thus the proof of Theorem 3.1 goes through,and we get a contradiction by(3.28). Hence,ZΔ(t)>0 for t≥t1can’t occur.

    Case 2 ZΔ(t)<0 for t≥t1.Let

    Obviously,u(t)<0 on[t1,∞).Note that r(t)ψ(x(t))|ZΔ(t)|γ-1ZΔ(t)is nonincreasing,then we have

    Dividing the above by(r(s)ψ(x(s)))1/γand integrating it over[t,μ]gives that

    Since ZΔ(t)<0 and(H4),we can obtain

    Lettingμ→∞in the above inequality,we have

    So we get

    Since ZΔ(t)<0 and Z(τ(t))≥Z(t),the above inequality follows that

    Therefore,

    Thus,differentiating(3.30)and using(3.4)and(3.6),we have

    Multiplying(3.31)by πγ(t)and integrating it over[t1,t]gives

    for t≥t1.Note that the absolute value of the integrand of the first integral in the above inequality can be estimated by Young’s inequality as follows:

    Thus,(3.32)follows from the above inequality that

    By(3.29),πγ(t)u(t)→-∞ as t→∞,which contradicts the fact that πγ(t)u(t)≥-L-1. This completes the proof.

    Remark 3.2 Theorem 3.3 gives an oscillatory criterion for equation(1.1).But Y.Sahiner[4]and S.H.Saker[1]didn’t consider the oscillation under the condition R∞t0r-1/γ(s)Δs<∞,and L.Erbe et al.[3]gave no oscillatory criteria under this condition.So our results complement their results.

    References

    [1]S.H.Saker,Oscillation of second-order nonlinear neutral delay dynamic equations on time scales,Journal of Computational and Applied Mathematics,187(2006),123-141.

    [2]S.H.Saker,Oscillation of nonlinear dynamic equations on time scales,Appl.Math.Comput., 148(2004),81-91.

    [3]L.Erbe,A.Peterson,S.H.Saker,Oscillation criteria for second-order nonlinear delay dynamic equations,J.Math.Anal.Appl.,330(2007),1317-1337.

    [4]Y.Sahiner,Oscillation of second-order delay differential equations on time scales,Nonlinear Analysis,63(2005),1073-1080.

    [5]B.G.Zhang,Z.S.Lang,Oscillation of second-order nonlinear delay dynamic equations on time scales,Computers and Mathematics with Applications,49(2005),599-609.

    [6]H.J.Li,Oscillation criteria for second order linear differential equations,J.Math.Anal.Appl., 194(1995),312-321.

    [7]R.P.Agarwal,M.Bohner,S.H.Saker,Oscillation of second order delay dynamic equations, Can.Appl.Math.Q,13(2005),1-18.

    (edited by Liangwei Huang)

    ?This project was supported by the Youth Foundation of Anqing Teachers College(KJ201107), the General Foundation of the Education Department of Anhui Province(AQKJ2014B010).

    ?Manuscript August 22,2014;Revised March 31,2015

    亚洲中文字幕日韩| 国产麻豆69| 一区二区日韩欧美中文字幕| 国产亚洲精品一区二区www | 欧美人与性动交α欧美软件| 曰老女人黄片| 精品久久久久久久毛片微露脸| 精品少妇久久久久久888优播| 99在线人妻在线中文字幕 | 亚洲 国产 在线| 黄色丝袜av网址大全| 亚洲五月天丁香| 国产主播在线观看一区二区| 亚洲成人手机| 欧美成狂野欧美在线观看| 宅男免费午夜| 免费一级毛片在线播放高清视频 | 99久久人妻综合| 欧美人与性动交α欧美软件| 9色porny在线观看| 国产成人av教育| 久久精品国产清高在天天线| 精品卡一卡二卡四卡免费| 操美女的视频在线观看| 免费人成视频x8x8入口观看| 在线观看免费视频网站a站| 老司机深夜福利视频在线观看| 老司机午夜十八禁免费视频| 欧美日韩乱码在线| 宅男免费午夜| 91字幕亚洲| 一级黄色大片毛片| 日日夜夜操网爽| 成年女人毛片免费观看观看9 | 欧美在线一区亚洲| xxxhd国产人妻xxx| 久久人妻福利社区极品人妻图片| 一区二区三区国产精品乱码| 亚洲精华国产精华精| 每晚都被弄得嗷嗷叫到高潮| 日本vs欧美在线观看视频| 99精国产麻豆久久婷婷| 日韩免费av在线播放| 午夜久久久在线观看| 午夜精品久久久久久毛片777| 国产男女超爽视频在线观看| 久久亚洲精品不卡| 一进一出抽搐gif免费好疼 | 亚洲,欧美精品.| 亚洲成人手机| 俄罗斯特黄特色一大片| 黑人巨大精品欧美一区二区mp4| 国产一区二区激情短视频| 纯流量卡能插随身wifi吗| 黄色a级毛片大全视频| 一级作爱视频免费观看| 久久国产精品大桥未久av| 午夜福利视频在线观看免费| 手机成人av网站| 日本撒尿小便嘘嘘汇集6| 亚洲性夜色夜夜综合| tube8黄色片| 久久国产亚洲av麻豆专区| 黄频高清免费视频| 国产精品久久久人人做人人爽| 美女国产高潮福利片在线看| 国产在视频线精品| 91精品国产国语对白视频| 免费在线观看亚洲国产| 亚洲九九香蕉| 亚洲第一青青草原| 亚洲专区字幕在线| 欧美黄色淫秽网站| 亚洲av日韩在线播放| 亚洲熟妇熟女久久| 飞空精品影院首页| 欧美 亚洲 国产 日韩一| av国产精品久久久久影院| 大码成人一级视频| 欧美日韩视频精品一区| 国产精品久久久久久人妻精品电影| 美女午夜性视频免费| 亚洲国产欧美日韩在线播放| 又紧又爽又黄一区二区| xxxhd国产人妻xxx| 午夜亚洲福利在线播放| 午夜免费成人在线视频| 久久人妻av系列| 亚洲aⅴ乱码一区二区在线播放 | 热re99久久国产66热| 亚洲精品自拍成人| 老司机影院毛片| 欧美黑人欧美精品刺激| tube8黄色片| 亚洲 国产 在线| 国产欧美日韩一区二区三区在线| 成人永久免费在线观看视频| 亚洲欧美日韩高清在线视频| 日韩有码中文字幕| 亚洲中文av在线| 亚洲国产欧美网| 嫁个100分男人电影在线观看| 欧美在线黄色| 成人特级黄色片久久久久久久| 91老司机精品| 99riav亚洲国产免费| 精品一品国产午夜福利视频| 成人特级黄色片久久久久久久| 啦啦啦在线免费观看视频4| 欧美中文综合在线视频| 两性夫妻黄色片| 一二三四社区在线视频社区8| 亚洲三区欧美一区| 咕卡用的链子| 精品卡一卡二卡四卡免费| 欧美最黄视频在线播放免费 | 久久久久久久久免费视频了| 狠狠狠狠99中文字幕| 热99久久久久精品小说推荐| 黑人巨大精品欧美一区二区蜜桃| 老司机亚洲免费影院| 午夜免费鲁丝| 国产成人免费观看mmmm| 日本wwww免费看| 如日韩欧美国产精品一区二区三区| 最近最新中文字幕大全免费视频| 大香蕉久久网| 99国产精品免费福利视频| 欧美精品高潮呻吟av久久| 日本五十路高清| 男人舔女人的私密视频| 韩国av一区二区三区四区| 国产国语露脸激情在线看| 99热只有精品国产| 欧美精品亚洲一区二区| 欧美成狂野欧美在线观看| 捣出白浆h1v1| 国产男靠女视频免费网站| 亚洲精品av麻豆狂野| 高清av免费在线| 视频在线观看一区二区三区| 成年人免费黄色播放视频| 国产91精品成人一区二区三区| 日本五十路高清| 国产精品影院久久| 亚洲av成人不卡在线观看播放网| 欧美成人午夜精品| 12—13女人毛片做爰片一| 久久久久久免费高清国产稀缺| 日日爽夜夜爽网站| 国产成人av激情在线播放| 国内久久婷婷六月综合欲色啪| 欧美日韩福利视频一区二区| 久久久久国内视频| 女性生殖器流出的白浆| 免费看a级黄色片| 在线观看66精品国产| 91九色精品人成在线观看| av片东京热男人的天堂| 中亚洲国语对白在线视频| 黑丝袜美女国产一区| 亚洲男人天堂网一区| 精品国产一区二区三区四区第35| 欧美乱码精品一区二区三区| 黄色毛片三级朝国网站| www.精华液| 亚洲av欧美aⅴ国产| 1024香蕉在线观看| 日韩 欧美 亚洲 中文字幕| 黄片播放在线免费| 十分钟在线观看高清视频www| 波多野结衣av一区二区av| 飞空精品影院首页| 一二三四在线观看免费中文在| 欧美久久黑人一区二区| 丰满迷人的少妇在线观看| 亚洲熟女精品中文字幕| 日韩欧美免费精品| 国产又色又爽无遮挡免费看| 村上凉子中文字幕在线| 天天影视国产精品| 国产在线一区二区三区精| 亚洲精品久久成人aⅴ小说| 人人妻人人澡人人爽人人夜夜| 99精国产麻豆久久婷婷| 麻豆国产av国片精品| 夫妻午夜视频| 精品卡一卡二卡四卡免费| 国产亚洲av高清不卡| 一级a爱视频在线免费观看| 9热在线视频观看99| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产综合久久久| 亚洲午夜理论影院| 亚洲免费av在线视频| 亚洲精品自拍成人| 99国产综合亚洲精品| 久久国产乱子伦精品免费另类| 国产精品1区2区在线观看. | 久久婷婷成人综合色麻豆| 老司机亚洲免费影院| 好看av亚洲va欧美ⅴa在| 亚洲 欧美一区二区三区| 中文字幕高清在线视频| av电影中文网址| 色老头精品视频在线观看| 在线观看免费高清a一片| 欧美日韩国产mv在线观看视频| 国产精品99久久99久久久不卡| 欧美人与性动交α欧美软件| 男男h啪啪无遮挡| 色综合婷婷激情| 精品国产国语对白av| 精品久久久精品久久久| 久久人人爽av亚洲精品天堂| 两人在一起打扑克的视频| 国产一区二区激情短视频| 丰满的人妻完整版| 国产精品香港三级国产av潘金莲| 日韩中文字幕欧美一区二区| 不卡av一区二区三区| 国产精品永久免费网站| svipshipincom国产片| 亚洲综合色网址| 99热网站在线观看| 18禁裸乳无遮挡免费网站照片 | 免费av中文字幕在线| 亚洲精品粉嫩美女一区| 国产深夜福利视频在线观看| 欧美日韩亚洲高清精品| 久久婷婷成人综合色麻豆| 国产高清视频在线播放一区| 999久久久国产精品视频| 乱人伦中国视频| 国产不卡一卡二| 欧美在线黄色| 一区二区日韩欧美中文字幕| 他把我摸到了高潮在线观看| 亚洲精品久久成人aⅴ小说| 精品乱码久久久久久99久播| 99在线人妻在线中文字幕 | av中文乱码字幕在线| 男女午夜视频在线观看| 欧美午夜高清在线| 黄片小视频在线播放| 久久久久久久午夜电影 | 高清欧美精品videossex| 成年版毛片免费区| 在线十欧美十亚洲十日本专区| 可以免费在线观看a视频的电影网站| 国产精品 国内视频| 在线看a的网站| 亚洲第一青青草原| 黄网站色视频无遮挡免费观看| a级毛片黄视频| 国产成人免费无遮挡视频| 中出人妻视频一区二区| 日韩欧美在线二视频 | 国产高清国产精品国产三级| 国产精品欧美亚洲77777| 亚洲精品久久午夜乱码| 色婷婷久久久亚洲欧美| 身体一侧抽搐| 啦啦啦免费观看视频1| 国产欧美日韩精品亚洲av| 少妇裸体淫交视频免费看高清 | 欧美性长视频在线观看| 欧美精品亚洲一区二区| 又黄又粗又硬又大视频| 日韩一卡2卡3卡4卡2021年| 久9热在线精品视频| 亚洲免费av在线视频| 美女扒开内裤让男人捅视频| 老司机福利观看| √禁漫天堂资源中文www| 国精品久久久久久国模美| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区免费欧美| 身体一侧抽搐| 女人久久www免费人成看片| 亚洲精品自拍成人| 在线播放国产精品三级| 两性午夜刺激爽爽歪歪视频在线观看 | 久久这里只有精品19| 色婷婷av一区二区三区视频| 正在播放国产对白刺激| 99久久99久久久精品蜜桃| 不卡av一区二区三区| 欧美亚洲日本最大视频资源| 亚洲国产看品久久| 久久精品人人爽人人爽视色| 日韩大码丰满熟妇| 校园春色视频在线观看| 亚洲国产欧美网| 国产无遮挡羞羞视频在线观看| 纯流量卡能插随身wifi吗| 国产av一区二区精品久久| 99精国产麻豆久久婷婷| 欧美精品一区二区免费开放| 黄色丝袜av网址大全| 午夜91福利影院| 久久国产精品影院| 亚洲伊人色综图| 99精品欧美一区二区三区四区| 啦啦啦 在线观看视频| 最新的欧美精品一区二区| 可以免费在线观看a视频的电影网站| av一本久久久久| 欧美乱色亚洲激情| 精品国产亚洲在线| 国产又色又爽无遮挡免费看| 成人亚洲精品一区在线观看| 久9热在线精品视频| 久久久久精品国产欧美久久久| 久久国产亚洲av麻豆专区| 国产亚洲精品久久久久久毛片 | 国产精品久久久久久人妻精品电影| 亚洲色图 男人天堂 中文字幕| 欧美日韩一级在线毛片| 成人18禁高潮啪啪吃奶动态图| 美女国产高潮福利片在线看| 国产真人三级小视频在线观看| 亚洲性夜色夜夜综合| 俄罗斯特黄特色一大片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲第一欧美日韩一区二区三区| 最近最新中文字幕大全电影3 | 色94色欧美一区二区| 两性夫妻黄色片| 免费av中文字幕在线| 在线十欧美十亚洲十日本专区| 中文字幕制服av| 欧美日本中文国产一区发布| 免费看十八禁软件| 国产成人啪精品午夜网站| 亚洲自偷自拍图片 自拍| 亚洲全国av大片| 99国产精品免费福利视频| 一边摸一边抽搐一进一小说 | 老熟妇仑乱视频hdxx| 1024香蕉在线观看| 亚洲精华国产精华精| 亚洲第一欧美日韩一区二区三区| 最新美女视频免费是黄的| 亚洲熟女毛片儿| 久久久精品免费免费高清| 丝袜美腿诱惑在线| 亚洲欧美激情综合另类| 亚洲精品久久午夜乱码| 国产99白浆流出| 99热只有精品国产| 久久香蕉激情| 欧美最黄视频在线播放免费 | 夫妻午夜视频| 757午夜福利合集在线观看| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美一区二区综合| 精品久久久久久久久久免费视频 | 丰满饥渴人妻一区二区三| 99精品欧美一区二区三区四区| 极品教师在线免费播放| 国产区一区二久久| 美国免费a级毛片| av线在线观看网站| 亚洲人成77777在线视频| 日本vs欧美在线观看视频| 91在线观看av| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 狂野欧美激情性xxxx| 在线十欧美十亚洲十日本专区| 午夜精品国产一区二区电影| 黄片小视频在线播放| 中文字幕人妻熟女乱码| 亚洲午夜理论影院| tube8黄色片| 久久亚洲真实| 正在播放国产对白刺激| 日本黄色视频三级网站网址 | e午夜精品久久久久久久| 老司机深夜福利视频在线观看| 亚洲精品在线观看二区| 黄频高清免费视频| 夫妻午夜视频| 亚洲精品在线美女| 国产精品二区激情视频| 国产欧美日韩综合在线一区二区| 精品一区二区三区av网在线观看| 黑人巨大精品欧美一区二区mp4| 日韩精品免费视频一区二区三区| 亚洲av日韩在线播放| 欧美另类亚洲清纯唯美| 少妇 在线观看| a级片在线免费高清观看视频| 男女免费视频国产| 国产激情久久老熟女| 少妇 在线观看| 亚洲熟妇中文字幕五十中出 | 亚洲精品国产精品久久久不卡| 亚洲五月婷婷丁香| 99国产精品99久久久久| 国产精品影院久久| 亚洲aⅴ乱码一区二区在线播放 | 美女国产高潮福利片在线看| 一进一出好大好爽视频| 波多野结衣一区麻豆| 一级毛片精品| 在线视频色国产色| 大型av网站在线播放| 最新美女视频免费是黄的| 中文字幕制服av| 亚洲欧美一区二区三区黑人| 国产精品 欧美亚洲| 变态另类成人亚洲欧美熟女 | 少妇的丰满在线观看| 97人妻天天添夜夜摸| 亚洲av成人av| 久久精品国产99精品国产亚洲性色 | 91大片在线观看| 好男人电影高清在线观看| 亚洲九九香蕉| 欧美另类亚洲清纯唯美| 免费在线观看影片大全网站| 久久中文字幕一级| 久久午夜综合久久蜜桃| 欧美+亚洲+日韩+国产| 日本a在线网址| 国产99久久九九免费精品| 丁香欧美五月| 亚洲五月婷婷丁香| 亚洲成人手机| 亚洲第一av免费看| 国产成人精品久久二区二区91| 久久精品国产99精品国产亚洲性色 | 超碰成人久久| 999久久久国产精品视频| 久久香蕉国产精品| 成人国语在线视频| 久热爱精品视频在线9| 女性生殖器流出的白浆| 一级片'在线观看视频| 999久久久精品免费观看国产| 天堂√8在线中文| 国产单亲对白刺激| 每晚都被弄得嗷嗷叫到高潮| 99国产综合亚洲精品| 欧美精品av麻豆av| 亚洲伊人色综图| 久久精品成人免费网站| 一区二区三区国产精品乱码| 在线观看免费高清a一片| 999精品在线视频| 亚洲av第一区精品v没综合| 50天的宝宝边吃奶边哭怎么回事| 国产99白浆流出| 久热这里只有精品99| 久9热在线精品视频| 侵犯人妻中文字幕一二三四区| 十八禁网站免费在线| 狂野欧美激情性xxxx| 身体一侧抽搐| 久久人妻熟女aⅴ| 精品国产乱子伦一区二区三区| 波多野结衣av一区二区av| 欧美亚洲 丝袜 人妻 在线| 在线观看免费高清a一片| 丰满的人妻完整版| 精品无人区乱码1区二区| 建设人人有责人人尽责人人享有的| 久久久水蜜桃国产精品网| www.精华液| 男女午夜视频在线观看| 中文欧美无线码| av不卡在线播放| 亚洲成av片中文字幕在线观看| 久久精品国产99精品国产亚洲性色 | xxxhd国产人妻xxx| 亚洲第一av免费看| 欧美色视频一区免费| 国产精品一区二区精品视频观看| 91麻豆精品激情在线观看国产 | 麻豆av在线久日| 脱女人内裤的视频| 久久精品国产亚洲av香蕉五月 | 亚洲三区欧美一区| 在线看a的网站| 精品高清国产在线一区| 1024香蕉在线观看| 精品欧美一区二区三区在线| 乱人伦中国视频| 日韩大码丰满熟妇| 国产精品乱码一区二三区的特点 | 性少妇av在线| 丝袜美足系列| 黄色女人牲交| 国产av又大| 在线观看免费高清a一片| 日韩欧美一区视频在线观看| bbb黄色大片| 久久久久久免费高清国产稀缺| 美女高潮喷水抽搐中文字幕| 欧美黄色淫秽网站| 免费在线观看影片大全网站| 免费看十八禁软件| 一边摸一边抽搐一进一出视频| 亚洲av日韩精品久久久久久密| av网站在线播放免费| 日韩成人在线观看一区二区三区| 99香蕉大伊视频| 亚洲三区欧美一区| 高清黄色对白视频在线免费看| 91老司机精品| 午夜福利乱码中文字幕| 18禁裸乳无遮挡动漫免费视频| 国产精品98久久久久久宅男小说| 91精品三级在线观看| 国产精品久久电影中文字幕 | 国产高清激情床上av| 亚洲精品乱久久久久久| 乱人伦中国视频| 成人黄色视频免费在线看| 欧美精品亚洲一区二区| 亚洲精品中文字幕一二三四区| 两个人看的免费小视频| 在线永久观看黄色视频| 色综合欧美亚洲国产小说| 欧美日韩亚洲高清精品| cao死你这个sao货| 亚洲专区字幕在线| 色94色欧美一区二区| 啦啦啦在线免费观看视频4| 黄片小视频在线播放| svipshipincom国产片| 日韩成人在线观看一区二区三区| 超色免费av| 成年版毛片免费区| 国产有黄有色有爽视频| 啦啦啦在线免费观看视频4| 午夜福利,免费看| 午夜成年电影在线免费观看| 日韩成人在线观看一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| av不卡在线播放| 国产男女超爽视频在线观看| 啦啦啦在线免费观看视频4| 男女床上黄色一级片免费看| 久久ye,这里只有精品| 国产不卡一卡二| 大码成人一级视频| av天堂在线播放| 久久久精品国产亚洲av高清涩受| 在线观看免费视频日本深夜| 满18在线观看网站| 亚洲一区二区三区不卡视频| 五月开心婷婷网| 免费一级毛片在线播放高清视频 | 国产99久久九九免费精品| 他把我摸到了高潮在线观看| 成人国语在线视频| www.自偷自拍.com| 久久久国产成人免费| 国产一区二区三区视频了| 成人手机av| 一区二区三区激情视频| av超薄肉色丝袜交足视频| 亚洲国产精品合色在线| 满18在线观看网站| 女性被躁到高潮视频| 欧美日韩乱码在线| 香蕉久久夜色| 99国产综合亚洲精品| 亚洲国产欧美网| 成在线人永久免费视频| 王馨瑶露胸无遮挡在线观看| 精品久久久久久久毛片微露脸| 日日夜夜操网爽| 啦啦啦 在线观看视频| 国产99久久九九免费精品| 国产一区二区三区综合在线观看| 免费久久久久久久精品成人欧美视频| 日本五十路高清| 亚洲成a人片在线一区二区| 新久久久久国产一级毛片| 国产成人一区二区三区免费视频网站| 亚洲三区欧美一区| 国产色视频综合| 超碰97精品在线观看| 欧美人与性动交α欧美精品济南到| 亚洲欧美精品综合一区二区三区| 日韩欧美免费精品| 欧美 亚洲 国产 日韩一| 国产精品av久久久久免费| 亚洲av成人一区二区三| 大陆偷拍与自拍| 老司机深夜福利视频在线观看| 黄色视频,在线免费观看| 天天躁日日躁夜夜躁夜夜| 久久中文字幕人妻熟女| 一本综合久久免费| 亚洲av第一区精品v没综合| 老司机亚洲免费影院| 亚洲七黄色美女视频| 成年版毛片免费区| 久久久久国内视频| 国产99白浆流出| 国产国语露脸激情在线看| av天堂在线播放| 亚洲第一欧美日韩一区二区三区| 丝瓜视频免费看黄片| 国产精品秋霞免费鲁丝片| 老熟女久久久| 国产97色在线日韩免费| 欧美在线黄色| 高清在线国产一区| 91精品三级在线观看|