• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STABILITY AND BIFURCATION OF A STAGE-STRUCTURED PREDATOR-PREY MODEL INCORPORATING A CONSTANT PREY REFUGE??

    2015-11-30 09:17:56ZhenWei
    Annals of Applied Mathematics 2015年2期

    Zhen Wei

    (School of Electronic and Information Engineering,Fuqing Branch of Fujian Normal University,Fuzhou 350300,E-mail:2903619@qq.com)

    Haihui Wu

    (Sunshine College,Fuzhou University,Fuzhou 350015)

    Changwu Zou

    (College of Math.and Computer Science,Fuzhou University,Fuzhou 350116)

    STABILITY AND BIFURCATION OF A STAGE-STRUCTURED PREDATOR-PREY MODEL INCORPORATING A CONSTANT PREY REFUGE??

    Zhen Wei

    (School of Electronic and Information Engineering,Fuqing Branch of Fujian Normal University,Fuzhou 350300,E-mail:2903619@qq.com)

    Haihui Wu

    (Sunshine College,Fuzhou University,Fuzhou 350015)

    Changwu Zou

    (College of Math.and Computer Science,Fuzhou University,Fuzhou 350116)

    A stage-structured predator-prey model incorporating a constant prey refuge is proposed in this paper.The stability analysis of the equilibria is carried out.We also study Hopf bifurcations occurring at the positive equilibrium by choosing a suitable time delay as bifurcating parameter.

    delay;Hopf bifurcations;periodic solutions;stability

    2000 Mathematics Subject Classification 34K18;92D25

    Ann.of Appl.Math.

    31:2(2015),212-224

    1 Introduction and Motivation

    1.1History and Motivation

    In the past few years,bifurcation theory of dynamic system has been well developed(see e.g.,[1-3]and references therein).It has been applied to many fields.For example,many authors have studied the stability and bifurcation analysis of biomathematical dynamics(see e.g.,[4-12]and references therein).The classical predator-prey mathematical models have been studied extensively,but questioned by several biologists.They argued that such models should be modified to fit the more realistic environment.For example,stage-structured population growth was introduced in a single species model by[13-15].In the classical predator-prey model,it is assumed that each individual predator admits the same ability of attacking.This assumption is obviously unrealistic for many animals.In the real world, there are many species whose individuals have a life history that take them through two, namely immature and mature stages,where immature predators are raised by their parents, and the rate they attack the prey and the reproductive rate can be ignored.For this reason, a predator-prey model with stage structure for predator was proposed in[16,17].

    On the other hand,when predators eat their prey,prey that avoid predation risk can also incur substantial fitness costs through risk-induced changes in survival and reproduction,growth,and morphology.Changes in prey that occur without the predator physically consuming the prey are referred to as non-consumptive effects.One way to reduce the risk of predation is to use a refuge.Recently,the authors[18-22]have incorporated a constant prey refuge m into the predator-prey models.

    1.2Model Formulation

    Motivated by the above works,in this paper,we consider the following stage-structured predator-prey model incorporating a constant refuge m

    where x(t)is the population density of prey species,y1(t)and y2(t)denote the densities of the immature and mature predator species,respectively;r denotes the intrinsic growth rate of prey;a1is the intra-specific competition rate of the prey(due to sharing the nutrients in an closed environment);a2denotes the coefficient in mature predator eating prey;b denotes the rate of conversing mature plant into new predator(immature predator);β and r2denote the death rate of the immature and mature predator,respectively;τ represents a constant time to maturity;b1/b denotes the rate of immature predator becoming into mature predator;m>0 is the constant prey refuge to reduce the risk of predation.System (1.1)is supplemented with the initial conditions of the form

    Note that the first and third equations of(1.1)can be separated from the whole system. Consider the following subsystem of(1.1),and denotefor convenience

    In this paper,we mainly discuss the effects of constant refuge on the stage-structured predator-prey model.Stability and bifurcation analysis are carried out in this paper.

    2 Model Analysis and Bifurcation of Periodic Solution

    Now,we discuss the stability of equilibria of system(1.2).Ifdenotes the equilibrium of system(1.2),it satisfies the algebra equations

    Clearly,E0=(0,0),are boundary equilibria.If,it is easy to seethat there is a unique positive equilibrium

    To describe the stability of the equilibrium,we introduce the following definition.

    Definition 2.1 The equilibriumof system(1.2)is called conditionally stable if it is asymptotically stable for some τjin some intervals,but not necessarily for all delays τj≥0 (1≤j≤m).While theof system(1.2)is called absolutely stable(asymptotically stable independent of the delays)if it is asymptotically stable for all τj≥0(1≤j≤m).

    To determine the local stability of the equilibria E0,E1and E?,we need linearize(1.2) aboutthen(1.2) can be transformed into

    The linear part of system(2.2)is

    The corresponding characteristic equation about the unknown λ is

    that is,

    Theorem 2.1 The equilibrium point E0=(0,0)is unstable.

    that is

    Obviously,λ1=r is a positive root.Therefore,E0is unstable.

    that is

    Obviously,λ=-r is a negative root.If,that is,,we set

    It is easy to see that

    and

    Consequently,there exists a λ0>0 such that F(λ)=0.That is,F(λ)=0 has a positive root.Then the equilibrium pointis unstable.The first assertion of Theorem 2.2 is proved immediately.

    (ii)Now we consider the caseNote that λ1=-r is a negative root in this case.Let

    To show the asymptotic stability of E1,it suffices to prove that all the roots of F1(λ)=0 have negative real parts.In fact,when τ=0,F1(λ)=0 reduces toThat is,is the unique negative root.So by Rouché’s theorem(see Dieudonné[25],Theorem 9.17.4),we only need to prove that F1(λ)=0 does not have any purely imaginary roots.To this end,by way of contradiction,assume that iω is a purely imaginary root of F1(λ)=0.Rewrite F1(λ)=0 in terms of its real and imaginary part as

    which implies

    This is a contradiction.Therefore,if,E1is asymptotically stable.

    in(2.4),we have where

    When τ=0,(2.5)reduces to

    and

    It is not difficult to see that all the roots of(2.6)have negative real parts in this case.

    To determine the local stability of the positive equilibrium E?more precisely,we let λ=α+iω,α,ω∈R,and rewrite(2.5)in terms of its real and imaginary arts as

    When α=0,(2.7)reduces to

    It follows by taking the sum of squares that

    Denote

    The two roots of(2.9)can be expressed as follows:

    Thus,

    (i)if b0>0 or Δ0<0,then neither ofandis positive,that is,(2.9)does not have positive roots.Therefore,characteristic equation(2.5)does not have purely imaginary roots.Since q-h>0 ensures that all roots of(2.6)have negative real parts,by Rouché’s theorem(see Dieudonné[25],Theorem 9.17.4),it follows that the roots of(2.6)does not have any purely imaginary roots;

    (ii)if b0<0 and Δ0=0,then(2.9)has a positive root

    (iii)if b0<0 and Δ0>0,then(2.9)has two positive rootsand

    In both cases of(ii)and(iii),the characteristic equation(2.5)has purely imaginary roots when τ takes certain values.This critical valuesof τ can be determined from system (2.8)given by

    From the above analysis,we have the following lemma.

    (1)If either b0>0 or Δ0<0,all the roots of(2.5)have negative real parts for all τ≥0.

    (2)If b0<0 and Δ0=0,then(2.5)has a pair of purely imaginary roots±iω+.

    (3)If b0<0 and Δ0>0,then(2.5)has two pair of purely imaginary roots±iω+(±iωrespectively).

    Then we claim that the real part of some root of(2.5)is positive whenand τ<τj-.To prove this,denote

    where the root of(2.5)satisfies

    By simple computation,it is not difficult to verify that the following transversality conditions hold:

    It follows that τ±jare bifurcation values.Thus,we have the following theorem about the distribution of the characteristic roots of(2.5).

    Theorem 2.3 Let τj±be defined by(2.11).In addition to,assume that:

    (i)If b0<0 and Δ0=0,then when τ∈[0,τ+0)all roots of(2.5)have negative real parts;when τ=τ0+(2.5)has a pair of imaginary roots±ω+;when τ>τ0+(2.5)has at least one root with positive real part.

    (ii)If b0<0 and Δ0>0,then there is a positive integer k such that there are switches from stability to instability,that is,when

    all roots of(2.5)have negative real parts,and when

    (2.5)has at least one root with positive real part.

    Theorem 2.5 Let ω+and τj+be defined by(2.10)and(2.11),respectively.In addition to,if b0<0 and Δ0=0,then the equilibrium E?of system(1.2)is conditionally

    stable.More precisely,

    (i)if τ∈[0,τ0+),then E?is asymptotically stable;

    (ii)if τ>τ0+,then E?is unstable;

    (iii)if τ=τj+(j=0,1,2,···),then system(1.2)undergoes Hopf bifurcations at E?.

    Theorem 2.6Let ω±and τj±be defined by(2.10)and(2.11),respectively.In addition to,if b0<0 and Δ0> 0,then there is a positive integer k such that the equilibrium E?switches k times from stability to instability,that is,when τ∈ [0,τ0+),(τ0-,τ1+),···,,the positive equilibrium E?of(1.2)is asymptotically stable; whe n τ∈[τ0+,τ0-),[τ1+,τ1-),···,and τ>τk+,the positive equilibrium E?of (1.2)is unstable.

    3 Direction and Stability of Hopf Bifurcation

    In the previous section,some sufficient conditions are obtained to guarantee that system (1.2)undergoes Hopf bifurcation at the positive equilibrium E?when τ=τj±(j=0,1,2,···). In this section,based on the normal form and the center manifold theory developed by Hassard,Kazarinoff and Wan[26],we shall derive the explicit formulaes determining the direction,stability,and period of these periodic solutions bifurcating from equilibrium E?at these critical values of τ.Without loss of generality,denote any one of these critical values τ=τj±(j=0,1,2,···)by,at which(2.5)has a pair of purely imaginary roots iω and system(1.1)undergoes a Hopf bifurcation from E?.

    Let u1(t)=x(τt)-x?,u2(t)=y(τt)-y?andThenμ=0 is the Hopf bifurcation value of system(1.2)and system(1.2)can be rewritten as

    Thus,we can work in the fixed phase space C=C([-1,0],R2),which does not depend on the delay τ.In the space C=C([-1,0],R2),system(3.1)is transformed into a FDE as

    where u=(u1,u2)T,ut(θ)=u(t+θ)∈C,Lμand f are given respectively by

    where φ=(φ1,φ2)∈C.

    By the Riesz representation theorem,there exists a matrix whose components are bounded variation functions η(μ,θ)in θ∈[-1,0]such that

    where the bounded variation functions η(μ,θ)can be chosen as

    where δ is the Dirac function.For φ∈C1([-1,0],R2),define

    Then system(3.2)is equivalent to

    where u=(u1,u2)T,ut(θ)=u(t+θ),θ∈[-1,0].

    For ψ∈C1([0,1],(R2)?),define

    and a bilinear inner product

    where η(θ)=η(0,θ).Then A(0)and A?are adjoint operators.In addition,from Section 2 we know thatare eigenvalues of A(0).Thus,they are also eigenvalues of A?.We first need to compute the eigenvector of A(0)and A?corresponding to,respectively.

    To this end,suppose that q(θ)=(1,α0)Teiω?τθis the eigenvector of A(0)corresponding to,thenIt follows from the definition of A(0),(3.3)and(3.5)that

    Thus,we can choose

    Similarly,letting q?(s)=D(β0,1)T=D(β0,1)eiω?τsbe the eigenvector of A?corresponding,we can compute

    In order to assure〈q?(s),q(θ)〉=1,we need to determine the value of D.From(3.7),we have

    Thus,we can choose a D

    It is also easy to verify thatNow we compute the coordinates to describe the center manifold C0atμ=0.Let utbe a solution to(3.6)whenμ=0.Define

    On the center manifold C0,we have

    where

    We rewrite the equation as

    where

    It follows from(3.8)and(3.9)that

    which together with(3.4)gives

    Comparing the coefficients with(3.10),we have

    Since there are W20(θ)and W11(θ)in g21,we still need to compute them.

    From(3.6)and(3.8),we have

    Substituting the corresponding series into(3.14)and comparing the coefficients,we obtain

    From(3.14),it is easy to see that for θ∈[-1,0),

    Comparing the coefficients with(3.15)gives that

    It follows from(3.16),(3.18)and the definition of A that

    Note that q(θ)=(1,α0)Teiω?τθ.Hence

    Similarly,it follows from(3.16)and(3.19)that

    In what follows,we shall seek appropriate E1and E2.From the definition of A and (3.16),we obtain where η(θ)=η(0,θ).By(3.14),we have

    Note that the fact

    and

    Substituting(3.20)and(3.24)into(3.22)gives

    which leads to

    Solving(3.26),we have

    where

    Similarly,substituting(3.21)and(3.25)into(3.23)gives

    Solving(3.27),we have

    where

    Thus,we can determine W20(θ)and W11(θ)from(3.20)and(3.21).Furthermore,g21in (3.13)can be expressed by the parameters and delay.Therefore,we can compute the following values:

    which determine the quantities of bifurcating periodic solutions at the critical value,that is,μ2determines the directions of the Hopf bifurcation:Ifμ2>0(μ2<0),then the Hopf bifurcation is supercritical(subcritical)and the bifurcating periodic solutions exist for τ>β2determines the stability of the bifurcating periodic solutions:the bifurcating periodic solutions in the center manifold are stable(unstable)if β2<0(β2>0);and T2determines the period of the bifurcating periodic solutions:the period increase(decrease)if T2>0(T2<0).Further,it follows from(2.13)and(3.28)that the following result holds.

    References

    [1]J.M.Yang,M.Han,and W.Z.Huang,On Hopf bifurcations of piecewise planar Hamiltonian systems,J.Diff.Equat.,250(2011),1026-1051.

    [2]F.Liang,M.Han,and X.Zhang,Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems,J.Diff.Equat.,255:12(2013),4403-4436.

    [3]M.Han,J.B.Li,Lower bounds for the Hilbert number of polynomial systems,J.Diff.Equat., 252(2012),3278-3304.

    [4]I.Djellit,M.L.Sahari and A.Hachemi,Complex dynamics in 2-species predator-prey systems, J.Appl.Anal.Comput.,3:1(2013),11-20.

    [5]Q.Huan,P.P.Ning,W.Ding,Global stability of the dynamic model of hepatitis B with antivirus treatment,J.Appl.Anal.Comput.,3:1(2013),37-50.

    [6]Y.L.Song,J.J.Wei,Local Hopf bifurcation and global periodic solutions in a delayed predatorprey system,J.Math.Anal.Appl.,301:1(2005),1-21.

    [7]S.L.Yuan,Y.L.Song,Stability and Hopf bifurcations in a delayed Leslie-Gower predator-prey system J.Math.Anal.Appl.,355(2009),82-100.

    [8]Y.Xia,V.Romanovski,Bifurcation analysis of a population dynamics in a critical state,Bull. Malays.Math.Sci.Soc.,38:2(2015),DOI 10.1007/s40840-014-0033-9.

    [9]Y.L.Song,S.L.Yuan,J.Zhang,Bifurcation analysis in the delayed Leslie-Gower predator-prey system,Appl.Math.Modelling,33:11(2009),4049-4061.

    [10]Y.H.Xia,Almost periodic solution of a population model:via spectral radius of matrix,Bull. Malays.Math.Sci.Soc.,37:1(2014),249-259.

    [11]M.Sambath and K.Balachandran,Spatiotemporal dynamics of a predator-prey model incorporating a prey refuge,J.Appl.Anal.Comput.,3:1(2013),71-80.

    [12]K.Hong,P.X.Weng,Stability and traveling waves of diffusive predator-prey model with agestructure and nonlocal effect,J.Appl.Anal.Comput.,2:2(2012),173-192.

    [13]W.G.Aiello and H.I.Freedman,A time delay model of single-species growth with stage structure,Math.Biosci.,101(1990),139-153.

    [14]H.I.Freedman and J.Wu,Persistence and global asymptotic stability of single species dispersal models with stage structure,Quart.Appl.Math.,49(1991),351-371.

    [15]F.Brauer and Z.Ma,Stability of stage-structured population models,J.Math.Anal.Appl., 126(1987),301-315.

    [16]W.Wang and L.Chen,A predator-prey system with stage structure for predator,Comput. Math.Appl.,33(1997),83-91.

    [17]K.G.Magnusson,Destabilizing effect of cannibalism on a structured predator-prey system, Math.Biosci.,155(1999),61-75.

    [18]X.Chang,J.J.Wei,Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge,Math.Biosci.Eng.,10:4(2013),979-996.

    [19]L.J.Chen,F.D.Chen,L.J.Chen,Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge,Nonl.Anal.RWA, 11(2010),246-252.

    [20]J.B.Collings,Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge,Bull.Math.Biol.,57(1995),63-76.

    [21]E.Gonzslez-Olivares,R.Ramos-Jiliberto,Dynamic consequences of prey refuges in a simple model system:more prey,fewer predators and enhanced stability,Ecol.Model.,166(2003),135-146.

    [22]V.Krivan,Effects of optimal antipredator behavior of prey on predator-prey dynamics:the role of refuges,Theor.Popul.Biol.,53(1998),131-142.

    [23]S.Ruan,Absolute stability,conditional stability and bifurcation in Kolmogorov-type predatorprey systems with discrete delays,Quart.Appl.Math.,59(2001),159-173.

    [24]Y.Song,J.Wei,H.Xi,Stability and bifurcation in a neural network model with delay,Differential Equations Dynam.Systems,9(2001),321-339.

    [25]J.Dieudonné,Foundations of Modern Analysis,New York:Academic Press.

    [26]B.D.Hassard,N.D.Kazarinoff,Y.H.Wan,Theory and Applications of Hopf Bifurcation, Cambridge Univ.Press,Cambridge.

    (edited by Liangwei Huang)

    ?This project was supported by the school scientific research project under grant KY2008022,the science and technology Program Foundation of Fujian Provincial Education Department(JB12254) and the Natural Science Foundation of Fujian Province under grant No.2013J01010.

    ?Manuscript March 17,2015

    天堂俺去俺来也www色官网| 国产成人a∨麻豆精品| 交换朋友夫妻互换小说| av线在线观看网站| 一本大道久久a久久精品| 又粗又硬又长又爽又黄的视频| 中文字幕人妻熟女乱码| 日韩人妻精品一区2区三区| 人人妻人人爽人人添夜夜欢视频| 中文字幕制服av| 最近的中文字幕免费完整| 一区二区三区乱码不卡18| 欧美日韩精品成人综合77777| 日韩成人伦理影院| 久久99热6这里只有精品| 99久久精品国产国产毛片| 日日摸夜夜添夜夜爱| 搡老乐熟女国产| 中文精品一卡2卡3卡4更新| 又大又黄又爽视频免费| 91国产中文字幕| 午夜福利在线观看免费完整高清在| 久久久国产精品麻豆| 国产一区有黄有色的免费视频| 91成人精品电影| 午夜福利乱码中文字幕| 欧美精品高潮呻吟av久久| 久久久欧美国产精品| 九草在线视频观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美激情极品国产一区二区三区 | 人妻一区二区av| 亚洲美女搞黄在线观看| 成年人午夜在线观看视频| √禁漫天堂资源中文www| 欧美bdsm另类| 久久久久久久久久人人人人人人| 久久狼人影院| 18禁动态无遮挡网站| 最近手机中文字幕大全| 久久综合国产亚洲精品| 777米奇影视久久| av播播在线观看一区| 中文字幕另类日韩欧美亚洲嫩草| 少妇的逼水好多| 一级爰片在线观看| 久久久欧美国产精品| 少妇高潮的动态图| 日本免费在线观看一区| 日韩av在线免费看完整版不卡| 国产一区二区在线观看日韩| 99久久中文字幕三级久久日本| 2022亚洲国产成人精品| 久久久久久久久久人人人人人人| a级片在线免费高清观看视频| 黑人巨大精品欧美一区二区蜜桃 | 欧美激情国产日韩精品一区| 久久国产精品男人的天堂亚洲 | 久久久久人妻精品一区果冻| 亚洲精品乱码久久久久久按摩| 免费大片黄手机在线观看| 国产淫语在线视频| 精品人妻一区二区三区麻豆| 18禁动态无遮挡网站| 欧美日韩av久久| 大片免费播放器 马上看| 精品一区在线观看国产| 精品一区二区免费观看| 2022亚洲国产成人精品| 香蕉丝袜av| 国产在线视频一区二区| 免费av不卡在线播放| 香蕉丝袜av| 少妇的逼水好多| 十八禁高潮呻吟视频| 亚洲精品成人av观看孕妇| 一级毛片我不卡| 久久久久人妻精品一区果冻| av国产精品久久久久影院| 校园人妻丝袜中文字幕| 毛片一级片免费看久久久久| 久久久久网色| 久久99热6这里只有精品| 曰老女人黄片| 一区二区三区乱码不卡18| 天堂8中文在线网| 啦啦啦在线观看免费高清www| 午夜av观看不卡| 中文天堂在线官网| 国产成人精品福利久久| 国产午夜精品一二区理论片| 久久亚洲国产成人精品v| 成年女人在线观看亚洲视频| 久久久精品区二区三区| 欧美国产精品va在线观看不卡| 91在线精品国自产拍蜜月| 大片电影免费在线观看免费| 免费播放大片免费观看视频在线观看| 亚洲精品视频女| 免费观看在线日韩| 捣出白浆h1v1| 午夜免费男女啪啪视频观看| 两个人免费观看高清视频| 精品人妻一区二区三区麻豆| 婷婷色av中文字幕| 男人爽女人下面视频在线观看| 少妇人妻精品综合一区二区| 国产69精品久久久久777片| 亚洲精品日本国产第一区| 热re99久久国产66热| 在线观看国产h片| 在线观看三级黄色| 成人国语在线视频| 亚洲美女视频黄频| 国产一区二区在线观看日韩| 亚洲av日韩在线播放| 90打野战视频偷拍视频| 亚洲久久久国产精品| 午夜影院在线不卡| 国产在线一区二区三区精| 999精品在线视频| 亚洲五月色婷婷综合| 国产精品一区www在线观看| 夜夜骑夜夜射夜夜干| av卡一久久| 综合色丁香网| 中国国产av一级| 高清av免费在线| 中国三级夫妇交换| 亚洲国产av影院在线观看| 波多野结衣一区麻豆| 只有这里有精品99| 男女边摸边吃奶| av网站免费在线观看视频| 寂寞人妻少妇视频99o| 婷婷色麻豆天堂久久| 男女免费视频国产| 精品国产露脸久久av麻豆| 看免费成人av毛片| 亚洲国产精品999| 午夜视频国产福利| 男人添女人高潮全过程视频| 精品人妻一区二区三区麻豆| 亚洲图色成人| 午夜精品国产一区二区电影| 国产欧美日韩一区二区三区在线| 国产精品国产三级国产专区5o| 国产黄色视频一区二区在线观看| 国内精品宾馆在线| 9191精品国产免费久久| 久久精品久久精品一区二区三区| 国产亚洲最大av| 国产国拍精品亚洲av在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲,欧美精品.| 成人午夜精彩视频在线观看| 一级爰片在线观看| 少妇精品久久久久久久| 国产日韩欧美亚洲二区| 高清在线视频一区二区三区| 新久久久久国产一级毛片| 国产精品蜜桃在线观看| 久久人人爽人人片av| 久久99热6这里只有精品| 一级黄片播放器| 亚洲精品成人av观看孕妇| 九色亚洲精品在线播放| 在现免费观看毛片| 18禁在线无遮挡免费观看视频| 亚洲婷婷狠狠爱综合网| 国语对白做爰xxxⅹ性视频网站| 丰满少妇做爰视频| av国产久精品久网站免费入址| 亚洲高清免费不卡视频| 亚洲综合精品二区| 高清欧美精品videossex| 欧美人与性动交α欧美软件 | 丝袜喷水一区| 亚洲第一av免费看| 精品一区二区三卡| 亚洲国产看品久久| 国产不卡av网站在线观看| 国产伦理片在线播放av一区| 国产成人精品福利久久| 波野结衣二区三区在线| 国产有黄有色有爽视频| 欧美精品人与动牲交sv欧美| 日韩伦理黄色片| 亚洲激情五月婷婷啪啪| 91午夜精品亚洲一区二区三区| 国产视频首页在线观看| av免费观看日本| 少妇人妻久久综合中文| 国产精品人妻久久久影院| 搡老乐熟女国产| 嫩草影院入口| 国产老妇伦熟女老妇高清| 一级黄片播放器| 中文字幕制服av| 亚洲三级黄色毛片| 亚洲精品一二三| 亚洲成人av在线免费| 久久99一区二区三区| 亚洲精品乱码久久久久久按摩| 欧美精品一区二区免费开放| 亚洲国产精品专区欧美| 大码成人一级视频| 国产视频首页在线观看| 日本欧美国产在线视频| 天堂俺去俺来也www色官网| 婷婷成人精品国产| 热re99久久国产66热| 青春草亚洲视频在线观看| 肉色欧美久久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 夫妻性生交免费视频一级片| 永久免费av网站大全| 最近最新中文字幕大全免费视频 | 久久午夜综合久久蜜桃| 91久久精品国产一区二区三区| 丰满乱子伦码专区| 在线观看三级黄色| 男女高潮啪啪啪动态图| 午夜久久久在线观看| 久久久精品94久久精品| 国产精品欧美亚洲77777| 国产亚洲午夜精品一区二区久久| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产av影院在线观看| 最新中文字幕久久久久| 亚洲一级一片aⅴ在线观看| 最近最新中文字幕免费大全7| 国产成人免费观看mmmm| 亚洲一级一片aⅴ在线观看| av免费在线看不卡| 自拍欧美九色日韩亚洲蝌蚪91| 男女国产视频网站| 久久影院123| 天堂8中文在线网| xxxhd国产人妻xxx| xxx大片免费视频| 日韩三级伦理在线观看| 最黄视频免费看| 一本—道久久a久久精品蜜桃钙片| 日韩大片免费观看网站| 国产午夜精品一二区理论片| 日韩一区二区三区影片| 国产精品国产三级国产专区5o| 成人二区视频| 亚洲美女搞黄在线观看| 日韩欧美一区视频在线观看| 最近最新中文字幕大全免费视频 | 亚洲成人手机| 啦啦啦视频在线资源免费观看| 99久久综合免费| 亚洲国产精品成人久久小说| 免费黄色在线免费观看| 欧美丝袜亚洲另类| 午夜精品国产一区二区电影| 亚洲国产精品国产精品| 国产精品久久久久久久久免| 亚洲国产精品国产精品| 亚洲欧美色中文字幕在线| 天天影视国产精品| 国产xxxxx性猛交| 国产午夜精品一二区理论片| h视频一区二区三区| 国产欧美亚洲国产| 最近中文字幕2019免费版| 制服丝袜香蕉在线| 天天躁夜夜躁狠狠久久av| 成人国产麻豆网| 国产精品欧美亚洲77777| 青青草视频在线视频观看| 久久久久网色| 涩涩av久久男人的天堂| 亚洲中文av在线| 街头女战士在线观看网站| 亚洲精品乱久久久久久| 精品少妇久久久久久888优播| 国产无遮挡羞羞视频在线观看| 国产色爽女视频免费观看| 亚洲成av片中文字幕在线观看 | 国产精品久久久久久精品电影小说| 国产无遮挡羞羞视频在线观看| 91成人精品电影| 91精品三级在线观看| 国产福利在线免费观看视频| 日韩不卡一区二区三区视频在线| 在线观看国产h片| av电影中文网址| 侵犯人妻中文字幕一二三四区| 纯流量卡能插随身wifi吗| 国产精品麻豆人妻色哟哟久久| 日本黄色日本黄色录像| av.在线天堂| 欧美精品一区二区免费开放| 久久久久视频综合| 亚洲情色 制服丝袜| 国产精品久久久久成人av| 日韩一区二区三区影片| 十八禁高潮呻吟视频| 国产午夜精品一二区理论片| 91精品三级在线观看| 纵有疾风起免费观看全集完整版| 一级毛片 在线播放| 午夜老司机福利剧场| 黄网站色视频无遮挡免费观看| 久久婷婷青草| 国产福利在线免费观看视频| 久久久久视频综合| av国产久精品久网站免费入址| 女的被弄到高潮叫床怎么办| 高清视频免费观看一区二区| 一级,二级,三级黄色视频| 亚洲内射少妇av| 一二三四中文在线观看免费高清| 在线观看www视频免费| 97超碰精品成人国产| 久久久亚洲精品成人影院| 国产国拍精品亚洲av在线观看| 亚洲四区av| 国产乱人偷精品视频| 看十八女毛片水多多多| 在线观看免费日韩欧美大片| 久久ye,这里只有精品| 少妇 在线观看| 91成人精品电影| 男的添女的下面高潮视频| 一级毛片 在线播放| 日韩成人av中文字幕在线观看| 咕卡用的链子| 国产精品熟女久久久久浪| 老熟女久久久| 亚洲成av片中文字幕在线观看 | 99久久精品国产国产毛片| 美女视频免费永久观看网站| 日韩精品免费视频一区二区三区 | 伦理电影大哥的女人| 亚洲精品aⅴ在线观看| 一本色道久久久久久精品综合| 人人澡人人妻人| 热re99久久精品国产66热6| 国产精品人妻久久久久久| 国产永久视频网站| av免费在线看不卡| 18禁在线无遮挡免费观看视频| 中文字幕制服av| 不卡视频在线观看欧美| 黄片无遮挡物在线观看| 搡老乐熟女国产| 一二三四在线观看免费中文在 | 最近中文字幕2019免费版| 自线自在国产av| 岛国毛片在线播放| 欧美日韩精品成人综合77777| www.熟女人妻精品国产 | 精品一品国产午夜福利视频| 永久网站在线| 中文字幕人妻熟女乱码| 各种免费的搞黄视频| 亚洲国产最新在线播放| 久久精品国产综合久久久 | 免费观看在线日韩| 最黄视频免费看| 久久韩国三级中文字幕| 99热这里只有是精品在线观看| 午夜视频国产福利| 午夜福利网站1000一区二区三区| 国产亚洲午夜精品一区二区久久| 婷婷色综合www| 久久精品国产a三级三级三级| 五月开心婷婷网| 视频在线观看一区二区三区| 国产精品免费大片| 久久国内精品自在自线图片| 日韩视频在线欧美| 精品少妇黑人巨大在线播放| 国产黄频视频在线观看| xxxhd国产人妻xxx| 亚洲精品成人av观看孕妇| 国产色婷婷99| 亚洲中文av在线| 国产精品 国内视频| 日韩av免费高清视频| 色婷婷久久久亚洲欧美| 亚洲精品国产av蜜桃| 亚洲在久久综合| 亚洲欧美精品自产自拍| av福利片在线| 中国三级夫妇交换| 啦啦啦中文免费视频观看日本| 亚洲av免费高清在线观看| 纯流量卡能插随身wifi吗| 欧美老熟妇乱子伦牲交| 国产 一区精品| 久久午夜福利片| 久久久久久久亚洲中文字幕| 老司机影院毛片| 日韩精品有码人妻一区| 日韩成人av中文字幕在线观看| 九色亚洲精品在线播放| 久久国产精品男人的天堂亚洲 | 少妇人妻久久综合中文| 久久久久久久精品精品| 国产精品国产三级国产专区5o| 精品一品国产午夜福利视频| 国产成人精品久久久久久| 日韩精品有码人妻一区| 午夜免费鲁丝| 免费黄色在线免费观看| 亚洲精品一二三| 久久免费观看电影| 日韩av免费高清视频| 热99国产精品久久久久久7| 十八禁高潮呻吟视频| 黄色一级大片看看| 亚洲av中文av极速乱| 日韩av免费高清视频| 夜夜骑夜夜射夜夜干| 超碰97精品在线观看| www.av在线官网国产| 国产一区二区三区av在线| 欧美国产精品一级二级三级| 国产乱来视频区| 久热这里只有精品99| 国产黄色免费在线视频| 国产成人av激情在线播放| 人妻系列 视频| 久久亚洲国产成人精品v| 亚洲天堂av无毛| av国产精品久久久久影院| 久热久热在线精品观看| 成人午夜精彩视频在线观看| 国产女主播在线喷水免费视频网站| 女人精品久久久久毛片| 好男人视频免费观看在线| 一级爰片在线观看| 国产高清不卡午夜福利| 一区二区av电影网| 看免费av毛片| 久久国内精品自在自线图片| 欧美精品高潮呻吟av久久| 国产男女超爽视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 91精品伊人久久大香线蕉| av在线app专区| 成人亚洲欧美一区二区av| 国产成人91sexporn| 99久国产av精品国产电影| 午夜福利视频在线观看免费| 日本免费在线观看一区| av免费在线看不卡| 美女国产高潮福利片在线看| 秋霞伦理黄片| 人成视频在线观看免费观看| 五月玫瑰六月丁香| 99久国产av精品国产电影| 亚洲欧美色中文字幕在线| 国产在线一区二区三区精| 日韩成人伦理影院| 日本wwww免费看| 丝袜脚勾引网站| 欧美日本中文国产一区发布| 我的女老师完整版在线观看| 国产成人aa在线观看| 两个人免费观看高清视频| 日本午夜av视频| 黄色毛片三级朝国网站| 伊人久久国产一区二区| 天天躁夜夜躁狠狠久久av| 久久影院123| 飞空精品影院首页| 亚洲,欧美,日韩| 69精品国产乱码久久久| 在线观看免费高清a一片| 建设人人有责人人尽责人人享有的| 色94色欧美一区二区| 精品一区二区免费观看| 国产片特级美女逼逼视频| www.av在线官网国产| 美女国产视频在线观看| 亚洲欧美清纯卡通| 日韩成人伦理影院| 精品一区二区免费观看| 黄色视频在线播放观看不卡| 精品人妻熟女毛片av久久网站| 99热网站在线观看| 欧美xxxx性猛交bbbb| 国产探花极品一区二区| 国产精品人妻久久久影院| 一二三四在线观看免费中文在 | 成年女人在线观看亚洲视频| 最近最新中文字幕大全免费视频 | 大香蕉久久成人网| 天美传媒精品一区二区| 日韩免费高清中文字幕av| 99久国产av精品国产电影| 十八禁网站网址无遮挡| 在线观看国产h片| 美女视频免费永久观看网站| 中文天堂在线官网| 26uuu在线亚洲综合色| 侵犯人妻中文字幕一二三四区| 亚洲一区二区三区欧美精品| 婷婷色综合www| 午夜视频国产福利| 九色成人免费人妻av| 99热全是精品| 满18在线观看网站| 我要看黄色一级片免费的| 日韩在线高清观看一区二区三区| 日本与韩国留学比较| 日本-黄色视频高清免费观看| 少妇的丰满在线观看| 国产 精品1| 亚洲国产日韩一区二区| 免费在线观看完整版高清| 欧美精品国产亚洲| 韩国高清视频一区二区三区| 肉色欧美久久久久久久蜜桃| 少妇的丰满在线观看| av女优亚洲男人天堂| 亚洲成人av在线免费| 久久久精品94久久精品| 亚洲国产成人一精品久久久| 一级,二级,三级黄色视频| 久久97久久精品| 男女无遮挡免费网站观看| 搡女人真爽免费视频火全软件| 水蜜桃什么品种好| 久久国产精品大桥未久av| 日韩av免费高清视频| 久热久热在线精品观看| 精品人妻偷拍中文字幕| 国产成人a∨麻豆精品| 成年动漫av网址| 91国产中文字幕| 大片免费播放器 马上看| 精品人妻在线不人妻| 日韩一本色道免费dvd| 国产成人免费无遮挡视频| 国产精品蜜桃在线观看| 国产免费现黄频在线看| 亚洲精品色激情综合| 黄色 视频免费看| 成人毛片a级毛片在线播放| 人人妻人人添人人爽欧美一区卜| 99久久人妻综合| 免费观看a级毛片全部| 日韩免费高清中文字幕av| 热99久久久久精品小说推荐| 中文字幕人妻熟女乱码| 久久久久网色| 久久久久久久久久久免费av| 黑人欧美特级aaaaaa片| 久久久国产欧美日韩av| 日产精品乱码卡一卡2卡三| 日本欧美国产在线视频| 十八禁网站网址无遮挡| 久久人人爽人人爽人人片va| 97在线人人人人妻| 亚洲av国产av综合av卡| 黄片播放在线免费| 国产成人精品一,二区| av播播在线观看一区| 2021少妇久久久久久久久久久| 欧美激情 高清一区二区三区| 九色成人免费人妻av| 精品亚洲乱码少妇综合久久| 欧美精品一区二区免费开放| 国产亚洲精品久久久com| 国产又爽黄色视频| 婷婷色综合大香蕉| 夫妻午夜视频| 精品人妻一区二区三区麻豆| a级毛片在线看网站| 欧美性感艳星| 久久人人97超碰香蕉20202| 男的添女的下面高潮视频| 国产综合精华液| 秋霞伦理黄片| 啦啦啦在线观看免费高清www| 亚洲美女搞黄在线观看| 丝袜人妻中文字幕| 亚洲精品456在线播放app| 日本午夜av视频| 黑人巨大精品欧美一区二区蜜桃 | 在线观看美女被高潮喷水网站| 国产成人精品一,二区| av免费在线看不卡| 国产亚洲一区二区精品| 亚洲精品美女久久久久99蜜臀 | 性色av一级| 久久久久久久久久久免费av| 欧美精品av麻豆av| 乱码一卡2卡4卡精品| 亚洲第一区二区三区不卡| 精品少妇久久久久久888优播| 亚洲,欧美精品.| 中文精品一卡2卡3卡4更新| 在线观看人妻少妇| 人人妻人人澡人人看| 九九爱精品视频在线观看| 国产国拍精品亚洲av在线观看| 精品人妻一区二区三区麻豆| 欧美日韩精品成人综合77777| 亚洲国产欧美日韩在线播放| 日产精品乱码卡一卡2卡三| 性色avwww在线观看| 久久鲁丝午夜福利片| 男女高潮啪啪啪动态图| 在线观看免费视频网站a站| 精品久久蜜臀av无| 一区二区日韩欧美中文字幕 |