• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Switching off Microchannels Using Surface Acoustic Wave*

    2015-11-29 08:28:20ZHANGAnliangZHANGXiaoquanHUwenyanZHANGJianshengFUXiangting
    傳感技術(shù)學(xué)報 2015年8期

    ZHANG Anliang,ZHANG Xiaoquan,HU wenyan,ZHANG Jiansheng,F(xiàn)U Xiangting

    (1.School of Electronic Information and Electric Engineering,Changzhou Institute of Technology,Changzhou 213002,China;2.Department of Electrical Engineering,Ningbo University,Ningbo Zhejiang 315211,China)

    Switching off Microchannels Using Surface Acoustic Wave*

    ZHANG Anliang1*,ZHANG Xiaoquan1,HU wenyan1,ZHANG Jiansheng1,F(xiàn)U Xiangting2

    (1.School of Electronic Information and Electric Engineering,Changzhou Institute of Technology,Changzhou 213002,China;2.Department of Electrical Engineering,Ningbo University,Ningbo Zhejiang 315211,China)

    For controlling the flow direction of microfluid in microchannels,a new method for switching off microchannels by surface acoustic wave is presented.An interdigital transducer with 27.5 MHz center frequency is fabricated on a 128°yx-LiNbO3piezoelectric substrate for exciting surface acoustic wave.Solid paraffin in poly(dimethylsiloxane)groove is melted by surface acoustic wave and transported along a microchannel due to capillary force.As soon as the electric signal for exciting surface acoustic wave is moved off,the paraffin is solidified and blocked the microchannel.The microchannel is then switched off.Red dye solution is used to demonstrate the operation of switching off the microchannel.Results show that the microchannel can successfully be switched off by surface acoustic wave.Near five minutes switching time is obtained when the electric signal power is 31.7 dBm.The work is help for researchers to study on microvalves controlled by surface acoustic wave.

    microfluidic device;switching off microchannel;surface acoustic wave;paraffin;piezoelectric substrate

    Miniaturization has become an important research topic in both electronic and non-electronic devices[1],since integrated circuit was invented by Kilby in 1958.Microelectromechanical system(MEMS)is a typical example of miniaturization in non-electronic device[2].During the last two decades,the MEMS have been used for the miniaturization of micro total analysis systems[3].Major advantages of miniaturization are the drastic decrease in chemical reaction time and less consumption of expensive chemical reagents,as well as enhancement of reliability[4-5].Thus,micro total analysis systems(microfluidic devices)have been widely applied in biochemical analysis such as DNA sequencing,protein analysis,single cell analysis,drug screening,and food safety[6-7].These devices generally involve microchannel networks to conduct unit operations such as reagent transportation,mixing,metering,separation,switching,and detection[8].For integrationof these unit operations in a microfluidic substrate,the operations of switching on or off microchannels are necessary,in which microvalves are appropriate candidates.The development of microvalves has rapidly progressed in recent years.They can be roughly categorized as two major categories,namely active microvalves and passive microvalves depending on whether an external power supply is required.Many passive microvalves have been reported in the literature including flap valves,hydrophobic valves,and spherical ball valves.For example,F(xiàn)eng and Kim used Parylene for the valve materials to fabricate a cantilever-type 3μm thick Parylene flap valve[9].Pan used stainless steel balls with a diameter of 0.8 mm to make ball valves[10].Though these passive valves have been incorporated in integrated devices for biochemical analysis,they usually can not be used for sealing or controlling the microfluid in microchannels.

    Compared to the passive microvalves,active microvalves have been more widely researched.According to the activating method,there are various active microvalves reported for use in micro total analysis systems,such as pneumatic[11],thermopneumatic[12],electrokinetic[13],electrochemical[14-15],electrostatic[16-17],electromagnetic[18],electrothermal phase change[19-20]or hybrid actuated[21]microvalves.For example,one of the most common active valves in microfluidic systems is a pneumatic valve.When injecting compressed air into the chamber,the resulting deflection of the membranes can work as a valve to stop the flow passing through the microchannel.Ra[22]presented a thermal expansion microvalve of wax.The characteristics of the microvalve were enhanced by improving the mechanical properties of the PDMS membrane by altering prepolymer to cross linker ratio.Phase-change microvalves allow for controlling fluid flow by the phase transition of the valves.The advantage is that they do not require a pneumatic connection to the valve seat.Thus,the microvalves are usually used for microfluidic devices for microfluidic analysis in spit of their slow actuation time.

    As an important offset of micro total analysis systems,piezoelectric microfluidic systems[23-25]have been widely researched during recent years.It is reported that microfluidic operations,such as microfluidic generation,transportation,mixing,bio-particles concentration,separation and reaction,have been implemented on piezoelectric devices.The advantages of the piezoelectric microfluidic systems are low cost,simple technology and their driving ability.However,the working fluid on piezoelectric microfluidic device is usually as the form of digital microfluid[26].The evaporation of the digital microfluid will seriously affect the precision of microfluidic analysis.Although digital microfluid encapsulated by oil droplet can solve the problem[27],the generation of oil droplets and the operation of oil encapsulation will increase the analysis time and device size.The form of continuous fluid as working fluid in microchannels on piezoelectric microfluidic device can avoid the evaporation of working fluid.This typically requires switching on or off microchannels to control the operation of the working fluid.However,traditional microvalve mentioned above can not be directly applied in piezoelectric microfluidic devices to switch on or off the microchannels.

    Here,we present a new method to switch off microchannels using surface acoustic wave(SAW).A double T type microchannel was used to demonstrate the operation of switching off microchannels.

    1 Experimental Section

    1.1 Fabrication of a device for switching off microfluidic channels by surface acoustic wave

    As parts of the device,microchannels were fabricated using soft lithography technology,and the interdigital transducers were fabricated on a piezoelectric substrate by microelectronic process.The technological process is shown in Fig.1.

    In Fig.1,channels for transporting microfluid include channel A,channel B and main channel,which are fabricated using soft lithography technology(Fig.1(a)).The diameter of the circular microchannels A and B is 150μm,andthatofthemainchannelis950μm.A copper sheet with poly(dimethylsiloxane)(PDMS)groove is fixed on the bottom of part of main channel by coating PDMS on their interface and then solidifying in 100℃oven for an hour.The size of the PDMS groove is 5.5 mm length,4 mm width and 2 mm depth.The PDMS groove is connected with the main channel us-ing a hole as shown in(Fig.1(b)).Solid paraffin(China Petroleum&Chemical Corporation,Guangdong)was filled in the PDMS groove(Fig.1(c)).An interdigital transducer was fabricated on 128°yx-LiNbO3substrate using microelectronic technology(Fig.1(d)).A PDMS microgroove and PDMS block were mounted on the piezoelectric substrate(Fig.1(e)).The microgroove is used to accommodate paraffin oil(Tianjin hongyan chemical reagent factory,Tianjin)and PDMS block is used for fixing the channels.The size of the microgroove is 3.5 mm diameter and its depth is 1.0mm.In order to fix the PDMS microgroove and PDMS block onto the piezoelectric substrate,their bottom surface was coated with PDMS and solidified for an hour in 100℃oven.Paraffin oil was filled in the PDMS microgroove(Fig.1(f)).The microchannels with solid paraffin were mounted on the piezoelectric substrate(Fig.1(g)).For heating the solid paraffin in the PDMS groove,the copper sheet should be mounted over the PDMS microgroove with paraffin oil.

    Fig.1 The technological process of the device for switching off double T type microchannels using surface acoustic wave

    1.2 Surface acoustic wave principle

    Surface acoustic wave(SAW)can be excited when an electrical signal with appropriative frequency is applied to an interdigital transducer(IDT).The amplitude of the surface acoustic wave is affected by the electrical signal power.When the surface acoustic wave meets with liquid on the piezoelectric substrate,the major part of the incident wave energy could radiate into the liquid by Rayleigh angle θR[28]:

    Where VWis the velocity of sound propagation in fluids and VRis that on the piezoelectric substrate.

    The surface acoustic wave is radiated into the liquid,leading to internal streaming in the liquid,which heats the liquid on the piezoelectric substrate.

    1.3 Experimental setup

    The experimental setup for switching off microchannels by surface acoustic wave is shown in Fig.2.

    Fig.2 The experimental setup for switching off microchannels by surface acoustic wave

    In Fig.2,an interdigital transducer(IDT)and reflector are fabricated on the 128°yx-LiNbO3substrate using microelectric technology.The IDT is with 35 finger pairs,an aperture of 4.32 mm,a period of λ=144μm(the center frequency of the IDT is 27.5 MHz,however its actual center frequency is 26.5 MHz due to the technology error).The areas free ofelectrode on the piezoelectric substrate are coated with Teflon AF 1600(USA,Dupont).The PDMS microgroove filled with paraffin oil is mounted on the piezoelectric substrate.The solid paraffin in the PDMS groove is mounted over the PDMS microgroove.

    A RF signal generator(SP1461,EPRE,China)supplies a RF sine signal.The RF sine signal is amplified by a power amplifier(TSA002A,TSH,China)with a gain of 48 dB and maximal unsaturated output power of 30 W.A highly sensitive CCD color video camera(DCE-2,Novel,China)is used to monitor the microfluidic transportation and solid paraffin melting.MDVNT software(Novel,China)is used for camera control and image processing.A power meter(YM2462,Yamei,China)is used to measure the power applied to the IDT.

    1.4 The operation of switching off microchannels

    An amplified RF signal is applied to the interdigital transducer,leading to the transportation of surface acoustic wave along the substrate surface.As soon as the SAW meets with the paraffin oil in the PDMS microgroove,the temperature of the paraffin oil was raised by the radiation of surface acoustic wave.The solid paraffin in the PDMS groove was heated due to heat transmission till the solid paraffin was melted.At this time,the melted paraffin was transported along the main channel due to capillary force.As soon as the melted paraffin crossed the first T-type channel,RF electric signal was moved off.The melted paraffin was solidified gradually,and then the microchannel was switched off.Fluid could not flow from channel A to channel B at the moment.Fig.3 shows the sketch of the microchannel state.

    Fig.3 The sketch of the microchannel state

    In Fig.3(a),the microchannnel is in open state,where fluid can be transported from channel A to channel B.As shown in Fig.3(b),the microchannel is in closed state,where fluid can not flow in channels.

    2 Results and discussions

    In order to switch off the double T type microchannel,solid paraffin should be melted.The relation of solid paraffin melting to the power of the RF electric signal should be experimentally drawn.A high sensitivity thermometer(BK8800,RTX,China)is used to measure the temperature of solid paraffin in PDMS groove.The sampling rate of the thermometer is 2.5/s,and measuring accuracy is 0.1℃.The size of its probe is 0.5 mm diameter.The probe is located in 2.5 mm to the right margin of the PDMS groove.The solid paraffin is filled in the PDMS groove,and its volume is 44 mm3.The thickness of the copper sheet is 0.3 mm,and the distance of the right margin of the copper sheet to that of the PDMS groove is 3 mm.Figure 4 is video snapshots of paraffin melting.

    Fig.4 Video snapshots of paraffin melting

    In Fig.4,F(xiàn)ig.4(a)shows the state of solid paraffin in the PDMS groove without the radiation of surface acoustic wave.After the radiation of surface acoustic wave,part of the solid paraffin is melted as shown in Fig.4(b).Fig.4(c)~4(d)show the state of the solid paraffin being further melted at 30.8 dBm of the electric signal power.

    Using the same method and the same detection position of the probe,the temperature cure of solid paraffin at different electric signal power is shown in Fig.5.

    Fig.5 The temperature cure of solid paraffin in the PDMS groove at different electric signal power

    According to Fig.5,we can deduce that the temperature variation of paraffin in the PDMS groove is increased with the electric signal power applied to the in-terdigital transducer.We can also observe that the temperature of paraffin is greater than the melting point of the solid paraffin(the melting point of solid paraffin is 53℃~58℃)after 1.5 minutes when the electric signal power is greater than 30.8 dBm,which can be verified in Fig.4.

    The volume(V)of PDMS microgroove can be calculated by following formula:

    Where r is the radius of circular microgroove and h is its depth.According the formula(2),one can calculate the volume of the microgroove is 9.6 μL.Thus,the 10 μL of paraffin oil in microgroove can ensure effective heat transmission.

    The microchannel is normally open state,and microfluid can be transported from channel A to channel B.Fig.6 shows the transportation of red dye solution in channels at 2.5 kPa liquid pressure.

    Fig.6 Red dye solution is transported in the microchannel at 2.5 kPa liquid pressures when the microchannel is open state.

    In Fig.6,F(xiàn)igs.6(a)and 6(b)show the state of the red dye solution being transported in the channel A.After another 0.6 seconds the red dye solution arrives to the main channel as shown in Fig.6(c).Figs.6(d)to 6(f)show the transportation of red dye solution in the main channel.According to Fig.6(d)and Fig.6(f),the front end of red dye solution is moved 3.66 mm during 4.533 seconds.The liquid velocity is 0.57μL/s.

    After the red dye solution in the microchannel has been transported from channel A to channel B,an electric signal was applied to the IDT.When surface acoustic wave is radiated into the paraffin oil for a time,the solid paraffin is melted and transported along the microchannel.The microchannel is switched off as soon as the melted paraffin is solidified.Fig.7 shows the closing operation of the microchannel.

    In Fig.7,F(xiàn)ig.7(a)to(d)shows that the solid paraffin in the PDMS groove is gradually melted at 31.7 dBm electric signal power.In order to observe the melting of the paraffin in PDMS groove,Channel A is not in field of view as shown in Figs.7(a)and(b).The melted paraffin is transported in the channel A and main channel as shown in Figs.7(c)to(g).Figs.7(h)and(i)show the melted paraffin in the channels being solidified after the electric signal being moved off.The time for the closing operation of the microchannel is less than five minutes.After the microchannel having been switched off,the red dye solution from the microchannel A will not be transported to channel B due to the block of the solid paraffin.However,the red dye solution can leak along the channels when the liquid press is greater than 200 kPa.Thus,the leakage press of the closed microchannel is 200 kPa.

    Fig.7 The closing operation of the microchannel

    The advantage of the presented method to switch off microchannels is that it can be easily integrated into a piezoelectric microfluidic device.It will also be helpful to develop a piezoelectric microfluidic device containing microvalves.Then,the evaporation of working fluid on a piezoelectric microfluidic device will be completely solved.

    3 Conclusions

    Piezoelectric microfluidic device is an important branch of microfluidic systems.The operation of switching on or off microchannels is necessary for microfluidic systems to control the flow of microfluid in microchannels.A new method for switching off microchannels was presented in this work.The technology,principle and operation of switching off microchannels were demonstrated.According to the work,several conclusions can be drawn:(1)Surface acoustic wave can switch off the microchannels on a piezoelectric microfluidic device;(2)Switching time is depended on the electric signal power at the same volume of PDMS microgroove.

    [1]馮沖,唐禎安,余雋,等.一種新型MEMS器件中的近場輻射傳熱現(xiàn)象研究[J].傳感技術(shù)學(xué)報,2013,26(2):170-174.

    [2]Kulwant S,Robin J,Soney V,et al.Fabrication of Electron Beam Physical Vapor Deposited Polysilicon Piezoresistive MEMS Pressure Sensor[J].Sensors and Actuators A,2015,223(1):151-158.

    [3]Huang C H,Tsou C.The Implementation of a Thermal Bubble Actuated Microfluidic Chip with Microvalve,Micropump and Micromixer[J].SensorsandActuatorsA:Physical,2014,210(1):147-156.

    [4]張端,汪甜,高巖,等.高回流被動式微混合器設(shè)計及數(shù)值模擬[J].傳感技術(shù)學(xué)報,2013,26(11):1621-1626.

    [5]紀夏夏,沈丹丹,譚秋林,等.電滲微泵的生理溶液滲透特性研究[J].傳感技術(shù)學(xué)報,2014,27(11):1447-1450.

    [6]Mirasoli M,Guardigli M,Michelini E,et al.Recent Advancements in Chemical Luminescence-Based Lab-on-Chip and Microfluidic Platforms for Bioanalysis[J].Journal of Pharmaceutical and Biomedical Analysis,2014,87(1):36-52.

    [7]Ghanbari M,Nezhad A S,Agudelo C G,et al.Microfluidic Positioning of Pollen Grains in Lab-on-a-Chip for Single Cell Analysis[J].Journal of Bioscience and Bioengineering,2014,117(4):504-511.

    [8]Haeberle S,Zengerle R,Microfluidic Platforms for Lab-on-a-Chip Applications[J].Lab on a Chip,2007,7(9):1094-1110.

    [9]Feng G H,Kim E S,Micropump Based on PZT Unimorph and One-Way Parylene Valves[J].Journal of micromechnics and microengineering,2004,14(3):429-435.

    [10]Pan T,McDonald S J,Kai E M,et al.A Magnetically Driven PDMS Micropump with Ball Check-Valves[J].Journal of Micromechnics and Microengineering,2005,15(5):1021-1026.

    [11]Lisec T,Kreutzer M,Wagner B,A Bistable Pneumatic Microswitch for Driving Fluidic Components[J].Sensors and Actuators A,1996,54(1-3):746-749.

    [12]Kim J H,Na K H,Kang C J,et al.A Disposable Thermopneumatic-Actuated Microvalve Stacked with PDMS Layers and ITO-Coated Glass[J].Microelectronic Engineering,2004,73-74(6):864-869.

    [13]Kirby B J,Shepodd T J,Hasselbrink E F J,Voltage-Addressable on/off Microvalves for High-Pressure Microchip Separations[J].Journal of Chromatography,2002,979(1-2):147-154.

    [14]Aitor E,Luis J F,Kepa M,et al.A Microvalve for Lab-on-a-Chip Applications Based on Electrochemically Actuated SU8 Cantilevers[J].Sensors and Actuators B,2011,155(2):505-511.

    [15]Lee D E,Soper S,Wang W,Design and Fabrication of an Electro-Chemically Actuated Microvalve[J].Microsystem Technologies,2008,14:1751-1756.

    [16]Y?ld?r?m E,Ar?kan M A S,Külah H.A Normally Closed Electrostatic Parylene Microvalve for Micro Total Analysis Systems[J].Sensors and Actuators A,2012,181(6):81-86.

    [17]Yoshida K,Tanaka S,Hagihara Y,et al.Normally Closed Electrostatic Microvalve with Pressure Balance Mechanism for Portable Fuel Cell Application[J].Sensors and Actuators A,2010,157(2):290-298.

    [18]Luharuka R,LeBlanc S,Bintoro J S.et al.Simulated and Experimental Dynamic Response Characterization of An Electromagnetic Microvalve[J].Sensors and Actuators A,2008,143(2):399-408.

    [19]Yang B,Lin Q,A Latchable Microvalve Using Phase Change of Paraffin Wax[J].Sensors and Actuators A,2007,134(1):194-200.

    [20]Pal R,Yang M,Johnson B N.et al.Phase Change Microvalve for Integrated Devices[J].Analytical Chemistry,2004,76(13):3740-3748.

    [21]Ryu K S,Wang X,Shaikh K,et al.Design And Prototyping of A Surface Micromachined Parylene Microvalve with Hybrid Actuation Scheme:On-chip Thermopneumatic Initiation and Electrostatic Latching[C]//International Conference on Miniaturized System for Chemistry and Life Science,2005,October 9-13,Boston,USA:1192-1194.

    [22]Ra G S,Kumar J S,Yoon T S,et al.Improvement of Dynamic Characteristics of Polydimethylsiloxane Based Microvalve[J].Microsystem Technologies 2009,15(4):607-609.

    [23]Kim H H,Park D H,Ryu B H,et al.Design and Modeling of Piezoelectric Pump for Microfluid Devices[J].Ferroelectrics,2009,378(1):92-100.

    [24]Zhang Z A,Kan J W,Cheng G M,et al.A Piezoelectric Micropump with An Integrated Sensor Based on Space-division Multiplexing[J].Sensors and Actuators A,2013,203(12):29-36.

    [25]Antil H,Heinkenschloss M,Hoppe R H W,et al.Reduced Order Modeling Based Shape Optimization of Surface Acoustic Wave Driven Microfluidic Biochips[J].Mathematics and Computers in Simulation,2012,82(10):1986-2003.

    [26]Beyssen D,Brizoual L L,Elmazria O,et al.Microfluidic Device Based on Surface Acoustic Wave[J].Sensors and Actuators B,2006,118(1-2):380-385.

    [27]Lee C Y,Yu H Y,Pang W,et al.Droplet-based Microreactions with Oil Encapsulation[J].Journal of Microelectronic Systems,2008,17(1):147-156.

    [28]Toyokazu U,Takayuki S,Showko S.Investigation of Acoustic Streaming Excited by Surface Acoustic Waves[C]//IEEE Ultrasonics symposium,New York,USA,Nov.7-10:1081-1084(1995).

    Zhang Anliang(1968-),male,received the Ph.D.degrees in micro-electrics from Zhejiang University,Zhejiang,China,in 2004.He joined Key Laboratory of Analytical Chemistry for Life Science,School of Chemistryand ChemicalEngineering,Nanjing University in 2008 as a post-doctoral fellow.He was an associate professor in the Department of Electric Engineering,Ningbo University.In June 2014,he joined the changzhou Institute of Technology.His scientific interests include surface acoustic waves,lab on a piezoelectric substrate and SAW sensors,zhangal@czu.cn;zhanganliang@nbu.edu.cn.

    聲表面波為能量源的微通道關(guān)閉研究*

    章安良1*,張小權(quán)1,胡文艷1,張建生1,付相庭2

    (1.常州工學(xué)院電氣學(xué)院,江蘇常州213002;2.寧波大學(xué)電子工程系,浙江寧波315211)

    為控制微通道內(nèi)微流體流向,提出了一種聲表面波關(guān)閉微通道方法。在128°旋轉(zhuǎn)Y切割X傳播方向的LiNbO3壓電基片上制作中心頻率為27.5 MHz的叉指換能器,其激發(fā)的聲表面波熔融聚二甲基硅氧烷微槽內(nèi)固體石蠟,熔融后的石蠟由于毛細作用力沿微通道輸運。當移去激發(fā)聲表面波的電信號后,熔融石蠟固化并阻塞微通道,實現(xiàn)微通道關(guān)閉。以紅色染料溶液為實驗對象,對微通道進行關(guān)閉操作。結(jié)果表明,聲表面波可以成功地實現(xiàn)微通道關(guān)閉操作,當電信號功率為31.7 dBm時,微通道關(guān)斷時間約為5 min。本文工作對聲表面波為驅(qū)動源的微閥研究具有一定的借鑒意義。

    微流器件;關(guān)閉微通道;聲表面波;石蠟;壓電基片

    TN722

    A

    1004-1699(2015)08-1155-06

    2015-02-26 修改日期:2015-04-30

    ??7820

    10.3969/j.issn.1004-1699.2015.08.010

    項目來源:常州工學(xué)院校基金項目(YN1404);常州工學(xué)院大學(xué)生創(chuàng)新基金項目(J140029);浙江省重點學(xué)科項目(Xkl11077)

    午夜激情福利司机影院| 国产亚洲欧美在线一区二区| 久久精品国产清高在天天线| 亚洲精品美女久久久久99蜜臀| 国产精品久久视频播放| 久久伊人香网站| 欧美高清成人免费视频www| 999久久久精品免费观看国产| av欧美777| 亚洲av日韩精品久久久久久密| 欧美成狂野欧美在线观看| 亚洲成av人片免费观看| 又爽又黄无遮挡网站| 黄色丝袜av网址大全| 午夜日韩欧美国产| 欧美另类亚洲清纯唯美| 欧美一区二区国产精品久久精品| 国产精品亚洲美女久久久| 国产精品美女特级片免费视频播放器| www.色视频.com| 好男人电影高清在线观看| 搡老熟女国产l中国老女人| 18禁黄网站禁片午夜丰满| 一区二区三区免费毛片| 欧美黄色片欧美黄色片| 久久久国产成人精品二区| 一个人免费在线观看电影| 丁香欧美五月| 一级黄色大片毛片| 欧美日本视频| 亚洲天堂国产精品一区在线| 国产中年淑女户外野战色| 亚洲精华国产精华精| 俄罗斯特黄特色一大片| 精品乱码久久久久久99久播| 久久欧美精品欧美久久欧美| 亚洲av二区三区四区| 真人做人爱边吃奶动态| 级片在线观看| 亚洲avbb在线观看| 国产精品亚洲av一区麻豆| 国产欧美日韩一区二区精品| 午夜福利在线观看吧| 麻豆国产97在线/欧美| 丰满的人妻完整版| 无遮挡黄片免费观看| 国产一区二区三区视频了| 欧美不卡视频在线免费观看| 高潮久久久久久久久久久不卡| 亚洲国产精品久久男人天堂| 两人在一起打扑克的视频| 日日干狠狠操夜夜爽| 欧美黑人巨大hd| 亚洲黑人精品在线| 国产三级黄色录像| 国产乱人伦免费视频| 日日夜夜操网爽| 级片在线观看| 色尼玛亚洲综合影院| 狂野欧美激情性xxxx| 好男人在线观看高清免费视频| 黄色日韩在线| 免费av不卡在线播放| 91麻豆精品激情在线观看国产| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线在线| 小说图片视频综合网站| h日本视频在线播放| 熟妇人妻久久中文字幕3abv| 中文字幕久久专区| 国内精品久久久久精免费| 精品一区二区三区av网在线观看| 国产 一区 欧美 日韩| 一本综合久久免费| av专区在线播放| 欧美最黄视频在线播放免费| 成人欧美大片| 亚洲在线观看片| 在线播放国产精品三级| 女警被强在线播放| 亚洲人成电影免费在线| 亚洲精华国产精华精| 天堂动漫精品| 久久久久久久久大av| avwww免费| 五月伊人婷婷丁香| 亚洲精品在线观看二区| 动漫黄色视频在线观看| 免费av不卡在线播放| 激情在线观看视频在线高清| 老司机在亚洲福利影院| 人人妻人人看人人澡| 亚洲国产精品久久男人天堂| 蜜桃亚洲精品一区二区三区| 老司机午夜十八禁免费视频| 欧美成狂野欧美在线观看| 久久久久久久精品吃奶| 露出奶头的视频| 国产精品一及| 国产精品香港三级国产av潘金莲| 欧美日本亚洲视频在线播放| 中文字幕人成人乱码亚洲影| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩无卡精品| 日韩成人在线观看一区二区三区| 精品人妻偷拍中文字幕| 日韩人妻高清精品专区| 中文字幕av成人在线电影| 小说图片视频综合网站| 欧美乱码精品一区二区三区| 中文字幕av在线有码专区| 成人一区二区视频在线观看| 99久久综合精品五月天人人| 天美传媒精品一区二区| 男人舔女人下体高潮全视频| av在线蜜桃| 国产三级在线视频| 91久久精品电影网| 国产精品影院久久| 亚洲欧美日韩无卡精品| 丰满的人妻完整版| 女生性感内裤真人,穿戴方法视频| 亚洲内射少妇av| 亚洲无线在线观看| 两个人视频免费观看高清| 亚洲精品久久国产高清桃花| 久9热在线精品视频| 禁无遮挡网站| 黄色片一级片一级黄色片| 女人被狂操c到高潮| 精品人妻一区二区三区麻豆 | 男女午夜视频在线观看| 中文字幕人成人乱码亚洲影| 亚洲av免费在线观看| 国内毛片毛片毛片毛片毛片| 在线观看午夜福利视频| 午夜激情欧美在线| av黄色大香蕉| 99热精品在线国产| 一区二区三区国产精品乱码| 两性午夜刺激爽爽歪歪视频在线观看| 91在线观看av| 亚洲精品在线美女| 精品电影一区二区在线| 丁香欧美五月| 88av欧美| 免费大片18禁| 俺也久久电影网| 女人被狂操c到高潮| 亚洲第一电影网av| 天堂av国产一区二区熟女人妻| 日韩精品中文字幕看吧| 1000部很黄的大片| 亚洲欧美日韩无卡精品| 国产精品,欧美在线| 午夜亚洲福利在线播放| 久久久久国内视频| 女警被强在线播放| 亚洲国产中文字幕在线视频| 精品久久久久久久久久免费视频| 波多野结衣巨乳人妻| 日韩国内少妇激情av| 全区人妻精品视频| www日本在线高清视频| 两性午夜刺激爽爽歪歪视频在线观看| 日韩大尺度精品在线看网址| 国产激情欧美一区二区| 国内精品一区二区在线观看| 一个人看的www免费观看视频| 国产97色在线日韩免费| 久久久国产成人免费| 欧美色欧美亚洲另类二区| 亚洲av电影不卡..在线观看| 高清在线国产一区| av专区在线播放| 网址你懂的国产日韩在线| 麻豆久久精品国产亚洲av| 婷婷六月久久综合丁香| 国产精品一区二区三区四区久久| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久末码| 桃色一区二区三区在线观看| 欧美国产日韩亚洲一区| 脱女人内裤的视频| 成人高潮视频无遮挡免费网站| 久久精品91蜜桃| 人人妻人人澡欧美一区二区| 久久久久久九九精品二区国产| 在线视频色国产色| 岛国视频午夜一区免费看| 亚洲无线在线观看| 啪啪无遮挡十八禁网站| 国产精华一区二区三区| 老司机午夜福利在线观看视频| 欧美一级a爱片免费观看看| 真人做人爱边吃奶动态| 久久久久国产精品人妻aⅴ院| 变态另类成人亚洲欧美熟女| 女同久久另类99精品国产91| 午夜福利18| 日韩成人在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 亚洲黑人精品在线| bbb黄色大片| 午夜精品一区二区三区免费看| 少妇高潮的动态图| 亚洲精品一区av在线观看| 天堂√8在线中文| av视频在线观看入口| 国产69精品久久久久777片| 国产色爽女视频免费观看| 久久精品国产亚洲av涩爱 | 夜夜爽天天搞| 日韩有码中文字幕| 男女那种视频在线观看| 老熟妇乱子伦视频在线观看| 老汉色∧v一级毛片| 搡女人真爽免费视频火全软件 | 12—13女人毛片做爰片一| 少妇人妻一区二区三区视频| 精品国产美女av久久久久小说| 亚洲狠狠婷婷综合久久图片| 真人一进一出gif抽搐免费| 午夜福利成人在线免费观看| 99热这里只有精品一区| 一区二区三区国产精品乱码| 成年女人看的毛片在线观看| 无遮挡黄片免费观看| a级毛片a级免费在线| 午夜老司机福利剧场| 成熟少妇高潮喷水视频| 韩国av一区二区三区四区| 免费在线观看影片大全网站| 欧美在线黄色| 天天添夜夜摸| 热99re8久久精品国产| 老司机午夜福利在线观看视频| 国产av麻豆久久久久久久| 国产精品98久久久久久宅男小说| 亚洲乱码一区二区免费版| 丰满乱子伦码专区| 亚洲精品久久国产高清桃花| 精品久久久久久成人av| 看片在线看免费视频| 精品电影一区二区在线| 男女做爰动态图高潮gif福利片| 变态另类丝袜制服| 男女视频在线观看网站免费| 在线免费观看不下载黄p国产 | 日本与韩国留学比较| 亚洲18禁久久av| 十八禁人妻一区二区| 欧美3d第一页| netflix在线观看网站| 久久精品人妻少妇| 99在线人妻在线中文字幕| 桃红色精品国产亚洲av| 亚洲avbb在线观看| 亚洲欧美日韩东京热| 久久人人精品亚洲av| 亚洲av电影在线进入| 男插女下体视频免费在线播放| 99久国产av精品| 色老头精品视频在线观看| 国产三级在线视频| 九九热线精品视视频播放| tocl精华| 国产aⅴ精品一区二区三区波| 国产精品国产高清国产av| av中文乱码字幕在线| 舔av片在线| 女警被强在线播放| 一级毛片女人18水好多| 亚洲专区国产一区二区| 18禁黄网站禁片免费观看直播| 亚洲av一区综合| 国产美女午夜福利| 国产伦精品一区二区三区四那| 午夜福利高清视频| 美女大奶头视频| 亚洲精品亚洲一区二区| 国产精品一及| 18禁美女被吸乳视频| 性欧美人与动物交配| 无限看片的www在线观看| 久久欧美精品欧美久久欧美| 嫩草影院精品99| 99久久精品国产亚洲精品| 色综合婷婷激情| 国产三级中文精品| 欧美一区二区国产精品久久精品| 午夜激情福利司机影院| 麻豆一二三区av精品| 精品电影一区二区在线| 麻豆国产97在线/欧美| 亚洲人与动物交配视频| 成人精品一区二区免费| 大型黄色视频在线免费观看| 久久精品影院6| 亚洲人成电影免费在线| 国产精品野战在线观看| 老熟妇仑乱视频hdxx| 国产精品爽爽va在线观看网站| 国产美女午夜福利| 亚洲无线观看免费| 18禁黄网站禁片免费观看直播| 欧美成人性av电影在线观看| 精品99又大又爽又粗少妇毛片 | 88av欧美| 给我免费播放毛片高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久国产精品影院| 草草在线视频免费看| 69人妻影院| 亚洲精品456在线播放app | 丝袜美腿在线中文| av黄色大香蕉| 亚洲人成网站在线播放欧美日韩| 日韩欧美三级三区| av女优亚洲男人天堂| 小蜜桃在线观看免费完整版高清| 久久欧美精品欧美久久欧美| 淫秽高清视频在线观看| 色视频www国产| www日本在线高清视频| 国产精品香港三级国产av潘金莲| 国产高清有码在线观看视频| 亚洲avbb在线观看| 国产精品98久久久久久宅男小说| 美女黄网站色视频| 精品一区二区三区视频在线 | 在线免费观看的www视频| 欧美色视频一区免费| 亚洲在线观看片| 神马国产精品三级电影在线观看| 亚洲av一区综合| 国产精品 欧美亚洲| 999久久久精品免费观看国产| 长腿黑丝高跟| 国产成人aa在线观看| 国产亚洲精品一区二区www| 精华霜和精华液先用哪个| 欧美成人a在线观看| 天堂影院成人在线观看| 中文亚洲av片在线观看爽| 一二三四社区在线视频社区8| 免费在线观看亚洲国产| 国产精品99久久久久久久久| 亚洲男人的天堂狠狠| 欧美最黄视频在线播放免费| 欧美av亚洲av综合av国产av| 深爱激情五月婷婷| svipshipincom国产片| 国产99白浆流出| 乱人视频在线观看| 校园春色视频在线观看| 中文亚洲av片在线观看爽| 成人av一区二区三区在线看| 精华霜和精华液先用哪个| 久久亚洲真实| 脱女人内裤的视频| 日本与韩国留学比较| 欧美成人一区二区免费高清观看| 国产精品电影一区二区三区| 亚洲精品成人久久久久久| 最后的刺客免费高清国语| 中文字幕久久专区| 在线视频色国产色| 桃红色精品国产亚洲av| 午夜日韩欧美国产| 国产真人三级小视频在线观看| 日本一二三区视频观看| 麻豆一二三区av精品| 97人妻精品一区二区三区麻豆| 精品免费久久久久久久清纯| 中文在线观看免费www的网站| 每晚都被弄得嗷嗷叫到高潮| 男女之事视频高清在线观看| 国产精品永久免费网站| 中文字幕av成人在线电影| 免费看美女性在线毛片视频| 色av中文字幕| 少妇高潮的动态图| 天堂动漫精品| 精品无人区乱码1区二区| 成人高潮视频无遮挡免费网站| 亚洲国产精品999在线| 母亲3免费完整高清在线观看| 欧美大码av| 日本免费一区二区三区高清不卡| 欧美zozozo另类| 99精品在免费线老司机午夜| 亚洲成人中文字幕在线播放| 嫁个100分男人电影在线观看| 国产探花在线观看一区二区| 91av网一区二区| 欧美成狂野欧美在线观看| 欧美高清成人免费视频www| 中文字幕人成人乱码亚洲影| www.www免费av| av专区在线播放| 国内揄拍国产精品人妻在线| 1024手机看黄色片| 特级一级黄色大片| 热99在线观看视频| 女警被强在线播放| 国产精品一区二区三区四区免费观看 | 婷婷丁香在线五月| 岛国在线免费视频观看| 欧美中文日本在线观看视频| 三级男女做爰猛烈吃奶摸视频| 国产精品自产拍在线观看55亚洲| 尤物成人国产欧美一区二区三区| 波多野结衣高清无吗| 在线观看午夜福利视频| 国产伦精品一区二区三区四那| 美女大奶头视频| 好男人在线观看高清免费视频| 欧美激情久久久久久爽电影| 丰满人妻一区二区三区视频av | 国产色婷婷99| 91av网一区二区| 午夜精品久久久久久毛片777| 成人国产综合亚洲| 少妇的逼好多水| x7x7x7水蜜桃| 午夜两性在线视频| 18禁在线播放成人免费| 九色国产91popny在线| 精品人妻1区二区| 禁无遮挡网站| 国产探花极品一区二区| 波多野结衣高清作品| 亚洲国产中文字幕在线视频| 大型黄色视频在线免费观看| 中亚洲国语对白在线视频| a级一级毛片免费在线观看| 亚洲美女视频黄频| 日本黄色片子视频| 1000部很黄的大片| 最近最新免费中文字幕在线| 天堂av国产一区二区熟女人妻| 午夜a级毛片| 欧美3d第一页| 日韩欧美 国产精品| 亚洲精华国产精华精| 欧美日韩国产亚洲二区| 国产av不卡久久| www.熟女人妻精品国产| 精品人妻1区二区| 日韩亚洲欧美综合| 久久国产精品影院| а√天堂www在线а√下载| 久久久久久久久中文| 久久久久久久久久黄片| 亚洲av电影不卡..在线观看| 国产精品99久久久久久久久| 国产爱豆传媒在线观看| 亚洲欧美日韩卡通动漫| 欧美最黄视频在线播放免费| 久久99热这里只有精品18| x7x7x7水蜜桃| 亚洲国产高清在线一区二区三| 两个人视频免费观看高清| 在线播放无遮挡| 久久香蕉国产精品| 两个人看的免费小视频| 黄色女人牲交| 欧美日韩亚洲国产一区二区在线观看| 伊人久久大香线蕉亚洲五| 老鸭窝网址在线观看| 久久精品国产亚洲av涩爱 | 欧美日韩综合久久久久久 | 蜜桃亚洲精品一区二区三区| 99久久久亚洲精品蜜臀av| 日韩欧美精品免费久久 | 白带黄色成豆腐渣| 一个人免费在线观看电影| 在线播放无遮挡| 国产精品爽爽va在线观看网站| 日韩大尺度精品在线看网址| 色吧在线观看| 亚洲人成网站在线播| 国产三级在线视频| 成人性生交大片免费视频hd| 在线a可以看的网站| 欧美黑人巨大hd| 搞女人的毛片| 亚洲狠狠婷婷综合久久图片| 欧美最黄视频在线播放免费| 国产不卡一卡二| 一边摸一边抽搐一进一小说| 亚洲在线观看片| 亚洲精品亚洲一区二区| 国产精品日韩av在线免费观看| 欧美成人免费av一区二区三区| 婷婷精品国产亚洲av在线| 久久久国产成人免费| 天堂av国产一区二区熟女人妻| 日韩成人在线观看一区二区三区| 亚洲欧美日韩卡通动漫| 麻豆成人午夜福利视频| 级片在线观看| 国产老妇女一区| 香蕉丝袜av| 国产亚洲精品av在线| 九色成人免费人妻av| av黄色大香蕉| 国产精品av视频在线免费观看| 国产精品久久电影中文字幕| 亚洲国产精品sss在线观看| 美女高潮的动态| 亚洲精品一区av在线观看| 免费在线观看亚洲国产| 亚洲av成人不卡在线观看播放网| 亚洲人成电影免费在线| 日本黄大片高清| 国产精华一区二区三区| 欧美区成人在线视频| 日日干狠狠操夜夜爽| 91九色精品人成在线观看| 淫秽高清视频在线观看| 午夜免费男女啪啪视频观看 | 亚洲 欧美 日韩 在线 免费| 中亚洲国语对白在线视频| 成人国产综合亚洲| 国产高清有码在线观看视频| 亚洲欧美日韩东京热| 超碰av人人做人人爽久久 | 小说图片视频综合网站| 亚洲黑人精品在线| 国产精品国产高清国产av| 欧美激情在线99| 国产精品国产高清国产av| 最近最新中文字幕大全免费视频| 欧美精品啪啪一区二区三区| 黄色视频,在线免费观看| 香蕉久久夜色| 久久久久久国产a免费观看| av专区在线播放| 一个人免费在线观看的高清视频| 久久久久精品国产欧美久久久| 一区二区三区高清视频在线| 最后的刺客免费高清国语| 夜夜看夜夜爽夜夜摸| 最后的刺客免费高清国语| 中文亚洲av片在线观看爽| 中国美女看黄片| 国产精品亚洲一级av第二区| 国产精品久久视频播放| h日本视频在线播放| 美女cb高潮喷水在线观看| 国产极品精品免费视频能看的| 久久午夜亚洲精品久久| 成年女人看的毛片在线观看| 男人的好看免费观看在线视频| 欧美日韩精品网址| 日本 欧美在线| 熟女电影av网| 日本一二三区视频观看| 不卡一级毛片| 久久久国产成人免费| 12—13女人毛片做爰片一| 久99久视频精品免费| 好男人电影高清在线观看| 老司机午夜十八禁免费视频| 国产精品影院久久| 成年免费大片在线观看| 人人妻,人人澡人人爽秒播| x7x7x7水蜜桃| 久久国产乱子伦精品免费另类| 特大巨黑吊av在线直播| 久久精品国产亚洲av香蕉五月| 日本在线视频免费播放| 久久中文看片网| 国内精品久久久久精免费| 90打野战视频偷拍视频| 在线播放无遮挡| 噜噜噜噜噜久久久久久91| 久久精品亚洲精品国产色婷小说| 亚洲欧美一区二区三区黑人| 精品福利观看| 在线观看午夜福利视频| 久久精品91蜜桃| 18禁裸乳无遮挡免费网站照片| 日本黄色视频三级网站网址| 成人无遮挡网站| 九九在线视频观看精品| 禁无遮挡网站| 久久精品人妻少妇| 久久精品国产99精品国产亚洲性色| 丁香欧美五月| 成熟少妇高潮喷水视频| 国产精品av视频在线免费观看| 在线播放国产精品三级| 丰满人妻一区二区三区视频av | 中文字幕av在线有码专区| 我要搜黄色片| 国产精品一区二区三区四区免费观看 | 国产精品一及| 日韩欧美在线二视频| 天堂动漫精品| 91在线观看av| 男女视频在线观看网站免费| 久久精品91蜜桃| 久久久国产成人免费| av天堂在线播放| 人妻久久中文字幕网| www.色视频.com| 免费在线观看日本一区| 免费看美女性在线毛片视频| 国产毛片a区久久久久| 18禁裸乳无遮挡免费网站照片| 午夜福利高清视频| 99国产精品一区二区三区|