• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Weakly P.P.Rings

    2015-11-26 07:00:18XIANGYUEMINGOUyANGLUNQUNANDWANGSHUGUI

    XIANG YUE-MING,OUyANG LUN-QUNAND WANG SHU-GUI

    (1.Department of Mathematics and Applied Mathematics,Huaihua University,Huaihua, Hunan,418000)

    (2.Department of Mathematics,Hunan University of Science and Technology,Xiangtan, Hunan,411201)

    Communicated by Du Xian-kun

    On Weakly P.P.Rings

    XIANG YUE-MING1,OUyANG LUN-QUN2AND WANG SHU-GUI1

    (1.Department of Mathematics and Applied Mathematics,Huaihua University,Huaihua, Hunan,418000)

    (2.Department of Mathematics,Hunan University of Science and Technology,Xiangtan, Hunan,411201)

    Communicated by Du Xian-kun

    We introduce,in this paper,the right weakly p.p.rings as the generalization of right p.p.rings.It is shown that many properties of the right p.p.rings can be extended onto the right weakly p.p.rings.Relative examples are constructed.As applications,we also characterize the regular rings and the semisimple rings in terms of the right weakly p.p.rings.

    weakly p.p.ring,GP-injective module,regular ring

    1 Introduction

    Throughout this paper,R is an associative ring with identity and all modules are unitary. J(R)and Z(RR)denote,respectively,the Jacobson radical and the right singular ideal of R. If X is a subset of R,the right(resp.left)annihilator of X in R is denoted by r(X)(resp. l(X)).If X={a},we usually abbreviate it to r(a)(resp.l(a)).For the usual notations,we refer the readers to[1–3].

    A ring R is called Baer(see[2])if the right annihilator of every nonempty subset of R is generated by an idempotent.The class of Baer rings play a special role in the theory of rings of operators in functional analysis.The notion of p.p.rings is closely related to that of Baer rings.Recall that a ring R is said to be right p.p.(see[4])(or right Rickart)provided that every principal right ideal is projective,or equivalently the right annihilator of any element of R is a summand of RR.A ring is called a p.p.ring if it is both left and right p.p.ring. We say that an element a of R is right p.p.if aR is projective,or equivalently,if r(a)=eRfor some e2=e∈R.Obviously,R is a right p.p.ring if and only if every element of R is right p.p.The p.p.rings and their generalizations have been extensively studied by many authors(see[4–12]).A ring R is called a generalized right p.p.ring if for any a∈R,the right ideal anR is projective for some positive integer n,depending on a,or equivalently,if for any a∈R,the right annihilator of anis generated by an idempotent for some positive integer n,depending on a.

    A right R-module M is called GP-injective(see[13])(or Y J-injective in[14])if,for any 0?=a∈R,there exists a positive integer n such that an?=0 and any right R-homomorphism from anR to M extends to one from R to M.A right R-module N is said to be P-injective provided that for any a∈R,any right R-homomorphism from aR to N can extend to one from R to N.A ring R is right GP-injective(resp.P-injective)if R is GP-injective(resp. P-injective)as a right R-module.It was shown that left GP-injective rings are the proper generalization of left P-injective rings(see[15]).In the recent paper,Mao et al.[8]proved that R is a right p.p.ring if and only if every quotient module of any(P-)injective right R-module is P-injective.It was also shown that a ring R is regular if and only if R is a right p.p.and right P-injective ring if and only if R is a right p.p.and right C2 ring.

    This inspires us to develop right weakly p.p.rings.We say that,in this paper,a nonzero element a of R is called right weakly p.p.if there exists a positive integer n such that an?=0 and anR is projective,or equivalently,r(an)=eR for some e2=e∈R.The ring R is said to be the right weakly p.p.provided that every nonzero element of R is right weakly p.p. Some examples are given to show that the right weakly p.p.elements need not be the right p.p.elements and the generalized right p.p.rings need not be the right weakly p.p.rings. Many properties of the right p.p.rings are extended onto the right weakly p.p.rings.In Section 3 of the present paper,we investigate the extensions of the right weakly p.p.rings. It is proven that a ring R is right semihereditary if and only if the matrix ring Mn(R)is right weakly p.p.for every n≥1.Section 4 is devoted to the applications of the right weakly p.p.rings.We characterize(von Neumann)regular rings and the semisimple Artinian rings in terms of the right weakly p.p.rings.Several well-known results are also extended.

    2 Right Weakly P.P.Rings

    We start this section with the definition.

    Definition 2.1 A nonzero element a of R is called right weakly p.p.if there exists a positive integer n such that an?=0 and anR is projective,or equivalently,r(an)=eR for some e2=e∈R.The ring R is said to be right weakly p.p.provided that any nonzero element of R is right weakly p.p.Similarly,we have the concepts of left weakly p.p.elements and rings.

    Remark 2.1 (1)Obviously,the right p.p.rings are right weakly p.p.and the right weakly p.p.rings are the right generalized p.p.rings.

    (2)Recall that R is called right PS(see[10])if each minimal right ideal is projective. We claim that the right weakly p.p.rings are right PS.Indeed,in view of[3,Lemma 10.22], every minimal right ideal of R is either nilpotent or a direct summand of R.

    Unfortunately,we cannot find a ring R that is right weakly p.p.but not right p.p. However,the below example shows that the right weakly p.p.elements need not be right p.p.

    Example 2.1 Let F be a field with an isomorphism x→ˉx from F to a subfieldˉF.Let R denote the left F-space on basis{1,c},where c2=0 and cx=ˉxc for all x∈F.Write S=R⊕R.Choose y∈F?ˉF and put a=yc.Then α=(1,a)∈S and α2=(1,0), whence α is a right weakly p.p.element in S.Note that r(a)?J(R),then a is not a right p.p.element in R.Thus α=(1,a)is not a right p.p.element in S.

    The next example is constructed to show that right PS rings need not be right weakly p.p.

    We now present an example,due to Chase,of a ring that is left weakly p.p.but not right weakly p.p.

    A ring is called reduced if it has no nonzero nilpotent elements.A ring R is called semicommutative if for every a∈R,l(a)is an ideal of R.A ring is called abelian if every idempotent in it is central.It is easy to see that the reduced rings are the semicommutative and semicommutative rings are abelian.But both converses are false.

    Lemma 2.1 If R is a right weakly p.p.ring,then the following statements are equivalent:

    (1)R is a reduced ring;

    (2)R is a semicommutative ring;

    (3)R is an abelian ring.Proof. It suffices to prove that(3)implies(1).Let 0?=a∈R with a2=0.Then r(a)=eR for some e2=e∈R since R is right weakly p.p.Note that a∈r(a),hence a=ea=ae=0,a contradiction.Therefore,R is a reduced ring.

    Lemma 2.2 Let R be an abelian,right weakly p.p.ring.Then R is a p.p.ring.

    Proof. For any 0?=a∈R,there exists a positive integer n such that an?=0 and r(an)=eR for some e2=e∈R.Then(ae)n=ane=0 since R is abelian.Thus ae=0 since R is reduced by Lemma 2.1,whence r(a)=eR.By Lemma 2.1,we also have r(a)=l(a).Therefore,R is a p.p.ring.This completes the proof.

    By Lemma 2.2,commutative weakly p.p.rings are p.p.rings.

    The below examples follow from Examples 2 and 3 in[5],which show that a generalized p.p.ring need not to be weakly p.p.

    Example 2.4 Let Z2be the field of integers modulo 2,and

    be the Hamilton quaternions over Z2.It was proven that R is a commutative generalized p.p.ring but not a p.p.ring.Then R is not a weakly p.p.ring by Lemma 2.2.

    It was shown that the right p.p.rings are right nonsingular(see[3])and have no nonzero central nilpotent elements(see[5]).Now we extend those properties onto the right weakly p.p.rings.

    Proposition 2.1 Right weakly p.p.rings are right nonsingular.

    Proof. Suppose that Z(RR)?=0.Then Z(RR)contains nonzero nilpotent elements.In fact,assume that Z(RR)is reduced and let 0?=x∈Z(RR),so r(x)is an essential right ideal of R.Thus r(x)∩xR?=0,and hence there exists an r∈R such that xr?=0 and x2r=0.So we have(xrx)2=0,whence xrx=0.It implies(xr)2=0,and hence xr=0, a contradiction.

    Now take 0?=b∈Z(RR)with b2=0.Then r(b)=eR for some e2=e∈R since R is right weakly p.p.Thus r(b)cannot be essential in RR,which contradicts with b∈Z(RR). Therefore,R is right nonsingular.This completes the proof.

    The ring T in Example 2.3 is right nonsingular but not right weakly p.p.

    Proposition 2.2 Right weakly p.p.rings have no nonzero central nilpotent elements.

    Proof. Assume that there exists 0?=a∈C(R)such that am=0 and am?1?=0 for some positive integer m.Since R is right weakly p.p.,there exists a positive integer n≤m?1 such that an?=0 and r(an)=eR for some e2=e∈R.But am?n∈r(an)and an?=0,so neither e=0 nor e=1.We have

    since am?n∈C(R).Thus

    a contradiction.We then get the result.

    Remark 2.2 By Lemma 2.1 or Proposition 2.2,commutative weakly p.p.rings are reduced.But commutative reduced rings may be not weakly p.p.For example,let S0=Z2, the ring of integers modulo 2,S1=Z2?Z2,S2=S1?Z2,···,Sn=Sn?1?Z2,···,where the operations on Snare as follows:for(a,ˉb),(c,ˉd)∈Snwith a,c∈Sn?1,(a,ˉb)+(c,ˉd)= (a+c,ˉb+ˉd)and(a,ˉb)(c,ˉd)=(ac+bc+da,ˉbd),where n=1,2,···Next define

    Then R is a commutative reduced ring.Let T be the formal power series ring over R.Then T is commutative reduced,but not p.p.by the argument in[6,Example 4].So T is not weakly p.p.by Lemma 2.2.

    Lemma 2.3 Let R be a right weakly p.p.ring.Then any nonzero left annihilator L contains a nonzero idempotent.

    Proof. Let S=r(L)so that L=l(S).Fix a nonzero element a∈L.Since R is right weakly p.p.,there exists a positive integer n such that an?=0 and r(an)=eR for some e2=e∈R.But

    which implies that

    so L=l(S)contains the nonzero idempotent 1?e.

    Theorem 2.1 Let R be a ring that has no infinite set of nonzero orthogonal idempotents. Then the following statements are equivalent:

    (1)R is a Baer ring;

    (2)R is a right weakly p.p.ring;

    (3)R is a left weakly p.p.ring.

    If any of these conditions holds,then R satisfies ACC and DCC on left(resp.right) annihilators.Proof. It is enough to prove that(2)implies(1).We first consider any nonzero left annihilator L.By[3,Proposition 6.59],the direct summands of R satisfy the DCC.Among all nonzero idempotents in L(which exist by Lemma 2.3),choose e with R(1?e)=l(e) minimal.Now we prove that L∩l(e)=0.Otherwise,0?=L∩l(e)=l(S∪e),where S is a subset of R.By Lemma 2.3,there exists a nonzero idempotent f in l(S∪e).Write e′=e+(1?e)f.Then we have e′2=e′and e′e=e.It implies that e′?=0.Note that fe=0 and fe′=f(1?e)f=f?=0,hence l(e′)?l(e).This contradicts the choice of e. Thus,for any x∈L,x?xe∈L∩l(e)=0,and hence x=xe.This shows that L=Re,as desired.This completes the proof.

    We obtain the necessary and sufficient conditions under which R is a right weakly p.p. ring as follows.

    Theorem 2.2 For a ring R,the following statements are equivalent:

    (1)R is a right weakly p.p.ring;

    (2)Every quotient of any P-injective right R-module is GP-injective;

    (3)Every quotient of any injective right R-module is GP-injective;

    (4)The sum of two injective submodules of any right R-module is GP-injective.

    Proof. (1)?(2).Let M be any P-injective right R-module and N be any submodule of M.It is enough to show that M/N is GP-injective.For any 0?=a∈R,there exists a positive integer n such that an?=0 and anR is projective by hypothesis.Let i:anR→R be the inclusion and π:M→M/N be the canonical map.For any f:anR→M/N,there exists g:anR→M such that πg(shù)=f since anR is projective.Thus there is h:R→M such that hi=g since M is P-injective,whence(πh)i=f.Then(2)follows.

    (2)?(3)is clear.

    (3)?(1).Let E be an injective right R-module and E′be any quotient of E.Then E′is GP-injective by(3).For any 0?=a∈R,there exists a positive integer n such that an?=0 and any homomorphism h:anR→E′can extend to g:R→E′,i.e.,h=gi,where i:anR→R is inclusion.Then there is l:R→E such that πl(wèi)=g since R is projective, where π:E→ E′is the canonical map.It follows that π(li)=gi=h.Thus anR is projective by[1,Proposition 5.1]and the result holds.

    (3)?(4).Let I1,I2be injective submodules of a right R-module M.Then I1⊕I2is still injective and I1+I2is a quotient.By(3),I1+I2is GP-injective.

    (4)?(3).Consider an injective right R-module M and N?M.Let π:M →M/N be the natural epimorphism.The homomorphism g:M →M⊕(M/N)given by g(m)= (m,π(m)),m∈M is well-defined.Note that M⊕(M/N)is the sum of the two submodules M⊕(0)and π(M),which are both injective.By(4),M⊕(M/N)is GP-injective,so M/N is also GP-injective.This completes the proof.

    If R is an abelian ring,then R is a p.p.ring if and only if every divisible right R-module is P-injective[4,Theorem 8].Here we have:

    Proposition 2.3 If R is an abelian ring,then the following statements are equivalent:

    (1)R is a p.p.ring;

    (2)R is a right weakly p.p.ring.;

    (3)Every divisible right R-module is GP-injective.

    Proof. (1)?(2)follows from Lemma 2.2.

    (1)?(3)is the result of[4,Theorem 8]since the right P-injective R-modules are right GP-injective.

    (3)?(2).Let M be an injective right R-module.Then it is divisible.Thus every quotient module N of M is divisible,hence N is GP-injective by hypothesis.Therefore,by Theorem 2.1,R is right weakly p.p.

    3 Extensions

    In the present section,we first prove that if R is right weakly p.p.,then the same is true for the corner ring eRe,in which e2=e∈R.A slight modification of the proof of[5, Proposition 9(i)]yields the next proposition.

    Proposition 3.1 Let R be a ring and e2=e∈R.If R is a right weakly p.p.ring,then so is eRe.

    Proof. Let 0?=a∈eRe.Then there exists a positive integer n such that an?=0 and rR(an)=fR for some f2=f∈R since R is right weakly p.p.Note that

    So 1?e=f(1?e)and ef=efe.Write ef=g.Then g2=g∈eRe.So

    Thus,for any b∈reRe(an),b=eb=efb=gb∈geRe.It implies reRe(an)=geRe.

    Therefore,eRe is a right weakly p.p.ring.This completes the proof.

    A ring R is called right semihereditary if every finitely generated right ideal in R is projective.It was proved that a ring R is right semihereditary if and only if the matrix ring Mn(R)is right p.p.for every n≥1(see[3,Proposition 7.63]).We show that a ring R is right semihereditary if and only if the matrix ring Mn(R)is right weakly p.p.for every n≥1.Let{Eij:i,j=1,···,n}be the matrix units.

    Lemma 3.1 Let S=Mn(R)and 0?=a∈R.If(aE1n)S is projective in S,then aR is projective in R.

    Proof. If(aE1n)S is a projective right S-module,then(aE1n)S is also projective as a right R-module.Write aR=I.Note that

    Lemma 3.2 If Mn(R)is right weakly p.p.for some n≥2,then R is right p.p.

    Proof. For 0?=a∈R,let α=aE1n.Since S=Mn(R)is right weakly p.p.,there exists an n>0 such that αn?=0 and αnS is projective as a right S-module.Since α2=0,so αS must be projective.By Lemma 3.1,aR is projective as a right R-module.So R is a right p.p.ring.This completes the proof.

    We are now in a position to prove the next theorem.

    Theorem 3.1 A ring R is right semihereditary if and only if the matrix ring Mn(R)is right weakly p.p.for every n≥1.

    Proof. It is enough to prove the sufficiency.Suppose that every matrix ring Mm(R) is a right weakly p.p.ring.For n>0,M2(Mn(R))~=M2n(R)is right weakly p.p.by hypothesis.So Mn(R)is right p.p.by Lemma 3.2.Thus,by[3,Proposition 7.63],R is right semihereditary.This completes the proof.

    Let R be a ring and M be a bimodule over R.The trivial extension of R and M is R∝M={(a,x)|a∈R,x∈M}with addition defined by componentwise and multiplication defined by(a,x)(b,y)=(ab,ay+xb).

    Proposition 3.2 Let S=R∝R.If S is a right weakly p.p.ring,then R is a right p.p. ring.

    Proof. For any a∈R,α=(0,a)∈S and α2=0.Since S is right weakly p.p.,rS(α)=e1S for someNote that rS(α)=rR(a)∝R and e1=(e,x)for some e2=e∈R, x∈R,then rR(a)=eR for some e2=e∈R.Therefore,R is a right p.p.ring.This completes the proof.

    The following results are similar to that of[12].

    Proposition 3.3 Let R be a subring of a ring S both with the same identity.Suppose that S is a free left R-module with a basis G such that 1∈G and ag=ga for all a∈R and all g∈G.If S is right weakly p.p.,then so is R.

    Proof. For 0?=a∈R.Since S is right weakly p.p.,there exists a positive integer n such that an?=0 and rS(an)=eS,where e2=e∈S.Write e=e0g0+···+engn,where g0=1 and gi∈G are distinct and ei∈R.Then

    which shows that anei=0 for i=0,···,n.Thus ei∈rS(an)=eS,which implies that ei=eei.It follows thatBecausewe haveOn the other hand,if

    then

    So b=e0b∈e0R.Therefore,rR(an)=e0R.

    Corollary 3.2 If R[x]or R[x,x?1]is right weakly p.p.,then so is R.

    Proof. R[x]and R[x,x?l]are free R-modules with bases

    satisfying the assumptions of Proposition 3.3.

    4 Applications

    Recall that an element a∈R is(von Neumann)regular if a=aba for some b∈R.An element a is generalized π-regular if there exists a positive integer n such that an=anba for some b∈R.R is called regular(resp.generalized π-regular)if every element in R is regular(resp.generalized π-regular).It was proven that a ring R is regular if and only if R is left p.p.and left GP-injective if and only if R is right p.p.and right GP-injective(see [16,Theorem 2.9]).In this section,we give some new characterizations of the regular rings and the semisimple Artinian rings in terms of the right weakly p.p.rings.

    The next lemma(see[16,Theorem 2.2])is used in the sequel.

    Lemma 4.1 For a ring R,the following statements are equivalent:

    (1)R is regular;

    (2)N1(R)={0?=a∈R|a2=0}is regular and R is generalized π-regular.

    Theorem 4.1 Let R be a ring.Then the following statements are equivalent:

    (1)R is a regular ring;

    (2)R is a right weakly p.p.and right GP-injective ring;

    (3)R is a right weakly p.p.and right C2 ring;

    (4)R is a right weakly p.p.ring and every maximal right ideal in it is P-injective.

    Proof. (1)?(2),(1)?(3)and(1)?(4)are trivial.

    (2)?(1).By Lemma 4.1,it suffices to prove that N1(R)={0?=b∈R|b2=0}is regular and R is generalized π-regular.Let b∈N1(R).Then lr(b)=Rb since R is right GP-injective.By hypothesis,r(b)=eR,where e2=e∈R,whence Rb=lr(b)=l(eR)= R(1?e).Thus b is regular.So N1(R)is regular.

    Now let 0?=a∈R.Then there exists a positive integer m such that am?=0 and lr(am)=Ramsince R is right GP-injective.Set c=am?=0 and I=lr(am)=Ram.Then there exists a positive integer t such that ct?=0 and r(ct)=fR for some f2=f∈R.Thusct=ct(1?f).Note that R(1?f)=l(fR)=lr(ct)?lr(c)?lr(I)=I,whence ct∈ctI. Thus ct=ctramfor some r∈R.Let n=mt.Then

    We prove that R is generalized π-regular.

    (3)?(1).Let b∈N1(R)as above.Then bR is projective because R is weakly p.p.So bR is isomorphic to a summand of RR.Since R is a right C2 ring,it follows that bR is a summand of RR.Thus b is a regular element,and so N1(R)is regular.

    Let 0?=a∈R.Since R is a right weakly p.p.ring,there exists a positive integer n such that an?=0 and anR is projective.So aRis isomorphic to a summand of RR.Since R is a right C2 ring,it follows that anR is a summand of RR.Thus a is a π-regular element,and so R is π-regular.By Lemma 4.1,R is regular.

    (4)?(1).Similarly to the proof of[9,Theorem 3.6],we can prove that the left annihilator of a finitely generated proper right ideal is always nonzero.Since R is weakly p.p.,in view of [17,Theorem 5.4],N1(R)={0?=a∈R|a2=0}is regular and R is generalized π-regular. Thus R is a regular ring by Lemma 4.1 again.

    Remark 4.1 The conditions that R is right GP-injective or right C2 are not superfluous.

    A ring R is said to be right(left)Kasch if every simple right(left)R-module embeds in RR.

    Lemma 4.2 If R is a right weakly p.p.and left Kasch ring,then R is left weakly p.p.

    Proof. Let 0?=a∈R.By the right weakly p.p.hypothesis,there exists a positive integer n such that an?=0 and r(an)=(1?e)R,where e2=e∈R.Then an=ane,and hence Ran?Re.Now we prove that Ran=Re.Otherwise,Ran?M,where M is a maximal submodule of Re.Since R is left Kasch,there exists a monomorphism f:Re/M →R by f(e+M)=b.Then eb=b and anb=0.So b∈r(an)=(1?e)R,and hence b=eb=0. Since f is monic,e∈M,contradicting with the maximality of M.So Ran=Re is projective, as desired.

    Theorem 4.2 Let R be a ring.Then the following statements are equivalent:

    (1)R is a semisimple Artinian ring;

    (2)R is a right weakly p.p.and right Kasch ring;

    (3)R is a right weakly p.p.and left Kasch ring.

    Proof. (1)?(2)and(1)?(3)are clear.

    (2)?(1)follows from[8,Theorem 3.8]and the fact that the right weakly p.p.rings are right PS.

    (3)?(1).By Lemma 4.2,R is left weakly p.p.and left Kasch.Then the remainder of the proof is similar to that of(2)?(1).

    [1]Cartain H,Eilenberg S.Homological Algebra.Princeton:Princeton University Press,1956.

    [2]Kaplansky I.Rings of Operators.Math.Lecture Notes Series.New York:Springer,1965.

    [3]Lam T Y.Lectures on Modules and Rings.New York:Springer-Verlag,1999.

    [4]Hirano Y,Hongan M,?Ohori M.On right p.p.rings.Math.J.Okayama Univ.,1982,24: 99–109.

    [5]Huh C,Kim H K,Lee Y.p.p.rings and generalized p.p.rings.J.Pure Appl.Algebra,2002, 167:37–52.

    [6]Lee Y,Huh C.Counterexamples on P.P.-rings.Kyungpook Math.J.,1998,38(2):421–427.

    [7]Liu Z K,Zhao R Y.A generalization of pp-rings and p.q.-Baer rings.Glasg.Math.J.,2006, 48:217–229.

    [8]Mao L X,Ding N Q,Tong W T.New characterizations and generalizations of pp rings.Vietnam J.Math.,2005,33:97–110.

    [9]Mao L X.Generalized P-flatness and P-injectivity of modules.Hacet.J.Math.Stat.,2011, 40:27–40.

    [10]Nicholson W K,Watters J F.Rings with projective socle.Proc.Amer.Math.Soc.,1988, 102(3):443–450.

    [11]?Ohori M.On non-commutative generalized p.p.rings.Math.J.Okayama Univ.,1984,26: 157–167.

    [12]Yi Z,Zhou Y Q.Baer and quasi-Baer properties of group rings.J.Aust.Math.Soc.,2007, 83(2):285–296.

    [13]Nam S B,Kim N K,Kim J Y.On simple GP-injective modules.Comm.Algebra,1995,23: 5437–5444.

    [14]Yue Chi Ming R.On regular rings and self-injective rings.II.Glas.Mat.Ser.III,1983,18(2): 221–229.

    [15]Chen J L,Zhou Y Q.GP-injective rings need not be P-injective.Comm.Algebra,2005,33: 2395–2402.

    [16]Bass H.Finitistic dimension and a homological generalization of semiprimary rings.Trans. Amer.Math.Soc.,1960,95:466–488.

    [17]Chen J L,Ding N Q.On the regularity of rings.Algebra Colloq.,2001,8:267–274.

    A

    1674-5647(2015)04-0362-11

    10.13447/j.1674-5647.2015.04.08

    Received date:Dec.24,2014.

    The Scientific Research Foundation(12B101)of Hunan Provincial Education Department.

    E-mail address:xymls999@126.com(Xiang Y M).

    2010 MR subject classification:16D40,16E50

    免费高清视频大片| 亚洲aⅴ乱码一区二区在线播放| 日本a在线网址| 一进一出抽搐动态| 精品久久久久久久久久久久久| 内射极品少妇av片p| 欧美+亚洲+日韩+国产| 欧美午夜高清在线| 亚洲五月天丁香| 欧美成人免费av一区二区三区| 免费av观看视频| 日韩欧美 国产精品| 日韩欧美三级三区| 午夜免费激情av| 人妻久久中文字幕网| 赤兔流量卡办理| 国产精品国产高清国产av| 91午夜精品亚洲一区二区三区 | 色播亚洲综合网| 亚洲精品456在线播放app | 人人妻,人人澡人人爽秒播| 波多野结衣高清作品| 国产精品久久视频播放| 乱码一卡2卡4卡精品| 精品福利观看| 久久精品国产清高在天天线| 美女cb高潮喷水在线观看| 欧美国产日韩亚洲一区| 国语自产精品视频在线第100页| 亚洲欧美日韩无卡精品| 综合色av麻豆| 在线免费观看不下载黄p国产 | 欧美一区二区精品小视频在线| 国产免费av片在线观看野外av| 久久6这里有精品| 久久99热6这里只有精品| 小蜜桃在线观看免费完整版高清| 2021天堂中文幕一二区在线观| 国产一区二区激情短视频| 最后的刺客免费高清国语| 久久伊人香网站| 亚洲va日本ⅴa欧美va伊人久久| 久久人人精品亚洲av| 淫秽高清视频在线观看| 国产精品美女特级片免费视频播放器| 人人妻人人看人人澡| 91午夜精品亚洲一区二区三区 | 午夜激情欧美在线| 欧美极品一区二区三区四区| 日本一本二区三区精品| 丝袜美腿在线中文| 动漫黄色视频在线观看| 亚洲专区中文字幕在线| 麻豆久久精品国产亚洲av| eeuss影院久久| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久国产a免费观看| 俄罗斯特黄特色一大片| 青草久久国产| 又爽又黄无遮挡网站| 99热精品在线国产| 麻豆成人av在线观看| 亚洲欧美日韩无卡精品| 琪琪午夜伦伦电影理论片6080| 18美女黄网站色大片免费观看| 国产单亲对白刺激| 免费人成在线观看视频色| 少妇熟女aⅴ在线视频| 伦理电影大哥的女人| 国产白丝娇喘喷水9色精品| 一级黄色大片毛片| 亚洲av成人不卡在线观看播放网| 在线免费观看的www视频| 嫩草影院入口| 国产成人欧美在线观看| 久久久久久久亚洲中文字幕 | 亚洲av二区三区四区| 啦啦啦韩国在线观看视频| 日韩欧美国产在线观看| 午夜久久久久精精品| 国产精品野战在线观看| 亚洲人成网站在线播放欧美日韩| 日韩欧美 国产精品| 日本五十路高清| 日本 av在线| 精品乱码久久久久久99久播| 麻豆国产97在线/欧美| 欧美黑人欧美精品刺激| 午夜福利免费观看在线| 天天躁日日操中文字幕| 成人性生交大片免费视频hd| 色视频www国产| 脱女人内裤的视频| 全区人妻精品视频| 99久久精品热视频| 亚洲av一区综合| 夜夜爽天天搞| 亚洲国产精品成人综合色| 一级作爱视频免费观看| 欧美3d第一页| 老女人水多毛片| 免费一级毛片在线播放高清视频| 欧美日韩国产亚洲二区| 日本黄色视频三级网站网址| 国产视频一区二区在线看| av中文乱码字幕在线| 亚洲综合色惰| 亚洲av电影在线进入| 亚洲av一区综合| 精品免费久久久久久久清纯| 成年女人毛片免费观看观看9| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 午夜福利18| 成人特级av手机在线观看| 亚洲精品影视一区二区三区av| 欧美zozozo另类| 欧美乱妇无乱码| 精品99又大又爽又粗少妇毛片 | 别揉我奶头~嗯~啊~动态视频| 精品人妻熟女av久视频| 1024手机看黄色片| 91麻豆av在线| 欧美一级a爱片免费观看看| 国语自产精品视频在线第100页| 超碰av人人做人人爽久久| 欧美性猛交╳xxx乱大交人| 亚洲av熟女| 18禁黄网站禁片午夜丰满| 欧美日韩亚洲国产一区二区在线观看| 波多野结衣巨乳人妻| 看十八女毛片水多多多| 午夜福利在线观看免费完整高清在 | 国产aⅴ精品一区二区三区波| 人人妻人人看人人澡| 亚洲第一区二区三区不卡| 国产精品免费一区二区三区在线| 桃红色精品国产亚洲av| xxxwww97欧美| 又爽又黄a免费视频| 国内精品久久久久精免费| 看十八女毛片水多多多| 在线观看免费视频日本深夜| 波多野结衣高清无吗| 深夜精品福利| 国产精品久久久久久人妻精品电影| 精品无人区乱码1区二区| 男女那种视频在线观看| 高潮久久久久久久久久久不卡| 国产精品乱码一区二三区的特点| 12—13女人毛片做爰片一| 97超视频在线观看视频| 日韩欧美精品免费久久 | 国产免费一级a男人的天堂| 亚洲乱码一区二区免费版| 国产一区二区在线av高清观看| 日韩亚洲欧美综合| 婷婷丁香在线五月| 日日摸夜夜添夜夜添小说| 在线十欧美十亚洲十日本专区| 1000部很黄的大片| 久久久久久久久久黄片| 中亚洲国语对白在线视频| 欧美色视频一区免费| aaaaa片日本免费| 精品一区二区三区av网在线观看| 国产精品人妻久久久久久| 一区二区三区激情视频| 亚洲 国产 在线| 精品午夜福利在线看| 亚洲五月天丁香| 国产麻豆成人av免费视频| 校园春色视频在线观看| 看免费av毛片| 夜夜看夜夜爽夜夜摸| 国产av在哪里看| 十八禁网站免费在线| 一个人免费在线观看电影| 性欧美人与动物交配| 99国产精品一区二区三区| 国内精品美女久久久久久| 亚洲真实伦在线观看| 国产伦人伦偷精品视频| 在线免费观看不下载黄p国产 | 久久精品国产99精品国产亚洲性色| 成人一区二区视频在线观看| 日本成人三级电影网站| 村上凉子中文字幕在线| 狠狠狠狠99中文字幕| 免费在线观看亚洲国产| 别揉我奶头 嗯啊视频| 亚洲国产日韩欧美精品在线观看| 精品人妻偷拍中文字幕| 久久人人爽人人爽人人片va | 日本黄色片子视频| 久久久久免费精品人妻一区二区| 免费在线观看影片大全网站| 一区二区三区激情视频| 日本五十路高清| 十八禁网站免费在线| 欧美成人一区二区免费高清观看| 国内精品久久久久久久电影| 国产色爽女视频免费观看| 中文亚洲av片在线观看爽| 精品人妻1区二区| 免费av毛片视频| av在线天堂中文字幕| 久久久久国内视频| 可以在线观看的亚洲视频| 老女人水多毛片| 伦理电影大哥的女人| 亚洲成人中文字幕在线播放| АⅤ资源中文在线天堂| 欧美zozozo另类| 很黄的视频免费| 最近最新中文字幕大全电影3| 国产高清三级在线| 老熟妇乱子伦视频在线观看| 国产一区二区三区视频了| 久久久久久九九精品二区国产| www.999成人在线观看| 免费观看的影片在线观看| 国产大屁股一区二区在线视频| 国产精品亚洲一级av第二区| 亚洲av.av天堂| 俺也久久电影网| 国产大屁股一区二区在线视频| 国产视频一区二区在线看| 欧美午夜高清在线| 最后的刺客免费高清国语| 亚洲在线观看片| 欧美在线黄色| 99久久精品国产亚洲精品| 国产视频一区二区在线看| 国内毛片毛片毛片毛片毛片| 日日摸夜夜添夜夜添小说| 婷婷六月久久综合丁香| 久久99热6这里只有精品| 精品一区二区三区视频在线观看免费| 精品久久久久久久末码| 一个人看视频在线观看www免费| 长腿黑丝高跟| 亚洲乱码一区二区免费版| a在线观看视频网站| 老司机深夜福利视频在线观看| 亚洲熟妇中文字幕五十中出| 中文在线观看免费www的网站| 国产男靠女视频免费网站| 给我免费播放毛片高清在线观看| 亚洲av二区三区四区| 国产一区二区三区在线臀色熟女| 淫妇啪啪啪对白视频| 精华霜和精华液先用哪个| 久久久国产成人免费| 婷婷精品国产亚洲av| 九九热线精品视视频播放| 国产又黄又爽又无遮挡在线| 久久精品国产亚洲av香蕉五月| 国产视频内射| 麻豆久久精品国产亚洲av| 夜夜爽天天搞| 黄色配什么色好看| 一个人免费在线观看电影| 日日摸夜夜添夜夜添小说| 亚洲综合色惰| 国产精品永久免费网站| av欧美777| 非洲黑人性xxxx精品又粗又长| 亚洲 欧美 日韩 在线 免费| 精品久久久久久久末码| 看十八女毛片水多多多| 18禁在线播放成人免费| 人人妻人人看人人澡| 亚洲自偷自拍三级| 久久久久精品国产欧美久久久| 亚洲国产精品999在线| 国产精品美女特级片免费视频播放器| 人妻夜夜爽99麻豆av| 欧美成人一区二区免费高清观看| 国产乱人伦免费视频| 一级毛片久久久久久久久女| 国产av麻豆久久久久久久| 国产91精品成人一区二区三区| 色av中文字幕| av国产免费在线观看| 美女 人体艺术 gogo| 国产一级毛片七仙女欲春2| 老鸭窝网址在线观看| 成人永久免费在线观看视频| 少妇的逼好多水| 日韩欧美国产在线观看| 亚洲美女视频黄频| 亚洲av不卡在线观看| 日本五十路高清| 精品熟女少妇八av免费久了| 欧美日韩黄片免| 成人无遮挡网站| 人妻制服诱惑在线中文字幕| 最近中文字幕高清免费大全6 | 99国产精品一区二区三区| or卡值多少钱| 少妇的逼水好多| 男女床上黄色一级片免费看| 国产aⅴ精品一区二区三区波| 中文字幕人成人乱码亚洲影| 成年女人毛片免费观看观看9| 日韩精品青青久久久久久| 好男人在线观看高清免费视频| 在线观看66精品国产| 岛国在线免费视频观看| 99国产精品一区二区三区| 久久久精品欧美日韩精品| 国产探花在线观看一区二区| 哪里可以看免费的av片| 看免费av毛片| 亚洲熟妇熟女久久| 99热精品在线国产| 精品久久国产蜜桃| 亚洲在线观看片| 国产私拍福利视频在线观看| 老女人水多毛片| 久久久成人免费电影| 亚洲av不卡在线观看| 精品久久久久久,| 久久久久性生活片| 国产av在哪里看| 欧美xxxx性猛交bbbb| 亚洲中文字幕一区二区三区有码在线看| 一区二区三区免费毛片| 国产精品1区2区在线观看.| 性色av乱码一区二区三区2| 亚洲午夜理论影院| 国产一区二区三区在线臀色熟女| 亚洲成av人片在线播放无| 国产一区二区亚洲精品在线观看| 看免费av毛片| 麻豆国产97在线/欧美| 国产在线精品亚洲第一网站| 五月玫瑰六月丁香| 成人美女网站在线观看视频| 男女床上黄色一级片免费看| 看免费av毛片| 亚洲国产欧美人成| 亚洲中文日韩欧美视频| 噜噜噜噜噜久久久久久91| av专区在线播放| 波多野结衣高清作品| 久久久久久久亚洲中文字幕 | 午夜日韩欧美国产| 一个人免费在线观看的高清视频| 午夜免费男女啪啪视频观看 | 88av欧美| 天堂网av新在线| 五月玫瑰六月丁香| 欧美潮喷喷水| 琪琪午夜伦伦电影理论片6080| 可以在线观看毛片的网站| 日本精品一区二区三区蜜桃| 久久久精品大字幕| www.999成人在线观看| 淫妇啪啪啪对白视频| 男女床上黄色一级片免费看| 成人一区二区视频在线观看| 亚洲无线在线观看| 亚洲午夜理论影院| 午夜亚洲福利在线播放| 黄色一级大片看看| 欧美成人一区二区免费高清观看| 成人特级黄色片久久久久久久| 国产成人影院久久av| 变态另类成人亚洲欧美熟女| 午夜老司机福利剧场| 欧美最新免费一区二区三区 | 亚洲,欧美,日韩| 日韩欧美免费精品| 日韩精品中文字幕看吧| 男女视频在线观看网站免费| 韩国av一区二区三区四区| www.色视频.com| 久久久国产成人免费| 日韩大尺度精品在线看网址| 在线a可以看的网站| 露出奶头的视频| 国产精品久久电影中文字幕| 亚洲第一区二区三区不卡| 99国产精品一区二区蜜桃av| av专区在线播放| 精品乱码久久久久久99久播| 免费在线观看亚洲国产| 国产午夜福利久久久久久| 女人十人毛片免费观看3o分钟| 丁香六月欧美| 国产91精品成人一区二区三区| 蜜桃亚洲精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 欧美xxxx黑人xx丫x性爽| 人妻制服诱惑在线中文字幕| 舔av片在线| 亚洲人成网站在线播| 2021天堂中文幕一二区在线观| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品乱码久久久v下载方式| 久久久久免费精品人妻一区二区| 久久精品夜夜夜夜夜久久蜜豆| av女优亚洲男人天堂| 欧美日韩黄片免| 好男人在线观看高清免费视频| 成人毛片a级毛片在线播放| 国产成人av教育| 免费看a级黄色片| 国产精品亚洲av一区麻豆| 国产真实伦视频高清在线观看 | 搞女人的毛片| 久久6这里有精品| 伦理电影大哥的女人| 亚洲精品影视一区二区三区av| 欧美区成人在线视频| 亚洲最大成人手机在线| 国产三级中文精品| 亚洲精品456在线播放app | 午夜影院日韩av| 欧美3d第一页| 99久久精品热视频| 日韩大尺度精品在线看网址| 成人特级av手机在线观看| 搡老熟女国产l中国老女人| 精品免费久久久久久久清纯| av天堂中文字幕网| 99在线视频只有这里精品首页| 91午夜精品亚洲一区二区三区 | 两性午夜刺激爽爽歪歪视频在线观看| 夜夜爽天天搞| 可以在线观看毛片的网站| 久久久久久国产a免费观看| 日韩欧美在线乱码| 亚洲欧美日韩卡通动漫| 日韩中文字幕欧美一区二区| 亚洲人与动物交配视频| 国产午夜精品久久久久久一区二区三区 | 色噜噜av男人的天堂激情| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品色激情综合| 天堂av国产一区二区熟女人妻| av在线天堂中文字幕| 黄色一级大片看看| 国产亚洲精品久久久com| 精品人妻偷拍中文字幕| 老司机午夜福利在线观看视频| 国产伦精品一区二区三区视频9| 久久国产精品人妻蜜桃| 90打野战视频偷拍视频| 国产精品一区二区三区四区免费观看 | 男女下面进入的视频免费午夜| 色尼玛亚洲综合影院| 精品午夜福利在线看| 午夜免费男女啪啪视频观看 | 一个人免费在线观看的高清视频| 亚洲国产精品合色在线| 亚洲欧美清纯卡通| 日韩欧美国产一区二区入口| 欧美日韩亚洲国产一区二区在线观看| 美女高潮喷水抽搐中文字幕| 亚洲中文日韩欧美视频| 久久6这里有精品| 全区人妻精品视频| 中文字幕精品亚洲无线码一区| 97人妻精品一区二区三区麻豆| 国产久久久一区二区三区| 深夜精品福利| 亚洲无线观看免费| 久久午夜福利片| 日本黄大片高清| 非洲黑人性xxxx精品又粗又长| 婷婷色综合大香蕉| 又黄又爽又刺激的免费视频.| 女生性感内裤真人,穿戴方法视频| 国产亚洲精品av在线| 亚洲欧美日韩卡通动漫| 亚洲中文字幕一区二区三区有码在线看| 非洲黑人性xxxx精品又粗又长| 日韩中字成人| 日本一本二区三区精品| 欧美性猛交╳xxx乱大交人| 看十八女毛片水多多多| 日韩亚洲欧美综合| 亚洲欧美日韩无卡精品| 九色国产91popny在线| 久久久久久国产a免费观看| 国产精品乱码一区二三区的特点| 免费观看的影片在线观看| 波多野结衣高清无吗| 欧美日韩亚洲国产一区二区在线观看| 国产高清视频在线观看网站| 久久久久久久久久成人| 美女cb高潮喷水在线观看| 欧美又色又爽又黄视频| 日本在线视频免费播放| 欧美日韩中文字幕国产精品一区二区三区| 成人国产综合亚洲| 亚洲av免费高清在线观看| 亚洲真实伦在线观看| 丰满人妻熟妇乱又伦精品不卡| 女生性感内裤真人,穿戴方法视频| 伊人久久精品亚洲午夜| 午夜精品在线福利| 精品人妻视频免费看| 最近最新中文字幕大全电影3| 90打野战视频偷拍视频| 亚洲精品一卡2卡三卡4卡5卡| 日韩亚洲欧美综合| 美女免费视频网站| 99热这里只有是精品50| 欧美日韩乱码在线| 精品一区二区三区视频在线观看免费| 欧美3d第一页| 久久久久久久久久黄片| 国产成+人综合+亚洲专区| 国产成人影院久久av| 人人妻,人人澡人人爽秒播| 中文字幕免费在线视频6| 国产av不卡久久| 人妻制服诱惑在线中文字幕| 国产欧美日韩一区二区精品| 美女大奶头视频| 国产成人a区在线观看| 欧美性感艳星| 午夜两性在线视频| 美女高潮的动态| 一进一出好大好爽视频| 亚洲国产日韩欧美精品在线观看| 性色avwww在线观看| 99国产极品粉嫩在线观看| 亚洲国产精品久久男人天堂| 成人特级av手机在线观看| 亚洲经典国产精华液单 | 色噜噜av男人的天堂激情| 免费观看精品视频网站| 搡老妇女老女人老熟妇| 免费在线观看影片大全网站| 亚洲av不卡在线观看| 变态另类丝袜制服| 少妇高潮的动态图| bbb黄色大片| 国产主播在线观看一区二区| 亚洲中文日韩欧美视频| 最后的刺客免费高清国语| av在线观看视频网站免费| 又爽又黄a免费视频| 黄色视频,在线免费观看| 日韩中文字幕欧美一区二区| 国产单亲对白刺激| 国产欧美日韩精品亚洲av| 黄色配什么色好看| 18禁黄网站禁片午夜丰满| 国产蜜桃级精品一区二区三区| 免费av观看视频| 99riav亚洲国产免费| 99国产极品粉嫩在线观看| 国产综合懂色| 制服丝袜大香蕉在线| 亚洲第一区二区三区不卡| 极品教师在线视频| 色哟哟·www| 亚洲色图av天堂| 欧美xxxx性猛交bbbb| 日韩欧美一区二区三区在线观看| 亚洲成av人片在线播放无| 亚洲五月婷婷丁香| 亚洲成人中文字幕在线播放| av专区在线播放| 精品久久久久久久末码| 人人妻人人澡欧美一区二区| 真实男女啪啪啪动态图| 91在线精品国自产拍蜜月| 91久久精品电影网| 日韩欧美在线二视频| 亚洲av电影在线进入| 亚洲国产高清在线一区二区三| 久久草成人影院| 女生性感内裤真人,穿戴方法视频| .国产精品久久| 色视频www国产| 一二三四社区在线视频社区8| 成人国产综合亚洲| 99热6这里只有精品| 日韩欧美三级三区| 亚洲国产精品合色在线| 麻豆国产av国片精品| 久久久久亚洲av毛片大全| xxxwww97欧美| 悠悠久久av| 午夜免费成人在线视频| 少妇人妻精品综合一区二区 | 在线a可以看的网站| 美女cb高潮喷水在线观看| 精品人妻偷拍中文字幕| 久久久国产成人精品二区| 国产精品av视频在线免费观看| 天堂网av新在线| 国产精品精品国产色婷婷| 国产毛片a区久久久久| 俺也久久电影网| 91午夜精品亚洲一区二区三区 | av在线老鸭窝| 欧美一区二区国产精品久久精品| 国产探花极品一区二区| 日韩高清综合在线| 日韩人妻高清精品专区| 99久国产av精品| 深夜精品福利| 日日摸夜夜添夜夜添av毛片 | 亚洲人成电影免费在线| 成人三级黄色视频| 精品人妻一区二区三区麻豆 | 国产成人a区在线观看|