• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lp-centroid Bodies and Its Characterizations

    2015-11-26 07:00:13MATONGyIANDZHANGDEyAN

    MA TONG-yI AND ZHANG DE-yAN

    (College of Mathematics and Statistics,Hexi University,Zhangye,Gansu,734000)

    Communicated by Rong Xiao-chun

    Lp-centroid Bodies and Its Characterizations

    MA TONG-yI AND ZHANG DE-yAN

    (College of Mathematics and Statistics,Hexi University,Zhangye,Gansu,734000)

    Communicated by Rong Xiao-chun

    In this paper,we study the characteristic properties for Lp-centroid bodies,and an improved version of Busemann-Petty problem for Lp-centroid bodies is obtained.In addition,using the definitions of Lp-pole curvature image and Lp-affine surface area,a new proof of Busemann-Petty problem for Lp-centroid bodies is given.

    convex body,star body,centroid body,Lp-centroid body,Busemann-Petty problem

    1 Introduction

    The concept of classic centroid body was first proposed by Blaschke and Dupin(see[1]), and was defined by Petty[2].Lutwak and Zhang[3]introduced the concept of Lp-centroid body.For each convex subset in Rn,it is well-known that there is a unique ellipsoid with the following property:The moment of inertia of the ellipsoid and the moment of inertia of the convex set are the same about every 1-dimensional subspace of Rn.This ellipsoid is called the Lengendre ellipsoid of the convex set.Namely,L2-centroid body Γ2K.The Lengendre ellipsoid and its polar(the Binet ellipsoid)are well-known concepts from classical mechanics.

    As usual,V(K)denotes the n-dimensional volume of a body K in Euclidean space Rn. Let Sn?1denote the unit sphere in Rn.Let B denote the centered(centrally symmetric with respect to the origin)unit ball in Rn,and we write ωn=V(B)for its volume.

    The definition of the classic centroid body was introduced by Petty[2]:Let K be a star body(about the origin)in Rn.Then the classic centroid body,ΓK,of K is the origin-symmetric convex body whose support function is given by

    where x·y denotes the standard inner product of vectors x and y in Rn.

    The classic centroid body is an important concept in convex geometry analysis.About the research of classic centroid body,Petty[4],Lutwak[5?7]and Zhang[8?10]have made plentiful and substantial achievements.

    In 1997,Lutwak and Zhang[3]introduced the notion of Lp-centroid body,which extend the concept of the classical centroid body.Let K be a star body(about the origin)in Rnand p≥1.Then the Lp-centroid body,ΓpK,of K is the origin-symmetric convex body whose support function is given by

    where

    By using polar coordinate transformation in(1.1),we can obtain

    For set of the palar bodies of all Lp-projection bodies,we define the following:

    (ii)(Rn,||·||L)is isometric to a subspace of Lp.

    The latter fact can be found in[11].

    Concerning the operator Γp,a well-known Shephard problem can be stated as follows: Let K,L be two origin-symmetric convex bodies in Rnand suppose that,for every p≥1, ΓpK?ΓpL,does it follow that we have an inequality for the volumes of K and L?

    The premier solution of this problem was given by Grinberg and Zhang[12].Their results are described as follows:

    Theorem 1.1 Let K be a star body(about the origin)in Rn,L∈Π?p,and p≥1.If ΓpK?ΓpL,then

    with equality for n?=p≥1 if and only if K=L.

    On the other hand,if K ?∈Π?

    p,then there is a body L such that ΓpK ? ΓpL,but V(K)>V(L).

    In this paper,we further study the characteristic properties of Lp-centroid bodies.First, we give the following result for Lp-centroid bodies.

    Theorem 1.2 Let K,L be two star bodies(about the origin)in Rnand p≥1.If p is not an even integer,then ΓpK=ΓpL if and only if

    for any origin-symmetric star body Q in Rn.

    Next,as the applications of Theorem 1.2,we have the following facts:

    Theorem 1.3 Let K,L be two star bodies(about the origin)in Rnand p≥1.If p is not an even integer,then

    if and only if K and L are dilates.

    The following theorem is a similar version of Theorem 1.1,called the Shephard problems of Lp-centroid bodies.

    Theorem 1.4 Let K be a star body(about the origin)in Rn,L be an origin-symmetric star body in Rn,and p≥1.If p is not an even integer and ΓpK=ΓpL,then

    with equality if and only if K=L.

    Finally,combining Lp-polar curvature images with Lp-affine surface area,we give a new proof of Theorem 1.1.

    2 Preliminaries

    2.1 Support Function,Radial Function and the Polar of Convex Body

    If K is a convex body(compact,convex subsets with non-empty interiors)in Rn,then its support function,hK=h(K,·):Rn→(0,+∞),is defined by(see[1,13])

    Let Kndenote the set of convex bodies in Rn.For the set of convex bodies containing origin in their interiors and the set of origin-symmetric convex bodies in Kn,we write asand,respectively.

    If K is a compact star-shaped(about the origin)in Rn,its radial function,ρK=ρ(K,·): Rn{0}→[0,∞),is defined by(see[1,13])

    If ρKis positive and continuous,then K is called a star body(about the origin).Letdenote the set of all star bodies(about the origin)in Rn.For the set of origin-symmetric star bodies in,we write asTwo star bodies K and L are said to be dilates(of one another)if ρK(u)/ρL(u)is independent on u∈Sn?1.From the definition of the radial function of star body it follows that

    Obviously,we have(K?)?=K.In addition,the polar body of convex body has the following property:Ifthen(?K)?=??tK?.In particular,

    From the definitions of the support and radial functions as well as the definition of the polar body,it follows that forand any u∈Sn?1,

    2.2 Dual Lp-mixed Volume and Dual Lp-surface Area

    where“ε·L”is different from“ε·L”in Lp-Firey combination.

    In 1996,Lutwak[16]defined the concept of dual Lp-mixed volume.For K,L∈Sno,p≥1 and ε>0,the dual Lp-mixed volume,of K and L is defined by

    Further,Lutwak[16]showed the integral formula of dual Lp-mixed volume as follows:If K,then

    Apparently,

    By using H¨older's inequality,we easily prove the following Minkowski's inequality for dual Lp-mixed volume:If K,then

    with equality if and only if K and L are dilates.

    According to the definition of dual Lp-mixed volume,we put forward the concept of dual Lp-surface area.LetThen the dual Lp-surface area,of K is defined by

    Together with(2.4),(2.5)and(2.7),the integral representation of dual Lp-surface areais obtained as follows:

    In addition,we define the Borel measureon Sn?1,by

    for each Borel ω?Sn?1.By(2.9)we can immediately get

    2.3 Lp-projection Body

    Lutwak et al.[17]posed the notion of Lp-projection body:For eachand p≥1,the Lp-projection body,ΠpK,of K is an origin-symmetric convex body whose support function is given by

    where Sp(K,·)is a positive Borel measure on Sn?1,called the Lp-surface area measure of K.As usual,we denote byK the polar body of ΠpK.

    In addition,the following result will be used in the proof of our main results.If p is not an even integer,andμis a signed finite even Borel measure,then

    See,e.g.,[4,11,18–21].

    2.4 Lp-curvature Function,Lp-affine Surface Area and Lp-polar Curvature Images

    A convex body K ∈Knis said to have a curvature function f(K,·):Sn?1→R,if its surface area measure S(K,·)is absolutely continuous with respect to spherical Lebesgue measure S,and the Radon-Nikodym derivative is(see[16,22])

    Let Fndenote the set of all convex bodies in Knthat has a positive continuous curvature function.Letdenote the sets of all convex bodies inrespectively,and both of them have a positive continuous curvature function.

    Lutwak[16]introduced the concept of Lp-affine surface area as follows:For,the Lp-affine surface area,?p(K),of K is defined by

    Together with(2.12),(2.13)and(2.14),it shows that for

    In addition,using H¨older's inequality,it is easy to show that for K,

    with equality in inequality(2.16)for n?=p=1 if and only if K and L are homothetic,for n?=p>1 if and only if K and L are dilates.

    According to the concept of Lp-curvature image of convex body K,Zhu et al.[24]showed the notion of Lp-pole curvature image as follows:For eachand n?=p≥1,definethe Lp-pole curvature image of K,by

    If p=1,(2.17)is defined by Lutwak(see[1]).

    3 The Characteristic Properties of Lp-centroid Bodies

    This section gives the characteristic properties of Lp-centroid bodies.We first complete the proof of Theorem 1.2.

    Proof of Theorem 1.2 Because S(·)=S(B,·)is an even measure on Sn?1,S(?v)= S(v)for any v∈Sn?1.Thus,for,by the formula of n-dimensional volume of star body and(2.1),we have

    Therefore,by the definition(1.2)of Lp-centroid body,(2.1)and(3.1),for,we have

    It follows that

    Together with(1.2),(2.10)and(3.1),it shows that

    Let

    It is easy to show thatμ(v)is an even measure on Sn?1.Therefore,from(2.11)we know that for all v∈Sn?1,μ(v)=0.Namely,

    Therefore,?Q?=Q?.This shows that Q?is also an origin-symmetric convex body.Namely,Taking Q?=[?u,u]for any u∈Sn?1,then for every v∈Sn?1,h(Q?,v)=|u·v| andholds.From this and by(1.2),we have

    Similarly,

    The proof of Theorem 1.2 is completed.

    In order to prove Theorem 1.3,we need the following lemma.

    Lemma 3.1[25]Let K,and p≥1.If either

    or

    Proof of Theorem 1.3 By Theorem 1.2,we know that if K,p≥1 and p is not an even integer,then ΓpK=ΓpL if and only if

    Because

    Similarly,

    Then

    According to Lemma 3.1,we know that(3.4)holds if and only if

    This shows that K and L are dilates.

    On the contrary,if K and L are dilates,we may assume that K=λL,where λ is an arbitrary positive real number.In particular,we make

    by the reversibility of the above process of argumentation,and we know that ΓpK=ΓpL.

    4 Shephard Problems for Lp-centroid Bodies

    In this section,we complete the proof of Theorem 1.4,and give a new proof of Theorem 1.1. Proof of Theorem 1.4 Taking Q=L in Theorem 1.2,and using Minkowski's inequality (2.6)for dual Lp-mixed volumes,we have

    After simplify,we can get

    Namely,V(K)≤V(L)with equality if and only if K and L are dilates.Let L=λK.And together with the condition ΓpK=ΓpL,it shows that

    Therefore,λ=1.From this,we know that equality in the inequality of Theorem 1.4 is true if and only if K=L.

    Finally,we give a new proof of Theorem 1.1.To prove Theorem 1.1,we need several lemmas.

    Lemma 4.1[12,26]Let K,,p≥1 and satisfy ΓpK?ΓpK.Then for any

    with equality if and only if ΓpK=ΓpL.

    Proof. By using the definition(2.17)of Lp-pole curvature image and

    we have

    This shows that

    This completes the proof.

    Now define a class:

    with equality if and only if ΓpK=ΓpL.

    Similarly,we can get

    From(4.3)and(4.4),it shows that

    Because ΓpK?ΓpL,then from Lemma 4.1,we have

    Namely,

    According to the conditions of equality in inequality(4.1),we know that equality holds in inequality(4.2)if and only if ΓpK=ΓpL.

    Therefore,from(4.2)and(2.16),we have

    This shows that

    From

    this yields

    According to the conditions of equality in inequalities(2.16)and(4.2),we know that equality holds in inequality(4.7)for n?=p>1 if and only ifandare dilates and ΓpK=ΓpL;For n?=p=1 if and only ifandare homothetic and ΓK=ΓL.

    For the case n?=p>1 of equality that holds in(4.7),we may suppose thatand together with Lemma 4.2,we getThus,from thedefinition of Lp-pole curvature image,we have

    Namely,

    This shows that K and L are dilates.Without loss of generality,assume K=λL(λ>0), and by using ΓpL=ΓpK=ΓpλL=λpΓpL,we have λ=1.Therefore,we know that equality holds in inequality(4.7)for n?=p>1 if and only if K=L.

    For the case n?=p=1 of equality that holds in(4.7),we may take0,x∈Rn).Combining with Lemma 4.2,it shows thatNoting that

    then we have

    Thus,by using the definition(2.17)of Lp-pole curvature image,we have

    Namely,

    This shows that K and L are dilates.Without loss of generality,assuming K=λL(λ>0), and by using ΓL=ΓK=ΓλL=λΓL,we have λ=1.Therefore,we know that equality holds in inequality(4.7)for n?=p=1 if and only if K=L.

    [1]Schneider R.Convex Bodies:The Brunn-Minkowski Theory.Cambridge:Cambridge Univ. Press,1993.

    [2]Petty C M.Centroid surface.Pacific J.Math.,1961,11:1535–1547.

    [3]Lutwak E,Zhang G Y.Blaschke-Santal′o inequalities.J.Differential Geom.,1997,47:1–16.

    [4]Lonke Y.Derivatives of the Lp-cosine transform.Adv.Math.,2003,176:175–186.

    [5]Lutwak E.Mixed projection inequalities.Trans.Amer.Math.Soc.,1985,287:91–106.

    [6]Lutwak E.On some affine isoperimetric inequalities.J.Differential Geom.,1986,56:1–13.

    [7]Lutwak E.Centroid bodies and dual mixed volumes.Proc.London Math.Soc.,1990,60: 365–391.

    [8]Zhang G Y.Centered bodies and dual mixed volumes.Trans.Amer.Math.Soc.,1994,345: 777–801.

    [9]Zhang G Y.Intersection bodies and the Busemann-Petty inequalities in R4.Annals.Math., 1994,140:331–346.

    [10]Zhang G Y.A positive solution to the Busemann-Petty problem in R4.Annals.Math.,1999, 149:535–543.

    [11]Koldobsky A.Generalized Levy representation of norms and isometric embeddings into Lpspaces.Ann.Inst.H.Poincar′e Probab.Statist.,1992,28:335–353.

    [12]Grinberg E,Zhang G Y.Convolutions,transforms and convex bodies.Proc.London Math. Soc.,1999,78:77–115.

    [13]Gardner R J.Geometric Tomography.Gambridge:Gambridge Univ.Press,1995.

    [14]Firey W J.Polar means of convex bodies and a dual to the Brunn-Minkowski theorem.Canad. J.Math.,1961,13:444–453.

    [15]Firey W J.Mean cross-section measures of harmonic means of convex bodies.Pacific J.Math., 1961,11:1263–1266.

    [16]Lutwak E.The Brunn-Minkowski-Firey theory II:Affine and geominimal surface areas.Adv. Math.,1996,118:244–294.

    [17]Lutwak E,Yang D,Zhang G Y.Lp-affine isoperimetric inequalities.J.Differential Geom., 2000,56:111–132.

    [18]Koldobaky A L.Inverse formula for the Blaschke-Levy representation.Houston J.Math.,1997, 23:95–108.

    [19]Neyman A.Representation of Lp-norms and isometric embedding in Lp-spaces.Israel J.Math., 1984,48:129–138.

    [20]Rubin B.Inversion of fractional integrals related to the spherical Radon transform.J.Funct. Anal.,1998,157:470–487.

    [21]Rubin B.Intersection bodies and generalized cosine transforms.Adv.Math.,2008,218:696–727.

    [22]Lutwak E.Extended affine surface area.Adv.Math.,1991,85:39–68.

    [23]Yuan J,Lv S J,Leng G S.The p-affine surface area.Math.Inequal.Appl.,2007,10(3):693–702.

    [24]Zu X Y,Lv S J,Leng G S.Extended affine surface area and zonotopes.Bol.Soc.Mat., Mexicanc,2008,14:125–138.

    [25]Ma T Y.On Lp-mixed centroid bodies and dual Lp-mixed centroid bodies(in Chinese).Acta Math.Sinica,2010,53(2):301–314.

    [26]Yuan J,Zhao L Z,Leng G S.Inequalities for Lp-centroid body.Taiwanese J.Math.,2008, 29(2):209–220.

    A

    1674-5647(2015)04-0333-12

    10.13447/j.1674-5647.2015.04.05

    Received date:Feb.21,2014.

    The NSF(11161019,11371224)of China and the STP(145RJZG227)of Gansu.

    E-mail address:matongyi@126.com(Ma T Y).

    2010 MR subject classification:52A40,52A20

    亚洲无线在线观看| 久久久久久九九精品二区国产| 国产精品99久久99久久久不卡| 国产老妇女一区| 日韩免费av在线播放| 日本与韩国留学比较| 亚洲欧美日韩无卡精品| 91麻豆精品激情在线观看国产| 亚洲内射少妇av| 淫秽高清视频在线观看| 女人十人毛片免费观看3o分钟| 亚洲七黄色美女视频| 黄片大片在线免费观看| 老鸭窝网址在线观看| 午夜精品久久久久久毛片777| 最新在线观看一区二区三区| 久久伊人香网站| 亚洲欧美日韩高清在线视频| 在线观看舔阴道视频| 老司机在亚洲福利影院| 精品一区二区三区人妻视频| 男女午夜视频在线观看| 国产精品av视频在线免费观看| 国产91精品成人一区二区三区| 国产黄a三级三级三级人| 香蕉丝袜av| 成人无遮挡网站| 在线免费观看不下载黄p国产 | 日本五十路高清| 国产一区二区在线观看日韩 | 国产中年淑女户外野战色| 国产精品 欧美亚洲| 一级毛片女人18水好多| 免费看光身美女| 欧美日韩黄片免| 在线视频色国产色| 在线免费观看的www视频| 免费观看人在逋| 国产亚洲av嫩草精品影院| 国产69精品久久久久777片| 国产高清三级在线| 免费观看的影片在线观看| 黄色片一级片一级黄色片| 欧美另类亚洲清纯唯美| 怎么达到女性高潮| 免费看光身美女| 欧美一区二区精品小视频在线| 色噜噜av男人的天堂激情| 国产精品日韩av在线免费观看| 日韩av在线大香蕉| 精品熟女少妇八av免费久了| 99久国产av精品| 亚洲人成网站高清观看| 欧美乱码精品一区二区三区| 九九在线视频观看精品| 日韩成人在线观看一区二区三区| 欧美午夜高清在线| 天天添夜夜摸| 久久久久九九精品影院| 97超级碰碰碰精品色视频在线观看| 国产高清videossex| 免费av观看视频| 国产亚洲精品久久久久久毛片| 国产三级在线视频| 99热只有精品国产| 免费观看人在逋| 麻豆国产av国片精品| 欧美国产日韩亚洲一区| 免费一级毛片在线播放高清视频| 内射极品少妇av片p| 亚洲专区国产一区二区| 伊人久久大香线蕉亚洲五| 午夜影院日韩av| 99热只有精品国产| 深爱激情五月婷婷| 日本a在线网址| 男女之事视频高清在线观看| а√天堂www在线а√下载| 一个人免费在线观看电影| 男插女下体视频免费在线播放| 99精品久久久久人妻精品| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区免费欧美| 亚洲一区二区三区不卡视频| 三级国产精品欧美在线观看| 此物有八面人人有两片| 中文字幕人成人乱码亚洲影| 91麻豆精品激情在线观看国产| 叶爱在线成人免费视频播放| 久久九九热精品免费| 在线免费观看不下载黄p国产 | 欧美日韩中文字幕国产精品一区二区三区| 超碰av人人做人人爽久久 | 日日摸夜夜添夜夜添小说| 日本熟妇午夜| 成人国产一区最新在线观看| 久久精品国产自在天天线| 中文字幕人妻丝袜一区二区| 午夜亚洲福利在线播放| 亚洲最大成人手机在线| 成人亚洲精品av一区二区| 99精品在免费线老司机午夜| 国内精品一区二区在线观看| 久久精品人妻少妇| 最新中文字幕久久久久| 欧美黄色片欧美黄色片| 成人午夜高清在线视频| bbb黄色大片| 观看免费一级毛片| 欧美激情久久久久久爽电影| 欧美日韩黄片免| 97人妻精品一区二区三区麻豆| 有码 亚洲区| 欧美性感艳星| 嫁个100分男人电影在线观看| 色视频www国产| 国产高清有码在线观看视频| 国产私拍福利视频在线观看| 欧美激情在线99| 亚洲国产精品成人综合色| 搡老妇女老女人老熟妇| 男插女下体视频免费在线播放| 欧美色视频一区免费| 最新在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产精品电影一区二区三区| 国产精品国产高清国产av| 久久欧美精品欧美久久欧美| 久久亚洲精品不卡| 亚洲国产欧美人成| 久久九九热精品免费| 国产成人啪精品午夜网站| 欧美精品啪啪一区二区三区| 亚洲真实伦在线观看| 亚洲国产欧美人成| 久久久久国内视频| 成年女人毛片免费观看观看9| 久久久精品大字幕| 国产老妇女一区| 久久99热这里只有精品18| 51午夜福利影视在线观看| 给我免费播放毛片高清在线观看| 久久伊人香网站| 国产激情欧美一区二区| 国内精品美女久久久久久| 久久久久久人人人人人| 免费在线观看日本一区| 精品一区二区三区av网在线观看| 欧美乱色亚洲激情| 97碰自拍视频| 亚洲内射少妇av| 好男人在线观看高清免费视频| 最新美女视频免费是黄的| 99国产精品一区二区三区| 神马国产精品三级电影在线观看| 日韩欧美三级三区| 日韩欧美一区二区三区在线观看| 十八禁网站免费在线| 久久午夜亚洲精品久久| 国产色爽女视频免费观看| 国产亚洲精品av在线| 欧美丝袜亚洲另类 | 精品一区二区三区视频在线观看免费| 伊人久久精品亚洲午夜| 我的老师免费观看完整版| 国产精品av视频在线免费观看| 亚洲av一区综合| 免费在线观看亚洲国产| 久久久久久久亚洲中文字幕 | 久久精品91蜜桃| 久久亚洲精品不卡| 搡老妇女老女人老熟妇| 在线看三级毛片| 99精品在免费线老司机午夜| 日本黄色视频三级网站网址| av欧美777| 草草在线视频免费看| 女人十人毛片免费观看3o分钟| 99久久精品国产亚洲精品| 两人在一起打扑克的视频| 在线看三级毛片| 在线播放无遮挡| 波野结衣二区三区在线 | 精品国产三级普通话版| 日韩欧美 国产精品| 99国产极品粉嫩在线观看| 99精品久久久久人妻精品| 亚洲国产中文字幕在线视频| 99国产精品一区二区三区| 成人国产一区最新在线观看| 免费无遮挡裸体视频| 亚洲成人精品中文字幕电影| 麻豆久久精品国产亚洲av| 日韩欧美精品v在线| 国产蜜桃级精品一区二区三区| 一个人观看的视频www高清免费观看| www.色视频.com| 欧美性猛交╳xxx乱大交人| 男女之事视频高清在线观看| 日日干狠狠操夜夜爽| 免费观看的影片在线观看| 久久草成人影院| 脱女人内裤的视频| 在线a可以看的网站| avwww免费| 伊人久久精品亚洲午夜| 国产毛片a区久久久久| 好男人在线观看高清免费视频| 久久国产精品人妻蜜桃| 亚洲专区国产一区二区| 久久99热这里只有精品18| avwww免费| 欧美性猛交╳xxx乱大交人| 久久久色成人| 嫩草影院入口| 岛国视频午夜一区免费看| 国产中年淑女户外野战色| 黄色视频,在线免费观看| 97超视频在线观看视频| 97碰自拍视频| 亚洲av电影在线进入| 熟女人妻精品中文字幕| 人妻丰满熟妇av一区二区三区| 身体一侧抽搐| 99热只有精品国产| tocl精华| 麻豆一二三区av精品| 国产精品乱码一区二三区的特点| 美女大奶头视频| 叶爱在线成人免费视频播放| or卡值多少钱| e午夜精品久久久久久久| bbb黄色大片| 国产成人a区在线观看| 人妻丰满熟妇av一区二区三区| 一进一出抽搐gif免费好疼| 成人国产一区最新在线观看| 久久精品影院6| 日本 欧美在线| 99热这里只有精品一区| 久久6这里有精品| 国产高清videossex| 女人被狂操c到高潮| 亚洲国产日韩欧美精品在线观看 | 国产免费一级a男人的天堂| 天堂动漫精品| 在线观看午夜福利视频| 国产成年人精品一区二区| 精品一区二区三区视频在线 | 精品国产三级普通话版| 亚洲国产精品成人综合色| 操出白浆在线播放| 国产av一区在线观看免费| 欧美精品啪啪一区二区三区| 男女做爰动态图高潮gif福利片| 国产三级黄色录像| 老汉色av国产亚洲站长工具| 91在线精品国自产拍蜜月 | 亚洲国产精品sss在线观看| 69人妻影院| 亚洲美女视频黄频| 久久久久久人人人人人| 国产精品99久久久久久久久| 国产成人系列免费观看| 在线免费观看的www视频| 久久性视频一级片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产伦精品一区二区三区视频9 | 午夜激情欧美在线| 在线国产一区二区在线| 动漫黄色视频在线观看| 男女下面进入的视频免费午夜| 国产精品爽爽va在线观看网站| 伊人久久大香线蕉亚洲五| 欧美一区二区亚洲| 狂野欧美白嫩少妇大欣赏| 国内久久婷婷六月综合欲色啪| 老熟妇乱子伦视频在线观看| 他把我摸到了高潮在线观看| 亚洲熟妇中文字幕五十中出| 久久精品91无色码中文字幕| 国产成人a区在线观看| 在线国产一区二区在线| 国产高清激情床上av| 精品久久久久久久毛片微露脸| 亚洲精品影视一区二区三区av| 天堂影院成人在线观看| 美女高潮的动态| 久久久久国产精品人妻aⅴ院| 色噜噜av男人的天堂激情| 日韩精品青青久久久久久| 少妇裸体淫交视频免费看高清| 午夜激情福利司机影院| 中文资源天堂在线| 在线a可以看的网站| 久久久国产精品麻豆| 国产亚洲精品久久久com| 日韩大尺度精品在线看网址| 成人国产一区最新在线观看| 好男人电影高清在线观看| 午夜亚洲福利在线播放| 美女 人体艺术 gogo| 波多野结衣巨乳人妻| 看片在线看免费视频| 亚洲欧美日韩无卡精品| 亚洲国产精品成人综合色| 99久久成人亚洲精品观看| 国产免费一级a男人的天堂| 国产乱人伦免费视频| www.999成人在线观看| 精品欧美国产一区二区三| 国产久久久一区二区三区| 身体一侧抽搐| 我要搜黄色片| 日本一二三区视频观看| a级一级毛片免费在线观看| 国产成人系列免费观看| 久久国产乱子伦精品免费另类| 69av精品久久久久久| 一本精品99久久精品77| 亚洲电影在线观看av| 在线免费观看的www视频| 99热6这里只有精品| 国产成人a区在线观看| 91久久精品电影网| 成年女人永久免费观看视频| 少妇裸体淫交视频免费看高清| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品国产精品久久久不卡| 国产精品美女特级片免费视频播放器| 亚洲人成网站在线播| 欧美日韩综合久久久久久 | 国产成人av教育| 欧美日韩精品网址| 亚洲av二区三区四区| 老汉色av国产亚洲站长工具| 午夜精品久久久久久毛片777| 亚洲国产欧美网| 午夜福利18| 免费观看的影片在线观看| 亚洲天堂国产精品一区在线| 成人国产一区最新在线观看| 亚洲av一区综合| 国产69精品久久久久777片| 国产精品亚洲一级av第二区| 噜噜噜噜噜久久久久久91| 亚洲国产精品成人综合色| 国产精品电影一区二区三区| 日韩免费av在线播放| 色综合站精品国产| 亚洲人成电影免费在线| 一区二区三区国产精品乱码| 亚洲国产精品999在线| 久久精品综合一区二区三区| 午夜福利成人在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 99精品欧美一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 国产熟女xx| 九九久久精品国产亚洲av麻豆| 中文字幕精品亚洲无线码一区| 99久久九九国产精品国产免费| 中文字幕人成人乱码亚洲影| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站高清观看| 日韩欧美在线乱码| 日韩欧美精品v在线| 男人的好看免费观看在线视频| 色播亚洲综合网| 天堂网av新在线| 精品一区二区三区视频在线观看免费| 白带黄色成豆腐渣| 亚洲国产欧洲综合997久久,| 国产亚洲欧美在线一区二区| 少妇人妻精品综合一区二区 | 久久亚洲精品不卡| 69人妻影院| 可以在线观看毛片的网站| 国产亚洲精品久久久久久毛片| 美女黄网站色视频| 久久午夜亚洲精品久久| 一本精品99久久精品77| 亚洲 欧美 日韩 在线 免费| 久久久久久国产a免费观看| 无人区码免费观看不卡| 亚洲在线自拍视频| 亚洲自拍偷在线| 黄色视频,在线免费观看| 国产精品永久免费网站| 夜夜看夜夜爽夜夜摸| 精品国产超薄肉色丝袜足j| 国产黄色小视频在线观看| 国内久久婷婷六月综合欲色啪| 日本五十路高清| 99国产综合亚洲精品| 九色国产91popny在线| 亚洲人成网站在线播| 成人国产一区最新在线观看| 欧美日韩乱码在线| 啦啦啦韩国在线观看视频| 精品一区二区三区视频在线观看免费| 亚洲aⅴ乱码一区二区在线播放| 国产探花在线观看一区二区| 久久婷婷人人爽人人干人人爱| 国产精品久久视频播放| 99久久99久久久精品蜜桃| 欧美日韩黄片免| 国产精品 国内视频| 国产av麻豆久久久久久久| 午夜免费观看网址| 国产欧美日韩一区二区三| 国产成人欧美在线观看| 国内精品一区二区在线观看| 国产国拍精品亚洲av在线观看 | bbb黄色大片| 国产精品野战在线观看| 免费电影在线观看免费观看| 国产中年淑女户外野战色| 全区人妻精品视频| 热99在线观看视频| 国产日本99.免费观看| 国产毛片a区久久久久| 亚洲熟妇熟女久久| 国产国拍精品亚洲av在线观看 | 亚洲avbb在线观看| 午夜福利18| 性色avwww在线观看| 成人欧美大片| 3wmmmm亚洲av在线观看| 在线看三级毛片| 欧美日韩黄片免| 18禁黄网站禁片免费观看直播| 国产精品久久视频播放| 亚洲国产日韩欧美精品在线观看 | 国产成人av教育| 成人精品一区二区免费| 长腿黑丝高跟| 国内精品久久久久久久电影| 中文字幕av成人在线电影| 69av精品久久久久久| 欧美色欧美亚洲另类二区| 国产一级毛片七仙女欲春2| 最后的刺客免费高清国语| 麻豆一二三区av精品| 亚洲激情在线av| 国产v大片淫在线免费观看| 国产野战对白在线观看| 亚洲av成人av| 亚洲天堂国产精品一区在线| 国内揄拍国产精品人妻在线| 18禁裸乳无遮挡免费网站照片| 国产美女午夜福利| 国产高潮美女av| 一本一本综合久久| 99久久99久久久精品蜜桃| 国产精品三级大全| 特大巨黑吊av在线直播| 国内精品一区二区在线观看| 国产国拍精品亚洲av在线观看 | 精品一区二区三区视频在线观看免费| 国产免费av片在线观看野外av| 精品无人区乱码1区二区| 久久久久久人人人人人| 综合色av麻豆| 精品久久久久久久久久久久久| 精品人妻1区二区| 亚洲欧美一区二区三区黑人| 在线观看免费午夜福利视频| 国产老妇女一区| 亚洲黑人精品在线| 欧美乱码精品一区二区三区| 亚洲av美国av| 午夜福利成人在线免费观看| 啦啦啦免费观看视频1| or卡值多少钱| 色综合婷婷激情| 露出奶头的视频| 免费观看精品视频网站| 99精品欧美一区二区三区四区| 国产精品美女特级片免费视频播放器| 一进一出抽搐gif免费好疼| 亚洲成av人片免费观看| 亚洲精品在线美女| 免费观看人在逋| 国产探花在线观看一区二区| 久久精品影院6| 啦啦啦韩国在线观看视频| 日本免费一区二区三区高清不卡| 可以在线观看的亚洲视频| 少妇高潮的动态图| 波多野结衣高清作品| 精品日产1卡2卡| 国产三级在线视频| 国产精品亚洲av一区麻豆| 欧美日本亚洲视频在线播放| 国产亚洲av嫩草精品影院| 午夜福利在线观看免费完整高清在 | 久久国产乱子伦精品免费另类| 深爱激情五月婷婷| 亚洲一区二区三区不卡视频| 极品教师在线免费播放| 日韩欧美国产在线观看| 久久亚洲精品不卡| 成人鲁丝片一二三区免费| 国产三级在线视频| 一进一出抽搐动态| ponron亚洲| 亚洲av第一区精品v没综合| 岛国在线观看网站| 听说在线观看完整版免费高清| 亚洲国产日韩欧美精品在线观看 | 欧美一级毛片孕妇| 亚洲精品亚洲一区二区| 亚洲成av人片免费观看| 1000部很黄的大片| 成人午夜高清在线视频| svipshipincom国产片| 久久婷婷人人爽人人干人人爱| 亚洲第一电影网av| 久久久成人免费电影| 国产又黄又爽又无遮挡在线| 亚洲国产日韩欧美精品在线观看 | www国产在线视频色| 欧美最新免费一区二区三区 | 99视频精品全部免费 在线| 久久久久国内视频| 国产熟女xx| 琪琪午夜伦伦电影理论片6080| 午夜免费男女啪啪视频观看 | 床上黄色一级片| 校园春色视频在线观看| 国内精品一区二区在线观看| 老鸭窝网址在线观看| 国产av一区在线观看免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av成人av| 99热这里只有精品一区| 国产不卡一卡二| www国产在线视频色| 久久久久久人人人人人| 麻豆国产av国片精品| 欧美日韩瑟瑟在线播放| 欧美性感艳星| 日韩欧美在线二视频| 国产欧美日韩一区二区三| 首页视频小说图片口味搜索| 亚洲专区国产一区二区| 亚洲18禁久久av| 蜜桃久久精品国产亚洲av| 五月伊人婷婷丁香| 亚洲男人的天堂狠狠| 国产成+人综合+亚洲专区| 黄色视频,在线免费观看| 脱女人内裤的视频| 国产私拍福利视频在线观看| 叶爱在线成人免费视频播放| 国产伦一二天堂av在线观看| 欧美黄色片欧美黄色片| 黄色片一级片一级黄色片| 国产熟女xx| 综合色av麻豆| 国产成人av激情在线播放| 一进一出抽搐gif免费好疼| 男人和女人高潮做爰伦理| 亚洲精品一卡2卡三卡4卡5卡| 亚洲无线在线观看| 久久久久久久亚洲中文字幕 | 特级一级黄色大片| 国产精品女同一区二区软件 | 久久久国产精品麻豆| 伊人久久精品亚洲午夜| 少妇的逼好多水| 高潮久久久久久久久久久不卡| 久久人人精品亚洲av| 成年人黄色毛片网站| 久久久久久人人人人人| 免费看十八禁软件| 99久久久亚洲精品蜜臀av| 国产精品嫩草影院av在线观看 | 黄色片一级片一级黄色片| 好男人电影高清在线观看| 久久久色成人| 亚洲在线观看片| 亚洲熟妇熟女久久| 欧美国产日韩亚洲一区| 脱女人内裤的视频| 国产不卡一卡二| 内地一区二区视频在线| av国产免费在线观看| 日本黄色片子视频| av欧美777| 首页视频小说图片口味搜索| 欧美大码av| 九色成人免费人妻av| 亚洲天堂国产精品一区在线| 啦啦啦免费观看视频1| www.熟女人妻精品国产| 男女做爰动态图高潮gif福利片| av黄色大香蕉| 中文字幕人成人乱码亚洲影| 亚洲av不卡在线观看| 欧美+亚洲+日韩+国产| 在线观看日韩欧美| 中文字幕av成人在线电影| 欧美中文日本在线观看视频| 小蜜桃在线观看免费完整版高清| 香蕉av资源在线| 狂野欧美激情性xxxx| 日韩人妻高清精品专区| 国产成人aa在线观看| 亚洲 欧美 日韩 在线 免费| 一本一本综合久久| 搡老熟女国产l中国老女人| 黄色视频,在线免费观看| 国产精品久久电影中文字幕|