• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study of the transition from non-Darcian to Darcy behavior for flow through a single fracture*

    2015-11-25 11:31:28QIANJiazhong錢家忠WANGMu王沐ZHANGYongYANXiaosan嚴小三ZHAOWeidong趙衛(wèi)東
    水動力學研究與進展 B輯 2015年5期
    關鍵詞:衛(wèi)東

    QIAN Jia-zhong (錢家忠), WANG Mu (王沐), ZHANG Yong, YAN Xiao-san (嚴小三),ZHAO Wei-dong (趙衛(wèi)東)

    1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China,E-mail: qianjiazhong@hfut.edu.cn

    2. Department of Geological Sciences, University of Alabama, Tuscaloosa, USA

    Experimental study of the transition from non-Darcian to Darcy behavior for flow through a single fracture*

    QIAN Jia-zhong (錢家忠)1, WANG Mu (王沐)1, ZHANG Yong2, YAN Xiao-san (嚴小三)1,ZHAO Wei-dong (趙衛(wèi)東)1

    1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China,E-mail: qianjiazhong@hfut.edu.cn

    2. Department of Geological Sciences, University of Alabama, Tuscaloosa, USA

    2015,27(5):679-688

    Laboratory experiments are designed in this paper using single fractures made of cement and coarse sand for a series of hydraulic tests under the conditions of different fracture apertures, and for the simulation of the evolution of the flow pattern at places far from the outlet. The relationship between the hydraulic gradient and the flow velocity at different points, and the proportion evolution of the linear and nonlinear portions in the Forchheimer formula are then discussed. Three major conclusions are obtained. First, the non-Darcian flow exists in a single fracture in different laboratory tests. Better fitting accuracy is obtained by using the Forchheimer formula than by using the Darcy law. Second, the proportion of the Darcy flow increases with the increase of the observation scale. In places far enough, the Darcy flow prevails, and the critical velocity between the non-Darcian flow and the Darcy flow decreases as the fracture aperture increases. Third, when the fracture aperture increases, the critical Reynolds number between the non-Darcian flow and the Darcy flow decreases.

    non-Darcian flow, Darcy behavior, transition, single fracture, experimental study

    Introduction

    Fracture formations are ubiquitous in nature, and are related with a number of geological activities such as the mineralization processes. Fracture formations may be in the form of a single fracture and in a fracture network, in which the single fracture is the fundamental ingredient, so the water flow and the solute transport in single fractured media are the main concern. Traditionally, the fractured flow was treated as the Darcy flow. Gray et al.[1]presented an analytical solution for the steady Darcy flow of an incompressible fluid through a homogeneous, isotropic porous medium filling a channel bounded by symmetric wavy walls. Marusic-Paloka et al.[2]focused on the Brinkman and Darcy law, derived from microscopic equations by up scaling, and compared the results and estimated the error in applications.

    More studies show that the non-Darcian flow is a significant existence[3-9]. For example, Qian et al.[6,7]used well-controlled laboratory experiments to investigate the flow and the transport in a fracture under non-Darcian flow conditions, and found that the Forchheimer equation fits the experimental v-Jrelationship nearly perfectly, whereas the Darcy equation is inadequate in this respect. Quinn et al.[8]quantified the non-Darcian flow by packer testing. They found that the flow is nonlinear but not quadratic in nature. Cherubini et al.[9]investigated the nonlinear flow by analyzing hydraulic tests on an artificially created fractured rock sample, and the experimental result shows that the relationship between the flow rate discharge and the head gradient matches the Forchheimer equation and describes a strong inertial regime well.

    The equation or the numerical results for the non-Darcy flow attracted much interest[10]. Chen et al.[11]discussed the versatility of the non-Darcy flow equation. Qian et al.[12-14]and Brown[15]discussed the influence of the roughness and the Reynolds number onthe rough single fracture flow. It is concluded that the friction factor for the flow in single fractures is influenced by them. Thiruvengadam and Kumar[16]evaluated the effectiveness of the Forchheimer formula for the rough medium flow. Xu et al.[17]studied the non-Darcy flow inertia coefficient.

    Only a few studies focused on relating the non-Darcian flow to the Darcian flow and their conversion in a single fracture. Quinn et al.[8]quantified the rate of flow versus the ambient head in the linear range through the transition to the nonlinear flow. Zhang et al.[18]investigated the fluid flow regimes through deformable rock fractures, by conducting water flow tests through both mated and non-mated sandstone fractures.

    But, the theoretical analysis and a quantitative discussion of the Forchheimer formula remain to be an issue. So this study uses laboratory experimental data and the Forchheimer formula to explore the relationship between the flow rate and the hydraulic gradient, under conditions of rough surface, no pressure and different apertures. The purpose of this paper is to(1) experimentally investigate the non-Darcian flow evolution from the Darcian flow in a single fracture of different fracture apertures and hydraulic gradients,and (2) study the relationship between the hydraulic gradient and the flow rate at different points and the proportion evolution of the linear and nonlinear portions in the Forchheimer formula.

    Fig.1 Schematic diagram of experimental setup for groundwater flow in a single fracture

    1. Basic formulas

    The Darcy law is a well known basic equation for porous media saturated seepage. It is valid when the viscous force plays a dominant role and the inertia force can be ignored in the seepage field. The seepage behavior in nature mostly shows a linear relationship between the seepage velocity and the hydraulic gradient. Similarly, the Darcy’s law can be used to reflect the permeability characteristics and to determine the penetration parameters, usually expressed by the mathematical expression:

    where V is the seepage velocity,K is the permeability coefficient, and J is the hydraulic gradient.

    Fig.2 Schematic diagram of the dupuit assumption

    Table 1 The function values of the slope angles between two adjacent measurement points at the largest water head difference of 0.506 m

    But it is found that in some exceptional circumstances, the relationship between V and J will become nonlinear, and a non-Darcian relationship will be evident instead, when v is sufficiently large. Previous studies of non-Darcy flows revealed various non-Darcy flow formulas under various application conditions and scopes. Nevertheless, some formulas rely on many parameters, which limit their applications. The Forchheimer formula, on the other hand, has a clear theoretical basis of the NS equation of hydrodynamics,

    Fig.3 Fitting curve of J and v for different equations and for rough single fracture of 0.0005 m aperture in sections

    wherep,ρare the pressure, density of the fluid,respectively. In the percolation porous structures with the void-space-occupied probability p, the system sizeLand the pressure drop ?p, the relationship between the?pand theV can be described by

    whereβis the inertial parameter. The above relationship is then generalized into the familiar form

    wherea,b are parameters.

    The linear term on the right-hand side of the formula (4) represents the viscous force, while the quadratic term represents the inertial force. For engineering applications, the form of the Forchheimer formula is simple and convenient. With a few parameters, it reflects both the Darcy flow and the non-Darcy flow characteristics in fractured media. Therefore, it is a widely used non-Darcy flow calculation formula.

    2. Experimental design

    2.1 Experimental setup

    Figure 1 is a schematic diagram of the experimental setup for the groundwater flow in a single fracture.The model is made of cement and coarse sand (with diameters between 0.001 m and 0.002 m), and is 3.8 m long, 0.55 m high, and with adjustable width. A single fracture is formed by two parallel vertical planes of several centimeters thick. The aperture of the single fracture is adjustable. Eight manometers are installed inside of the fracture planes to measure the hydraulic heads. The measurement points of the manometers are on the plane surfaces, approximately 0.05 m above the bottom of the plane. In this way, the manometers’ disturbance to the flow field could be minimized. The water level in the fracture is below the upper cover plate during this experiment, so the flow is unconfined. Of course, the artificial single fracture used in this laboratory study is much simpler than the natural single fractures, as the natural walls are rarely parallel. Even so, the results of this study could help us to gain some insight into the scaling behavior of the hydraulic conductivity under well-controlled flow conditions.

    2.2 Testing method

    The cylinder is used to measure the steady flow rate, and the error is less than 2%. The water level is measured by piezometric tubes with error of ±0.0005m.

    Fig.4 Fitting curve of the hydraulic gradient and the flow velocity for different equations and for rough single fracture of 0.0015 m aperture in sections

    3. Experimental results and discussions

    The original first-hand experimental data include the water level and flux data in the single rough fractures (with the apertures of 0.0005 m, 0.0015 m and0.002 m, respectively). Points 7 to 1 are marked from left to right according to the water level measurement points, with the last discharge end, Point 1, as the outlet (as is proposed by this study), the distances from the measurement Points 2 to 7 to the outlet are 0.096 m, 0.688 m, 1.365 m, 2.122 m, 2.93 m and 3.54 m. Figure 1 shows the position of each water level measurement point.

    Fig.5 Fitting curve of the hydraulic gradient and the flow velocity for different equations and for rough single fracture of 0.002 m aperture in sections

    3.1 Disscussions for the effect of dupuit assumption

    As shown in Fig.2, at pointp on the phreatic surface,J=-dH/ds=-dz/ds=-sinφ, its velocity isVp=-KJ=-Ksinφ. The Dupuit assumption says that we can replace the sine value of the slope angle with the tangent value when the slope angle is very small. Under this condition, the phreatic surface is flat,the water flow is horizontal mainly, and the vertical component of the seepage velocity can be ignored. In our experiment, when the hydraulic gradient is the largest, the tangent value of the slope angle is 0.133, and the sine value is 0.132, with a relative error of 0.0076,much less than 1. The function values of the slope angles between two adjacent measurement points are calculated, as shown in Table 1, with relative errors much less than 1, too. Therefore the Dupuit assumption is valid for our experiments, and the seepage could be seen as one-dimensional Darcian/non-Darcian flow.

    Fig.6 Fitting curve of the hydraulic gradient and the flow velocity for different equations and for rough single fracture of 0.0005 m aperture on the whole

    3.2 Relationship between hydraulic gradient and flow velocity in sections

    From the outlet to Point 2 and to Point 7, the Darcy law and the Forchheimer formula are used to fit the relationship between the hydraulic gradient and the flow velocity in sections, and the results are shown in Figs.3-5. It is found that the correlation coefficient of the Darcy law increases as the distance from the outlet increases. It indicates the flow transition into the Darcy flow from the non-Darcian flow as the flow velocity decreases.

    3.3 Relationship between hydraulic gradient and flow velocity on the whole

    On the other hand, the relationship between the hydraulic gradient and the flow velocity is fitted on the whole. The results are shown in Figs.6-8, and it is seen that the correlation coefficient of the Forchheimer formula is higher than that of the Darcy law, indicating that the quadratic relation between the hydraulic gradient and the flow velocity is more suitable for the actual seepage. That is because with the increase of the flow velocity, the inertial force and the viscous force reach the same order of magnitude, and then the Forchheimer formula could describe them both better than the Darcy law. We could also find that the coefficientsaandb of the Forchheimer formula decrease with the increase of the aperture, which is a conclusive phenomenon or needs not more study.

    Fig.7 Fitting curve of the hydraulic gradient and the flow velocity for different equations and for rough single fracture of 0.0015 m aperture on the whole

    3.4 Further analysis of Forchheimer formula

    Denoting the linear termaV of the Forchheimer formula as Jand the nonlinear term bV2as J,viwhere “v ” stands for “viscous” and “i ” stands for“inertial”, the Forchheimer formula (4) becomes J= Jv+Ji. We could calculate the value of Jv/Jand Ji/J at the water level measurement points 2 to 7,and also obtain the proportions of linear and nonlinear terms. The results for the rough single fracture with aperture of 0.0005 m are shown in Table 2.

    The relationship of Jv/Jand Ji/J versus the flow velocity is shown in Fig.9.

    To identify the type of the fluid flow pattern, one may use a dimensionless parameter

    whereRe is Reynolds number,d is the characteristic length of the fluid flow,n is the kinematic viscosity of the fluid (in this experiment, we let the kinematic viscosity be 1.2028×10-6m2/s). Using formula(5), in Fig.10 , the flow velocity in Fig.9 is converted into the corresponding Reynolds number.

    Fig.8 Fitting curve of the hydraulic gradient and the flow velocity for different equations and for rough single fracture of 0.002 m aperture on the whole

    Table 2 The proportion of linear and nonlinear terms at different water level measurement points with aperture of 0.0005 m

    As shown in Figs.9 and 10, the values of Jv/J and Ji/Jhave the same order of magnitude, meaning that both the inertial flow and the viscous flow are not negligible. The velocity and the Reynolds number decrease with the increase of the flow distance from the outlet, the proportion of the nonlinear term decreases as well. Due to the increased contribution of the linear term, when the velocity decreases,the water flow gradually evolves from the non-Darcian flow to the Darcy flow. We could not obtain the critical velocity and the critical Reynolds number between the non-Darcian flow and the Darcy flow according to the dotted lines in Fig.9 and Fig.10, however, one may see a decreased trend with the increaseof the fracture aperture. To obtain the specific values of them, further study is needed.

    Fig.9 The relationship of Jv/J with Ji/Jand velocity for rough single fracture

    Fig.10 The relationship of Jv/J with Ji/Jand Reynolds number for rough single fracture

    4. Conclusions

    From the above analysis, the following conclusions are drawn:

    (1) The hydraulic gradient and the flow velocity assume a nonlinear relationship in the unconfined flow single fracture, and the relationship could be represented by J=aV+bV2. This finding is consistent with the theoretical derivation, which shows thatV∝J1/2under the turbulent flow assumption.

    (2) When the observation distance from the outlet increases, the water flow becomes non-Darcian flow first, and then the proportion of the Darcy flow increases gradually. The farther from the outlet, the more evident the tend to the Darcy flow becomes. The critical velocity is decreased with the increase of the aperture.

    (3) The critical Reynolds number between the non-Darcian flow and the Darcy flow decreases with the increase of the aperture under the same surface roughness condition.

    References

    [1] GRAY D. D., OGRETIM E. and BROMHAL G. S.Darcy flow in a wavy channel filled with a porous medium[J]. Transport in Porous Media, 2013, 98(3): 743-753.

    [2] MARUSIC-PALOKA E., PAZANIN I. and MARUSIC S. Comparison between Darcy and Brinkman laws in a fracture[J]. Applied Mathematics and Computation,2012, 218(14): 7538-7545.

    [3] KOLDITZ O. Non-linear flow in fractured rock[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2001, 11(5-6): 547-575.

    [4] YAO Wei, LI Ya-bei and CHEN Nan. Analytic solutions of the interstitial fluid flow models[J]. Journal of Hydrodynamics, 2013, 25(5): 683-694.

    [5] NOWAMOOZ A., RADILLA G. and FOURAR M. Non-Darcian two-phase flow in a transparent replica of a rough-walled rock fracture[J]. Water Resources Research, 2009, 45(7): W07406.

    [6] QIAN J., CHEN Z. and ZHAN H. et al. Solute transport in a filled single fracture under non-Darcian flow[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 132-140.

    [7] QIAN J., ZHAN H. and CHEN Z. et al. Experimental study of solute transport under non-Darcian flow in a single fracture[J]. Journal of Hydrology, 2011, 399(3-4): 246-254.

    [8] QUINN P. M., CHERRY J. A. and PARKER B. L. Quantification of non-Darcian flow observed during packer testing in fractured sedimentary rock[J]. Water Resources Research, 2011, 47(9): W09533.

    [9] CHERUBINI C., GIASI C. I. and PASTORE N. Bench scale laboratory tests to analyze non-linear flow in fractured media[J]. Hydrology and Earth System Sciences, 2012,16(8): 2511-2522.

    [10] WEN Z., HUANG G. and ZHAN H. Non-Darcian flow in a single vertical fracture toward a well[J]. Journal of Hydrology, 2006, 330(3-4): 698-708.

    [11] CHEN Chong-yi, WAN Jun-wei. Is non-Darcy flow basic equation, Forchheimer formula universal in porous media?[J]. Journal of Hydraulic Engineering,2011, 42(10): 1257-1259(in Chinese).

    [12] QIAN J., CHEN Z. and ZHAN H. et al. Experimental study of the effect of roughness and Reynolds number on fluid flow in rough-walled single fractures: A check of local cubic law[J]. Hydrological Processes, 2011,25(4): 614-622.

    [13] QIAN J., ZHAN H. and ZHAO W. et al. Experimental study of turbulent unconfined groundwater flow in a single fracture[J]. Journal of Hydrology, 2005, 311(1-4): 134-142.

    [14] QIAN J., ZHAN H. and LUO S. et al. Experimental evidence of scale-dependent hydraulic conductivity for fully developed turbulent flow in a single fracture[J]. Journal of Hydrology, 2007, 339(3-4): 206-215.

    [15] BROWN S. R. Fluid flow through rock joints: the effect of surface roughness[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B2): 1337-1347.

    [16] THIRUVENGADAM M., KUMAR G. N. P. Validity of Forchheimer equation in radial flow through coarse granular media[J]. Journal of Engineering Mechanics,1997, 123(7): 696-705.

    [17] XU Kai, LEI Xue-wen and MENG Qing-shan et al. Study of non-Darcy flow inertia coefficient[J]. Rock Mechanics and Engineering, 2012, 31(1):164-170(in Chinese).

    [18] ZHANG Z., NEMCIK J. Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures[J]. Journal of Hydrology, 2013, 477: 139-151.

    10.1016/S1001-6058(15)60530-3

    (January 9, 2014, Revised May 9, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 41272251, 41372245).

    Biography: QIAN Jia-zhong (1968-), Male, Ph. D., Professor

    猜你喜歡
    衛(wèi)東
    Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy
    以問導學,在轉換中理解概念
    非新生兒破傷風的治療進展
    《雍和宮》
    攝影與攝像(2020年3期)2020-09-10 07:22:44
    油畫 苗女
    南風(2020年11期)2020-08-04 04:55:24
    祝衛(wèi)東
    愛打噴嚏的小河馬
    致衛(wèi)東先生(信札)
    作品(2017年6期)2017-06-19 19:37:06
    Experimental study of flow field in interference area between impeller and guide vane of axial flow pump*
    種心情
    免费电影在线观看免费观看| 熟妇人妻久久中文字幕3abv| avwww免费| 欧美中文日本在线观看视频| 色综合亚洲欧美另类图片| 久久精品亚洲精品国产色婷小说| 亚洲成av人片免费观看| 国产精品久久久久久精品电影| 日本熟妇午夜| 免费在线观看成人毛片| 久久久国产精品麻豆| 亚洲精品一区av在线观看| 国产v大片淫在线免费观看| 黄频高清免费视频| 757午夜福利合集在线观看| 日韩精品青青久久久久久| 脱女人内裤的视频| 后天国语完整版免费观看| 老熟妇乱子伦视频在线观看| 我要搜黄色片| 国产黄片美女视频| 成人无遮挡网站| 日本黄色视频三级网站网址| 国产成人av激情在线播放| 国产真实乱freesex| 国产三级黄色录像| www.自偷自拍.com| 国产精品1区2区在线观看.| 免费在线观看日本一区| 国产美女午夜福利| 免费大片18禁| 神马国产精品三级电影在线观看| 99国产精品一区二区三区| 亚洲第一欧美日韩一区二区三区| 国产一区二区在线av高清观看| 成年版毛片免费区| 精品99又大又爽又粗少妇毛片 | 最新在线观看一区二区三区| 婷婷六月久久综合丁香| 99久国产av精品| 亚洲av免费在线观看| 欧美精品啪啪一区二区三区| 五月伊人婷婷丁香| 成人av在线播放网站| 俄罗斯特黄特色一大片| 国产真人三级小视频在线观看| 午夜激情欧美在线| 色吧在线观看| 免费在线观看影片大全网站| 99riav亚洲国产免费| 国产91精品成人一区二区三区| 1000部很黄的大片| 欧美中文日本在线观看视频| 12—13女人毛片做爰片一| 淫妇啪啪啪对白视频| 欧美日韩乱码在线| 久久精品综合一区二区三区| 亚洲国产精品999在线| 黑人巨大精品欧美一区二区mp4| 99精品在免费线老司机午夜| 中国美女看黄片| 亚洲狠狠婷婷综合久久图片| 国产真人三级小视频在线观看| 在线观看免费视频日本深夜| 久久久国产精品麻豆| 天堂√8在线中文| 欧美最黄视频在线播放免费| 国产v大片淫在线免费观看| 日韩欧美国产在线观看| 狠狠狠狠99中文字幕| 日本精品一区二区三区蜜桃| av天堂在线播放| 小说图片视频综合网站| 亚洲欧洲精品一区二区精品久久久| 久久久久久大精品| 国产精品香港三级国产av潘金莲| 亚洲av成人一区二区三| 婷婷丁香在线五月| 亚洲av熟女| 日韩欧美三级三区| 老熟妇仑乱视频hdxx| 一个人看视频在线观看www免费 | 一二三四在线观看免费中文在| 欧美一级毛片孕妇| 一级作爱视频免费观看| 99国产精品一区二区蜜桃av| 特级一级黄色大片| 国产精品日韩av在线免费观看| 免费看a级黄色片| 亚洲在线观看片| 99在线人妻在线中文字幕| 中文字幕高清在线视频| 又爽又黄无遮挡网站| 1024香蕉在线观看| 久久精品91蜜桃| 级片在线观看| 两人在一起打扑克的视频| 婷婷六月久久综合丁香| 日韩欧美国产一区二区入口| 欧美乱码精品一区二区三区| 观看免费一级毛片| 老司机午夜福利在线观看视频| 99久久无色码亚洲精品果冻| 十八禁网站免费在线| 国产精品久久久久久亚洲av鲁大| 欧美不卡视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 欧美性猛交黑人性爽| 日本一本二区三区精品| 日韩欧美精品v在线| 美女被艹到高潮喷水动态| 嫁个100分男人电影在线观看| 色综合站精品国产| 色噜噜av男人的天堂激情| 亚洲精品在线观看二区| xxxwww97欧美| 日韩欧美免费精品| 国产aⅴ精品一区二区三区波| aaaaa片日本免费| 国产毛片a区久久久久| 国产一区二区三区在线臀色熟女| 国产精品永久免费网站| 18禁裸乳无遮挡免费网站照片| 久久中文字幕人妻熟女| 国产黄a三级三级三级人| 午夜福利18| 亚洲人成网站在线播放欧美日韩| 在线观看舔阴道视频| 中文字幕精品亚洲无线码一区| 大型黄色视频在线免费观看| 日韩中文字幕欧美一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 99精品在免费线老司机午夜| 亚洲第一欧美日韩一区二区三区| 在线观看午夜福利视频| 一二三四在线观看免费中文在| www.熟女人妻精品国产| 日本 欧美在线| 国产黄色小视频在线观看| 免费电影在线观看免费观看| 精品人妻1区二区| 身体一侧抽搐| 亚洲精品乱码久久久v下载方式 | 国产精品久久久久久人妻精品电影| 亚洲欧美日韩无卡精品| 亚洲自偷自拍图片 自拍| 久久久国产精品麻豆| 亚洲在线观看片| or卡值多少钱| 每晚都被弄得嗷嗷叫到高潮| 国产黄片美女视频| 一个人看视频在线观看www免费 | 老汉色av国产亚洲站长工具| 熟女电影av网| 国产精品99久久久久久久久| 麻豆一二三区av精品| av黄色大香蕉| 亚洲男人的天堂狠狠| 男女做爰动态图高潮gif福利片| 黑人欧美特级aaaaaa片| 久久香蕉国产精品| 久久中文看片网| 女人高潮潮喷娇喘18禁视频| www国产在线视频色| 精品午夜福利视频在线观看一区| xxxwww97欧美| 亚洲九九香蕉| 久久天堂一区二区三区四区| 999久久久精品免费观看国产| 婷婷丁香在线五月| 亚洲精品美女久久av网站| 亚洲国产精品合色在线| 观看美女的网站| 久久天堂一区二区三区四区| 热99re8久久精品国产| 亚洲中文字幕一区二区三区有码在线看| 成年av动漫网址| 亚洲成人久久爱视频| 国产精华一区二区三区| 禁无遮挡网站| 国语对白做爰xxxⅹ性视频网站| 一区二区三区乱码不卡18| 性色avwww在线观看| 青青草视频在线视频观看| 男女国产视频网站| 国产亚洲午夜精品一区二区久久 | 欧美丝袜亚洲另类| 少妇猛男粗大的猛烈进出视频 | 在线播放国产精品三级| 特大巨黑吊av在线直播| 18禁动态无遮挡网站| 欧美成人午夜免费资源| 直男gayav资源| 直男gayav资源| 国内精品美女久久久久久| 国产亚洲5aaaaa淫片| 美女大奶头视频| 身体一侧抽搐| 日本wwww免费看| 精品午夜福利在线看| a级毛片免费高清观看在线播放| 一级毛片我不卡| 97热精品久久久久久| 男人和女人高潮做爰伦理| 亚洲av电影在线观看一区二区三区 | 亚洲欧美中文字幕日韩二区| 欧美色视频一区免费| 亚洲四区av| 春色校园在线视频观看| 2021少妇久久久久久久久久久| 岛国在线免费视频观看| 乱人视频在线观看| 日韩成人av中文字幕在线观看| 国产精品女同一区二区软件| 一级毛片久久久久久久久女| 欧美性猛交╳xxx乱大交人| 精品久久久久久电影网 | 麻豆成人av视频| 午夜福利在线观看吧| 亚洲aⅴ乱码一区二区在线播放| 少妇裸体淫交视频免费看高清| 高清午夜精品一区二区三区| 极品教师在线视频| 亚洲精品乱码久久久v下载方式| 精品午夜福利在线看| 夜夜爽夜夜爽视频| 男女那种视频在线观看| 成人性生交大片免费视频hd| 最新中文字幕久久久久| 精品人妻偷拍中文字幕| 又爽又黄a免费视频| 91久久精品国产一区二区三区| 国产伦精品一区二区三区视频9| 99视频精品全部免费 在线| 国产淫片久久久久久久久| 淫秽高清视频在线观看| 小蜜桃在线观看免费完整版高清| 亚洲,欧美,日韩| 18+在线观看网站| 亚洲性久久影院| 免费看光身美女| 国产熟女欧美一区二区| 亚洲精品456在线播放app| 国产精品一二三区在线看| 午夜福利高清视频| 两个人的视频大全免费| 三级经典国产精品| 午夜福利网站1000一区二区三区| 日产精品乱码卡一卡2卡三| 成人国产麻豆网| 少妇熟女欧美另类| 亚洲最大成人av| 综合色av麻豆| 日韩av不卡免费在线播放| 亚洲欧美精品综合久久99| 能在线免费看毛片的网站| 天堂√8在线中文| 免费观看性生交大片5| 男人和女人高潮做爰伦理| 人人妻人人澡欧美一区二区| 久久久a久久爽久久v久久| 久久草成人影院| 九九爱精品视频在线观看| 在线播放国产精品三级| 啦啦啦韩国在线观看视频| 中文字幕av在线有码专区| 国产成人精品一,二区| 欧美一级a爱片免费观看看| 人人妻人人看人人澡| 国产午夜精品一二区理论片| 久久精品夜色国产| 国产极品天堂在线| 看免费成人av毛片| 女人久久www免费人成看片 | 99久久无色码亚洲精品果冻| 哪个播放器可以免费观看大片| eeuss影院久久| 99久久精品热视频| 国产男人的电影天堂91| 丰满少妇做爰视频| 国产精品一区二区三区四区久久| 精品午夜福利在线看| 国产免费一级a男人的天堂| 日韩,欧美,国产一区二区三区 | 久久这里有精品视频免费| 熟妇人妻久久中文字幕3abv| 老女人水多毛片| 国产真实乱freesex| 国产真实乱freesex| 中文字幕熟女人妻在线| 成人三级黄色视频| 日本-黄色视频高清免费观看| 男女那种视频在线观看| 国产成人一区二区在线| 成年版毛片免费区| 国产免费一级a男人的天堂| 中文天堂在线官网| 精品一区二区三区人妻视频| 欧美一区二区精品小视频在线| 国产精品永久免费网站| 如何舔出高潮| 非洲黑人性xxxx精品又粗又长| 午夜爱爱视频在线播放| 国产精品精品国产色婷婷| 网址你懂的国产日韩在线| 久久久久国产网址| 午夜精品国产一区二区电影 | 国产精品国产高清国产av| 国产免费又黄又爽又色| 99久久精品一区二区三区| 亚洲,欧美,日韩| 欧美最新免费一区二区三区| 国产爱豆传媒在线观看| 久久久久精品久久久久真实原创| 寂寞人妻少妇视频99o| 2022亚洲国产成人精品| 99久久精品热视频| 搡老妇女老女人老熟妇| 91久久精品国产一区二区成人| 国产男人的电影天堂91| 成人漫画全彩无遮挡| 我的女老师完整版在线观看| 人人妻人人澡欧美一区二区| 国产亚洲91精品色在线| 欧美成人一区二区免费高清观看| 女人被狂操c到高潮| 国产亚洲av片在线观看秒播厂 | 99久久成人亚洲精品观看| 韩国高清视频一区二区三区| 麻豆精品久久久久久蜜桃| 插阴视频在线观看视频| 人妻系列 视频| av在线老鸭窝| av天堂中文字幕网| 看非洲黑人一级黄片| 嫩草影院精品99| 男人和女人高潮做爰伦理| 国产av一区在线观看免费| 伊人久久精品亚洲午夜| 欧美人与善性xxx| 男女那种视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 蜜桃亚洲精品一区二区三区| 成人午夜精彩视频在线观看| 一区二区三区高清视频在线| 最近最新中文字幕免费大全7| 国产精品国产高清国产av| 九草在线视频观看| 久久久亚洲精品成人影院| 五月玫瑰六月丁香| 欧美性感艳星| 少妇人妻精品综合一区二区| 国产69精品久久久久777片| 级片在线观看| 国产成人午夜福利电影在线观看| a级一级毛片免费在线观看| av在线亚洲专区| 永久免费av网站大全| 永久免费av网站大全| 日日撸夜夜添| 毛片一级片免费看久久久久| 1024手机看黄色片| 少妇人妻精品综合一区二区| 老师上课跳d突然被开到最大视频| 天堂av国产一区二区熟女人妻| 在线播放国产精品三级| 国产又黄又爽又无遮挡在线| 搞女人的毛片| 精品一区二区三区人妻视频| 久久热精品热| 黄片wwwwww| 国产一区二区亚洲精品在线观看| 两个人视频免费观看高清| 国产精品一二三区在线看| 成人美女网站在线观看视频| 成年版毛片免费区| 村上凉子中文字幕在线| 男人舔奶头视频| 亚洲精品亚洲一区二区| 国产一区二区在线av高清观看| 久久国内精品自在自线图片| 人妻系列 视频| 91久久精品国产一区二区成人| 欧美xxxx性猛交bbbb| 亚洲图色成人| 欧美区成人在线视频| 国产一区二区亚洲精品在线观看| 亚洲欧美精品综合久久99| 日本欧美国产在线视频| 国产乱人偷精品视频| 国产伦在线观看视频一区| 国内精品美女久久久久久| 五月玫瑰六月丁香| 国语对白做爰xxxⅹ性视频网站| 色视频www国产| 久久久久久久亚洲中文字幕| 伊人久久精品亚洲午夜| 自拍偷自拍亚洲精品老妇| 国产精品无大码| 精品久久久久久久久av| 成人av在线播放网站| 啦啦啦观看免费观看视频高清| 中文亚洲av片在线观看爽| 日韩一本色道免费dvd| 久久这里只有精品中国| av在线天堂中文字幕| 嫩草影院入口| 51国产日韩欧美| 久久人妻av系列| 亚洲经典国产精华液单| 亚洲av中文av极速乱| 99久久精品热视频| 嫩草影院新地址| 国产精品一二三区在线看| 成年av动漫网址| 免费看光身美女| 男人舔奶头视频| 天堂√8在线中文| 亚洲欧美清纯卡通| 极品教师在线视频| 赤兔流量卡办理| 内射极品少妇av片p| 中文亚洲av片在线观看爽| 男女下面进入的视频免费午夜| 亚洲精品国产成人久久av| 好男人在线观看高清免费视频| 别揉我奶头 嗯啊视频| 精品国内亚洲2022精品成人| 久久精品国产亚洲av涩爱| 2021天堂中文幕一二区在线观| 免费看a级黄色片| 亚洲国产欧美人成| 老司机影院成人| 亚洲久久久久久中文字幕| 看黄色毛片网站| 最近中文字幕2019免费版| av免费观看日本| 天天一区二区日本电影三级| 亚洲av中文av极速乱| 久久6这里有精品| 小蜜桃在线观看免费完整版高清| 91aial.com中文字幕在线观看| videossex国产| 国产精品人妻久久久久久| 久久亚洲精品不卡| 国产在视频线精品| 黄色配什么色好看| 变态另类丝袜制服| 亚洲美女搞黄在线观看| 国产三级中文精品| 亚洲综合精品二区| 少妇熟女aⅴ在线视频| 亚洲国产欧美人成| 免费黄网站久久成人精品| 91久久精品电影网| 精品久久久久久电影网 | 亚洲精品国产av成人精品| 1024手机看黄色片| 欧美日韩国产亚洲二区| 亚洲真实伦在线观看| 18禁裸乳无遮挡免费网站照片| 欧美变态另类bdsm刘玥| 精品久久久久久久久亚洲| 插阴视频在线观看视频| 亚洲成av人片在线播放无| 久久久久久伊人网av| 在线免费观看不下载黄p国产| 欧美不卡视频在线免费观看| av免费在线看不卡| 精品一区二区三区视频在线| 黄色配什么色好看| 长腿黑丝高跟| 蜜桃久久精品国产亚洲av| 三级国产精品欧美在线观看| .国产精品久久| 建设人人有责人人尽责人人享有的 | 国产亚洲av片在线观看秒播厂 | 亚洲精品乱码久久久v下载方式| 日本-黄色视频高清免费观看| 国产亚洲午夜精品一区二区久久 | 午夜福利在线在线| 深爱激情五月婷婷| 99热6这里只有精品| 三级经典国产精品| 久久久久久大精品| 亚洲精品一区蜜桃| 91久久精品电影网| 日韩欧美精品免费久久| 麻豆一二三区av精品| 免费观看a级毛片全部| 在现免费观看毛片| 国产精品人妻久久久久久| av又黄又爽大尺度在线免费看 | 欧美日韩国产亚洲二区| 精品久久国产蜜桃| 九九爱精品视频在线观看| 黄色日韩在线| 亚洲精品国产成人久久av| 老师上课跳d突然被开到最大视频| 日韩欧美 国产精品| 一二三四中文在线观看免费高清| 一级爰片在线观看| 亚洲精品成人久久久久久| 男人和女人高潮做爰伦理| 国产毛片a区久久久久| 久久精品综合一区二区三区| 精品99又大又爽又粗少妇毛片| 亚洲精品自拍成人| 最后的刺客免费高清国语| 亚洲最大成人中文| 日本猛色少妇xxxxx猛交久久| 亚洲av电影不卡..在线观看| 亚洲精品日韩在线中文字幕| 美女cb高潮喷水在线观看| 97超碰精品成人国产| 国产不卡一卡二| 在线免费观看不下载黄p国产| 国产极品精品免费视频能看的| 综合色丁香网| 男女那种视频在线观看| 边亲边吃奶的免费视频| 亚洲高清免费不卡视频| 男女国产视频网站| 精品不卡国产一区二区三区| 人体艺术视频欧美日本| 亚洲av成人精品一二三区| 亚洲va在线va天堂va国产| 亚洲精品乱码久久久v下载方式| 亚洲美女搞黄在线观看| av在线蜜桃| 国产精品精品国产色婷婷| 亚洲天堂国产精品一区在线| 国产午夜精品久久久久久一区二区三区| 国产精品日韩av在线免费观看| 久久精品国产亚洲网站| 亚洲经典国产精华液单| 成年女人永久免费观看视频| 国产精品永久免费网站| 亚洲成人精品中文字幕电影| 免费搜索国产男女视频| 免费一级毛片在线播放高清视频| 免费av毛片视频| 干丝袜人妻中文字幕| 边亲边吃奶的免费视频| 日韩av在线大香蕉| 97超碰精品成人国产| 亚洲av福利一区| 18禁动态无遮挡网站| 亚洲激情五月婷婷啪啪| av国产久精品久网站免费入址| 亚洲无线观看免费| 99在线人妻在线中文字幕| 亚洲美女搞黄在线观看| 午夜福利在线在线| 老司机影院成人| 午夜福利在线观看免费完整高清在| 欧美xxxx黑人xx丫x性爽| 91精品一卡2卡3卡4卡| 色哟哟·www| 国产 一区 欧美 日韩| 2021天堂中文幕一二区在线观| 毛片女人毛片| 亚洲成人av在线免费| 久久99热这里只频精品6学生 | 国产又黄又爽又无遮挡在线| av播播在线观看一区| 国语对白做爰xxxⅹ性视频网站| 伦精品一区二区三区| 长腿黑丝高跟| 国产成人a区在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产色婷婷99| 亚洲av男天堂| 亚洲美女搞黄在线观看| 精品久久久久久久久亚洲| 日本黄色片子视频| 国产三级中文精品| 久久久色成人| av.在线天堂| 日韩高清综合在线| 免费无遮挡裸体视频| 免费观看性生交大片5| 欧美日本视频| 九九热线精品视视频播放| 国产一区有黄有色的免费视频 | 欧美激情国产日韩精品一区| 国产av不卡久久| 国产一区有黄有色的免费视频 | 免费av不卡在线播放| 免费搜索国产男女视频| 女人久久www免费人成看片 | 97超碰精品成人国产| 舔av片在线| 亚洲精华国产精华液的使用体验| 国产精品人妻久久久影院| 国产亚洲av片在线观看秒播厂 | 一个人看视频在线观看www免费| 深爱激情五月婷婷| 中文资源天堂在线| 国产精品爽爽va在线观看网站| 国产探花在线观看一区二区| av又黄又爽大尺度在线免费看 | 特级一级黄色大片| 在线观看美女被高潮喷水网站| a级一级毛片免费在线观看| 国产成人精品婷婷| 天堂网av新在线| 99热网站在线观看| 99久久人妻综合| 久久婷婷人人爽人人干人人爱| 中文字幕亚洲精品专区| 神马国产精品三级电影在线观看| 水蜜桃什么品种好| 天堂中文最新版在线下载 | 别揉我奶头 嗯啊视频|