• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Design and Control of Variable Camber Wing Driven by Ultrasonic Motors

    2015-11-24 02:39:13LiuWeidong劉衛(wèi)東ZhuHua朱華ZhouShengqiang周盛強(qiáng)EaiYalei白亞磊ZhaoChunsheng趙淳生
    關(guān)鍵詞:劉衛(wèi)東

    Liu Weidong(劉衛(wèi)東)'Zhu Hua(朱華)'Zhou Shengqiang(周盛強(qiáng))' Eai Yalei(白亞磊)'Zhao Chunsheng(趙淳生)

    State Key Laboratory of Mechanics and Control of Mechanical Structures'Nanjing University of Aeronautics and Astronautics'Nanjing 210016'P.R.China

    Structural Design and Control of Variable Camber Wing Driven by Ultrasonic Motors

    Liu Weidong(劉衛(wèi)東)'Zhu Hua(朱華)*'Zhou Shengqiang(周盛強(qiáng))' Eai Yalei(白亞磊)'Zhao Chunsheng(趙淳生)

    State Key Laboratory of Mechanics and Control of Mechanical Structures'Nanjing University of Aeronautics and Astronautics'Nanjing 210016'P.R.China

    A novel variable camber wing driven by ultrasonic motors is proposed.Key techniques of distributed layout of drive mechanisms'coordination control of distributed ultrasonic motors as well as novel flexible skin undergoing one-dimensional morphing are studied.The system integration of small variable camber wing is achieved. Distributed layout of parallelogram linkages driven by geared ultrasonic motors is adopted for morphing'aimed at reducing the load for each motor and producing various aerodynamic configurations suitable for different flying states.Programmable system-on-chip(PSoC)is used to realize the coordination control of the distributed ultrasonic motors.All the morphing driving systems are assembled in the interior of the wing.The wing surface is covered with a novel smooth flexible skin in order to maintain wing shape and decrease the aerodynamic drag during morphing.Wind tunnel test shows that the variable camber wing can realize morphing under low speed flight condition.Lift and drag characteristics and aerodynamic efficiency of the wing are improved.Appropriate configurations can be selected to satisfy aerodynamic requirements of different flight conditions.The study provides a practical application of piezoelectric precision driving technology in flow control.

    variable camber wing;ultrasonic motors(USMs);morphing skin;control system;wind tunnel test

    0 Introduction

    Aerodynamic performances'control characteristics can be improved and flight envelopes can be expanded through active deformations of morphing aircrafts.Various flight demands can be achieved by increasing the lift'reducing the drag' extending the range'and suppressing the flutter[1-2].

    As the wing is the main source of the lift of aircraft'most researches concentrate on the morphing wing design.At the beginning of the 21st century'Defense advanced research projects agency(DARPA)started to research on morphing techniques of trailing edge based on smart materials.Active flexible wing was assembled on E/A-18.Traditional leading edge flap and trailing edge aileron were adopted to make the wing twist. Wind tunnel test shows that precisely transformation of the wing shape can considerably reduce aerodynamic drag and transonic shock wave[3-4]. The approach also demonstrates that flexibility of the wing can be used to improve aerodynamic performance of the wing.However'the approach mainly concentrates on the traditional morphing technology.With the rapid development of smart materials recently'newly developed actuators based on smart materials should be taken into consideration in the design of morphing wings.

    National aeronautics and space administration(NASA)and DARPA are focusing on developing novel tailless smart aircraft.Several design proposals based on electroactive polymer'piezoelectric/hydraulic pump'shape memory alloy(SMA)and ultrasonic motor(USM)are studied. USM is a motor with a new working principle of the inverse piezoelectric effect of piezoelectric materials.Ey stimulating the elliptical motion of the medium particle contacts with the rotor(or slider)'the rotor(or slider)is driven to do rotary(or linear)motion by means of friction-driven.It is pointed out that power density of USM is superior to other actuators and the effect of distributed driving is better than traditional drive mode[5-7].In face'in 1998'Wlezien'et al.at Langley proposed that piezoelectric actuator was the best choice for morphing aircraft'except the disadvantage of small deformation of the piezoelectric element[8].The drawback can be settled by USM because it can amplify the high-frequency micro-amplitude vibration of the piezoceramics.The new conceptual motor is now developing rapidly and applied to the aerospace field[9-10].

    As described by Thill'et al.'a morphing skin can be envisaged as an aerodynamic fairing to cover an underlying morphing structure and transfer aerodynamic loads of the morphing wing. Therefore'flexible skin becomes one of the key technologies of morphing aircraft[11].Tomohiro' et al.proposed an out-of-plane corrugated flexible skin structure manufactured from carbon fiber plain woven fabrics[12].Olympio'et al.studied 0-Poisson′s ratio honeycombed structures'the hybrid and accordion honeycomb.The two are also designed for one-dimensional morphing and can be easily manufactured by water jet cutting[13]. Gandhi'et al.proposed some design considerations for flexible skins.It is significant that the skins must have low in-plane stiffness to minimize actuation energy[14].The lower the in-plane stiffness of the structure is'the less energy the morphing consumes.Therefore'structure with lower stiffness in the morphing direction should be developed to constitute a more efficiency flexible skin.

    With the same dimension in small scale'the output drive power of USM is larger than electromagnetic motor[6].In the paper'a feasible application technology of USM is proposed and a new kind of small variable camber wing driven by USMs is designed.Distributed layout of parallelogram linkages is adopted to transmit the rotation from the geared USMs to the trailing edge'so as to realize the function of variable camber.A new kind of flexible cosine honeycombed skin is designed to maintain aerodynamic shape of the wing.The working principle and design procedures of the wing will be discussed.Einally'the corresponding aerodynamic performances of seven typical aerodynamic shapes of the wing will be presented which are obtained by wind tunnel test.

    1 ConcePtual Model

    Small rectangular wing for small unmanned aerial vehicle(SUAV)is chosen as the design object.Considering the low speed flying characteristics of SUAV and installation dimensions of the driving mechanisms'NACA23018 which has a relatively large thickness and is suitable for low speed aircraft wing is adopted as the airfoil for the wing.Wing parameters are listed in Table 1.

    Table 1 Wing Parameters

    As shown in Eig.1'double spar type structure is applied to the whole wing.The front spar is arranged at the location of 25%chord length' and the drivers for the actuators are assembled on it.The rear spar is positioned at 53%chord length.The wing is assumed to be divided into several equal segments along spanwise direction and USMs are aligned at equal spacing on the rear spar in a distributed way.The number of USMs will be determined by the torque required by morphing and aerodynamic loads.The corresponding rib tips are driven by actuators respectively.To ensure that the whole trailing edge deform smoothly'two flexible carbon sticks are arranged along the spanwise direction in the interior of the trailing edge.In addition'small wing rib tips areadded to the trailing edge to maintain the airfoil' so the trailing edge can obtain continuous appearance during rotating or twisting deflections.

    Eig.1 Conceptual wing structure

    2 Methods

    2.1 Drive mechanism for morPhing

    To assemble the USMs in the interior as well as realize large deformation of the wing'parallelogram mechanisms driven by distributed geared USMs are adopted in each segment of the wing to drive the trailing edge'as shown in Eig.2.Compared with existing morphing methods'this kind of drive mechanism is simple and reliable'and can be easily manufactured and integrated into the whole system.The output shaft of geared motor is assembled in Hole 1 to supply the driving torque for the whole mechanism.The angular displacement transducer is located at Hole 2 to provide real-time feedback for the control system. Although the trailing edge can be driven by the linkages to have a deflection range of more than ±20°'a deflection range of±10°is selected as a verification test in this study.

    Eig.2 Parallelogram mechanism

    2.2 High elastic telescoPe skin

    The 60%to 80%of the chord is designed to be flexible section of the wing.Taking the airfoil whose chord length is 1 as an example'the lengths of the morphing parts of the top and bottom surfaces of the airfoil are obtained by interpolation method and listed in Table 2 when the trailing edge deflects up and down smoothly.In Table 2'the biggest strain of 3.8%exists on the top of the airfoil when the trailing edge deflects downward to 10°.

    Table 2 Length of toP and bottom surfaces of morPhing section of unit-chord airfoil

    Elexible skin for variable camber wing requires light weight'high flexibility for in-plane morphing and large bending stiffness to afford aerodynamic pressure.Coreless semi-rigid skin is proposed to satisfy the mentioned requirements. Elastic structure with high flexibility in morphing direction works as a support to help the skin resist the normal pressure on the surface.A smooth silastic film is covered on the structure to reduce the aerodynamic drag.

    The length of the flexible skin in morphing direction is calculated to be 63.819 mm.The whole length is finally set to be 80 mm considering the assembly of the elastic structure.The deformation part is 63 mm'and each of the two supports is 8.5 mm.Polyoxymethylene(POM)' a kind of plastic whose elastic modulus is about 1.7 GPa'is adopted to manufacture this structure.The elastic structure is designed to be a cosine type honeycomb which is appropriate for stretching.Three longitudinal beams are inserted to strengthen the stiffness in nondeformable directions.Sample of the elastic structure is manufactured'as shown in Eig.3.

    Eig.3 Sample of elastic structure

    Einite element(EE)model and test of the sample are shown in Eig.4.The result of the finite element analysis shows that the stiffness in X direction of the cosine honeycomb is only 0.187 MPa.It is just 1.1×10-4of the raw material′s stiffness'which consists well with test result.Therefore'a distributed force of 27.6 N/m is required to apply on right edge of the structure to obtain the strain of 3.8%.

    Eig.4 EEM and test of sample

    2.3 Performance of USMs

    Assume that the two flexible carbon sticks inserted in the trailing edge has very fine diameters and has little contribution to the drive mechanisms'the drive mechanisms have to conquer three resisting torques.Therefore'the total torque required by the mechanisms is

    where Mteis the aerodynamic torque of the trailing edge'Mmsthe torque for flexible skin morphing'and Mfthe torque results from frictions of the mechanisms.

    Aerodynamic torque of the trailing edge can be calculated as follows

    whereρv2is the dynamic pressure'S the wing area'b the span of the wing'and Cmtethe torque coefficient of the trailing edge.And Cmtecan be obtained by aerodynamic calculation.

    The torque for skin morphing can be approximately calculated as follows

    where F is the tension or compression required by deformed skin'and l cosθthe corresponding arm of force.

    The torque results from frictions can be calculated by structure dynamic simulation.

    Supposing the cruising speed is 0.2Ma'the angle of attack is 2°.Considering the maximum morphing state of the wing'the trailing edge deflects down to 10°.Three resisting torques can be obtained respectively and the total torque required by the mechanisms is figured out to be 4.274 N· m.

    Considering space limitations'speed and torque requirements'USM40 with the external diameter of 40 mm and the rated torque of 0.15 N·m is adopted here.Main technique data of the motor are listed in Table 3.

    Table 3 SPecifications of USM40

    As mentioned by Kudva'a minimum actuation rate of 25°flap deflection in 0.33 s'producing a slew rate of 75°/s'is desired of morphing wing[5].In order to slow down the rotation speed and increase the torque of the parallelogram linkages'gear transmission with a reduction ratio of 1∶10 is assembled between the motor and the linkage.Then the rotation speed decreases to 75°/s and the drive torque increaseas to 1.5 N·m.5 geared USMs can totally provide a drive torque of 7.5 N·m and satisfy the torque requirement.

    2.4 Control system

    Programmable system-on-chip(PSoC)isadopted to realize the coordination control of the distributed USMs.Elock diagram of the driver circuit based on PSoC for USMs is shown in Eig.5.The driver and upper computer control interface are realized in C++.In each segment of the wing'the change of the angle of the trailing edge is detected and sent back to the control system by the angular displacement transducer.In addition'two limit switches are assembled to control the deflection range of the trailing edge.

    Eig.5 Driver circuit of USMs

    2.5 PrototyPe of wing

    A prototype of the variable camber wing is manufactured'as shown in Eig.6.The spars and ribs of the wing are made of aluminum.Due to self-lock of USM'there is no need to use additional self-lock devices.The drive mechanisms and control system'including mechanical structures and electronic components'are all assembled in the interior of the wing.The leading edge'which is invariable'is covered with heat shrinkable skin.The morphing part of the wing is covered with the flexible skin mentioned above. Thus the wing can obtain a gapless configuration.

    Eig.6 Prototype of wing without skin

    3 Wind Tunnel Test

    Wind tunnel test is conducted in a low speed wind tunnel in Nanjing University of Aeronautics and Astronautics'as shown in Eig.7.The measuring system concludes a strain-gauge balance with six components'signal amplifier for the balance'data acquisition card and the processing software.The measuring range of the balance is 3 kg and the test accuracy is 0.5%.The wind speed is set to be 20 m/s.Reynolds number is 4.3×105.

    Eig.7 Wind tunnel test of morphing wing

    The variable camber wing can realize various shapes due to its flexible trailing edge and the distributed driving mechanism.Seven typical shapes(as shown in Eig.8)are selected to study the aerodynamic characteristics.The lift and drag forces of the seven typical shapes are measured when the angle of attack changes from-6°to 28°.

    4 Result and Discussion

    Eig.9 shows the coefficients of lift of mentioned seven typical shapes versus different angles of attack.In Eig.9'the maximum lift coefficients exist when the trailing edge deflects downward to 10°(which is the shape in Eig.8(b))'while the minimum lift coefficients can be obtained when the trailing edge deflects upward to-10°(which is the shape in Eig.8(c)).The lift coefficients of the shape in Eig.8(c)are 57.9%larger than the shape in Eig.8(b)on average.Other configurations obtain lift coefficients between them.The more the trailing edge deflects down'the larger lift coefficient will be obtained.It can be seenclearly that the variable camber wing can remarkably change its lift characteristics.

    Eig.8 Seven typical shapes of wing

    Eig.9 Coefficients of lift of seven typical shapes v.s. different angles of attack

    Eig.10 shows the lift-to-drag ratios of seven typical shapes versus different angles of attack.It is clear that the wing shapes with different cambers have distinguishable effects on the lift-todrag ratio of the wing and can be adopted under different flight conditions.Raising the lift-to-drag ratio can reduce flight consumption.Therefore' choosing the best wing shape under certain flight condition can effectively raise flight efficiency. Eor the angles of attack of-6°to 3°'the shape in Eig.8(b)gets the largest lift-to-drag ratio'and the shape is suitable for landing and cruising.Eor the angles of attack of 3°to 5°'the shape in Eig.8(f)is the best choice and the shape is suitable for taking off.

    Eig.10 Lift-to-drag ratios of seven typical shapes v.s. different angles of attack

    5 Conclusions

    A new type of variable camber wing based on USMs is designed and manufactured.Distributed layout of driving mechanisms can reduce torque requirement for each motor and realize various wing shapes.USM40 is selected as the best actuator for the wing considering certain morphing requirements.Coordination control of distributed USMs is realized based on PSoC.A coreless semi-rigid skin which is suitable for morphing wing is proposed and studied.Prototype of the wing is manufactured and aerodynamic test is done in a low speed wind tunnel.Results show that the wing can realize expected morphing under low speed flight conditions.

    Seven typical aerodynamic shapes are proposed of which the aerodynamic performances are considerably different from each other.It can be seen from wind tunnel test results that compared with traditional invariable camber wings'the variable camber wing can provide appropriate wing shapes for various flight conditions which can help to obtain a better aerodynamic performance.

    The exploratory work of variable camber wing driven by USMs synthesizes multi-disciplinary problems.Aerodynamic performance'mechanical design'material selection and drive and control system design have to be taken into consideration simultaneously.The study demonstrates that USMs can be used as actuators for global deformation of small morphing wings ofSUAV.Due to its outstanding characteristics'it can hopefully be adopted for local flow control for larger aircrafts.

    Acknowledgements

    This work was supported by the National Natural Science Eoundation of China(Nos.50905085'91116020)'the Aviation Science Eoundation of China(No.20100112005).

    [1] Weisshaar T A.Morphing aircraft technology-new shapes for aircraft design[R].RTO-MP-AVT-141. Erance:NATD Science and Technology Orgnization' 2006.

    [2] Justin E M.Analysis and design of a hyper-elliptical cambered span morphing aircraft wing[D].New York:Cornell University Graduate School'2006.

    [3] Hans P M.Realization of an optimized wing camber by using form variable flap structures[J].Aerospace Science and Technology'2001'5(7):445-455.

    [4] Reed Jr J L'Hemmelgarn C D'Pelley E M'et al. Adaptive wing structures[C]//Proceedings SPIE' Smart Structures and Materials 2005:Industrial and Commercial Applications of Smart Structures Technologies.San Diego'CA:SPIE'2005'5762:132-142.

    [5] Kudva J N.Overview of the DARPA smart wing project[J].Journal of Intelligent Material Systems and Structures'2004'15(4):261-269.

    [6] Jonathan D'Eartley C.Development of high-rate'adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J].Journal of Intelligence Material Systems and Structures'2004'15(4):279-292.

    [7] Loewy R L.Recent developments in smart structures with aeronautical applications[J].Smart Materials and Structures'1997'6(5):R11-R42.

    [8] Wlezien R W'Horner G C'Mc Gowan A R'et al. The aircraft morphing program[R].AIAA 98-1927' 1998.

    [9] Zhao Chunsheng.Ultrasonic motors technologies and applications[M].Eeijing:Science Press'2007:1-19.(in Chinese)

    [10]Zhu Hua'Liu Weidong'Zhao Chunsheng.Morphing aircraft and its morph-driving techniques[J].Machine Euilding Automation'2010'39(2):8-14'125.(in Chinese)

    [11]Thill C'Etches J'Eond I'et al.Morphing skins[J]. Aeronautical Journal'2008'112(1129):117-139.

    [12]Tomohiro Y'Shin-ichi T'Toshio O'et al.Mechanical properties of corrugated composites for candidate materials of flexible wing structures[J].Composites Part A:Applied Science and Manufacturing'2006'37(10):1578-1586.

    [13]Olympio K R'Gandhi E.Zero Poisson′s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing[J].Journal of Intelligent Material Systems and Structures'2010'21(17):1737-1753.

    [14]Gandhi E'Anusonti-Inthra P.Skin design studies for variable camber morphing airfoils[J].Smart Materials and Structures'2008'17(1):015025-015033.

    (Executive editor:Xu Chengting)

    V11 Document code:A Article ID:1005-1120(2015)02-0180-07

    *CorresPonding author:Zhu Hua'Associate Researcher'E-mail:hzhu103@nuaa.edu.cn.

    How to cite this article:Liu Weidong'Zhu Hua'Zhou Shengqiang'et al.Structural design and control of variable camber wing driven by ultrasonic motors[J].Trans.Nanjing U.Aero.Astro.'2015'32(2):180-186.

    http://dx.doi.org/10.16356/j.1005-1120.2015.02.180

    (Received 18 September 2013;revised 2 January 2014;accepted 12 January 2014)

    猜你喜歡
    劉衛(wèi)東
    陪伴
    特高壓GIS特快速暫態(tài)過(guò)電壓試驗(yàn)重復(fù)擊穿過(guò)程研究
    StePPing Control Method of Linear DisPlacement Mechanism Driven by TRUM Based on PSoC
    15萬(wàn)張紅豆餅
    37°女人(2015年2期)2015-11-21 00:38:27
    小攤販與副教授:15萬(wàn)張紅豆餅見(jiàn)證愛(ài)的高度
    婦女生活(2015年2期)2015-09-10 07:22:44
    咱沒(méi)收過(guò)禮
    幸?!傋x(2014年12期)2015-01-17 01:22:07
    成人性生交大片免费视频hd| 国产亚洲精品久久久久久毛片| 一卡2卡三卡四卡精品乱码亚洲| 欧美黄色淫秽网站| 久久久国产成人免费| 亚洲av免费高清在线观看| 亚洲五月婷婷丁香| 日本一二三区视频观看| 国内精品美女久久久久久| 少妇人妻一区二区三区视频| 欧美+亚洲+日韩+国产| 日韩欧美国产一区二区入口| 国产三级中文精品| 亚洲成人久久性| 麻豆久久精品国产亚洲av| 成人特级黄色片久久久久久久| 一区二区三区激情视频| 日本黄色视频三级网站网址| 人妻夜夜爽99麻豆av| 国内精品美女久久久久久| 日韩免费av在线播放| 久久精品人妻少妇| 国产男靠女视频免费网站| 深夜a级毛片| 中文字幕人成人乱码亚洲影| 国内揄拍国产精品人妻在线| 久久精品国产清高在天天线| 成人三级黄色视频| 日韩中字成人| av女优亚洲男人天堂| 国内久久婷婷六月综合欲色啪| 国产淫片久久久久久久久 | 床上黄色一级片| 亚洲国产精品成人综合色| 日本一二三区视频观看| 国产综合懂色| 高清毛片免费观看视频网站| 久久这里只有精品中国| 免费看光身美女| 一本一本综合久久| www日本黄色视频网| 国产大屁股一区二区在线视频| 亚洲专区国产一区二区| 久久精品夜夜夜夜夜久久蜜豆| 搡老熟女国产l中国老女人| 亚洲精品成人久久久久久| 久久久久久久亚洲中文字幕 | 国产视频内射| 国产成人影院久久av| 一个人免费在线观看电影| 日本精品一区二区三区蜜桃| 在线看三级毛片| 久久久久久国产a免费观看| 精品久久久久久成人av| 亚洲国产日韩欧美精品在线观看| 一个人观看的视频www高清免费观看| 久久伊人香网站| 黄色配什么色好看| 搡老妇女老女人老熟妇| 国产黄片美女视频| 国产精品99久久久久久久久| 亚洲中文日韩欧美视频| 看免费av毛片| 欧美高清性xxxxhd video| 99精品久久久久人妻精品| 国产野战对白在线观看| 国产精品美女特级片免费视频播放器| 性色av乱码一区二区三区2| 男人舔奶头视频| 人妻丰满熟妇av一区二区三区| 国产成人av教育| 老鸭窝网址在线观看| .国产精品久久| 午夜免费激情av| 麻豆一二三区av精品| 国产av一区在线观看免费| 在线播放无遮挡| 嫩草影院入口| 麻豆国产97在线/欧美| 久久亚洲精品不卡| 动漫黄色视频在线观看| 一个人看的www免费观看视频| 久久久精品大字幕| 国产精品亚洲av一区麻豆| 亚洲欧美清纯卡通| 日本 欧美在线| 超碰av人人做人人爽久久| 九色成人免费人妻av| 丰满的人妻完整版| 神马国产精品三级电影在线观看| 看十八女毛片水多多多| 性插视频无遮挡在线免费观看| 亚洲专区中文字幕在线| 99在线视频只有这里精品首页| 成年女人看的毛片在线观看| 五月玫瑰六月丁香| 亚洲成人久久爱视频| 欧美日韩黄片免| 美女高潮的动态| 精品久久久久久久久亚洲 | 波野结衣二区三区在线| av中文乱码字幕在线| 欧美性感艳星| 老女人水多毛片| 在线十欧美十亚洲十日本专区| 香蕉av资源在线| 男女做爰动态图高潮gif福利片| 97碰自拍视频| 999久久久精品免费观看国产| 99国产精品一区二区三区| 日韩精品中文字幕看吧| 亚洲第一电影网av| 最新在线观看一区二区三区| 国产单亲对白刺激| 高潮久久久久久久久久久不卡| 看黄色毛片网站| 国产毛片a区久久久久| .国产精品久久| 精品人妻1区二区| 一级a爱片免费观看的视频| 深夜精品福利| 搡老妇女老女人老熟妇| 在线观看午夜福利视频| 最后的刺客免费高清国语| 日韩亚洲欧美综合| 欧美3d第一页| 淫妇啪啪啪对白视频| 老熟妇乱子伦视频在线观看| 伊人久久精品亚洲午夜| 精品一区二区三区人妻视频| 免费在线观看影片大全网站| av欧美777| 露出奶头的视频| 一本久久中文字幕| 国产成人啪精品午夜网站| 成人精品一区二区免费| 中文字幕av在线有码专区| 老熟妇乱子伦视频在线观看| 国产乱人视频| 少妇丰满av| 亚洲精品色激情综合| 淫秽高清视频在线观看| 国产精品久久久久久人妻精品电影| 成人性生交大片免费视频hd| 99精品久久久久人妻精品| a级毛片a级免费在线| 国产黄色小视频在线观看| 欧美日韩福利视频一区二区| 十八禁国产超污无遮挡网站| 中文亚洲av片在线观看爽| 搡女人真爽免费视频火全软件 | 嫩草影院入口| 精品久久久久久成人av| 欧美激情久久久久久爽电影| 亚洲真实伦在线观看| 最近视频中文字幕2019在线8| 狂野欧美白嫩少妇大欣赏| 精品一区二区三区av网在线观看| 欧美区成人在线视频| 亚洲欧美日韩无卡精品| АⅤ资源中文在线天堂| 午夜亚洲福利在线播放| 亚洲最大成人av| 老司机深夜福利视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 午夜福利在线在线| 亚洲av电影在线进入| 欧美成狂野欧美在线观看| 成人亚洲精品av一区二区| 日日夜夜操网爽| 伊人久久精品亚洲午夜| 日本成人三级电影网站| 中文亚洲av片在线观看爽| 全区人妻精品视频| 男女下面进入的视频免费午夜| 亚洲狠狠婷婷综合久久图片| 在线观看美女被高潮喷水网站 | 欧美最新免费一区二区三区 | 精品人妻偷拍中文字幕| 亚洲在线观看片| 精品福利观看| 一级a爱片免费观看的视频| 国产黄色小视频在线观看| 熟女人妻精品中文字幕| 精品久久久久久久人妻蜜臀av| 又紧又爽又黄一区二区| 亚洲国产精品999在线| 男女床上黄色一级片免费看| 夜夜爽天天搞| 免费在线观看亚洲国产| 在线播放无遮挡| 国产午夜福利久久久久久| 97超视频在线观看视频| 亚洲av熟女| 三级毛片av免费| 人妻丰满熟妇av一区二区三区| 国产精品98久久久久久宅男小说| 久久国产乱子免费精品| 亚洲狠狠婷婷综合久久图片| 日韩 亚洲 欧美在线| 内地一区二区视频在线| 国产精品野战在线观看| 老司机深夜福利视频在线观看| 国产精品人妻久久久久久| 亚洲av中文字字幕乱码综合| 精品日产1卡2卡| 国产成人a区在线观看| 亚洲av成人精品一区久久| 成人一区二区视频在线观看| 国产av麻豆久久久久久久| 亚洲午夜理论影院| 国产熟女xx| 嫩草影视91久久| 五月玫瑰六月丁香| 国产精华一区二区三区| 色尼玛亚洲综合影院| 久久久久久久久久成人| 亚洲av成人不卡在线观看播放网| 香蕉av资源在线| 俄罗斯特黄特色一大片| 高清毛片免费观看视频网站| 成人鲁丝片一二三区免费| 国产av麻豆久久久久久久| 国产黄片美女视频| 日本与韩国留学比较| 久久久久久久久久黄片| 一边摸一边抽搐一进一小说| 欧美高清性xxxxhd video| 国产亚洲精品综合一区在线观看| 国内精品美女久久久久久| 一进一出好大好爽视频| 69av精品久久久久久| 久久久国产成人精品二区| 成人欧美大片| 国产一级毛片七仙女欲春2| 国产午夜精品久久久久久一区二区三区 | www.熟女人妻精品国产| 日日夜夜操网爽| 欧美潮喷喷水| 少妇熟女aⅴ在线视频| 国产精品一区二区性色av| 精品国产三级普通话版| 亚洲欧美日韩卡通动漫| 国产视频内射| 久久久久久久久中文| 欧美区成人在线视频| 欧美黑人欧美精品刺激| 最近中文字幕高清免费大全6 | 窝窝影院91人妻| 亚洲在线自拍视频| 日本成人三级电影网站| 国产91精品成人一区二区三区| 美女xxoo啪啪120秒动态图 | 亚洲国产高清在线一区二区三| 久久久久精品国产欧美久久久| 久久久久精品国产欧美久久久| 国产亚洲精品久久久久久毛片| 九九久久精品国产亚洲av麻豆| 一区二区三区四区激情视频 | 美女免费视频网站| 日本黄色视频三级网站网址| 五月伊人婷婷丁香| 亚洲性夜色夜夜综合| 欧美日韩亚洲国产一区二区在线观看| av福利片在线观看| 亚洲内射少妇av| 欧美黄色淫秽网站| 欧美激情久久久久久爽电影| 五月伊人婷婷丁香| av在线天堂中文字幕| 一本久久中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 国产成+人综合+亚洲专区| 91午夜精品亚洲一区二区三区 | 九九热线精品视视频播放| 毛片女人毛片| 亚洲avbb在线观看| 一个人看视频在线观看www免费| 精品久久久久久,| 国产黄a三级三级三级人| 成年人黄色毛片网站| 99热这里只有是精品50| 身体一侧抽搐| av视频在线观看入口| 赤兔流量卡办理| 高清日韩中文字幕在线| 成人亚洲精品av一区二区| 男人舔奶头视频| 欧美乱妇无乱码| 白带黄色成豆腐渣| 一个人免费在线观看电影| 怎么达到女性高潮| 国产91精品成人一区二区三区| 成年女人毛片免费观看观看9| 日韩免费av在线播放| 美女xxoo啪啪120秒动态图 | 欧美日本亚洲视频在线播放| 国产黄色小视频在线观看| 国产单亲对白刺激| 欧美高清成人免费视频www| 两个人的视频大全免费| 哪里可以看免费的av片| 桃红色精品国产亚洲av| 老司机福利观看| 欧美不卡视频在线免费观看| 精品久久久久久,| 夜夜爽天天搞| 久久精品国产亚洲av天美| 看十八女毛片水多多多| eeuss影院久久| av视频在线观看入口| 天堂影院成人在线观看| 亚洲国产精品999在线| 狂野欧美白嫩少妇大欣赏| 亚洲精品在线美女| 亚洲五月婷婷丁香| 久久香蕉精品热| 国产精品女同一区二区软件 | 国产一级毛片七仙女欲春2| 欧美黑人巨大hd| 国产成+人综合+亚洲专区| 琪琪午夜伦伦电影理论片6080| 又黄又爽又刺激的免费视频.| 欧美日本亚洲视频在线播放| 亚洲成a人片在线一区二区| 一进一出抽搐gif免费好疼| 91在线精品国自产拍蜜月| 高清在线国产一区| 午夜a级毛片| 久久草成人影院| 国产男靠女视频免费网站| 国产精品美女特级片免费视频播放器| 老熟妇仑乱视频hdxx| 高清毛片免费观看视频网站| 亚洲中文字幕日韩| 中国美女看黄片| 伦理电影大哥的女人| 国产精品精品国产色婷婷| 窝窝影院91人妻| 欧美黑人欧美精品刺激| 国内精品久久久久精免费| 丰满人妻一区二区三区视频av| 日本三级黄在线观看| 精品人妻视频免费看| 久久99热6这里只有精品| 亚洲av成人不卡在线观看播放网| 51国产日韩欧美| 亚洲一区二区三区色噜噜| 久久久久九九精品影院| 日本成人三级电影网站| 午夜免费激情av| 欧美日韩综合久久久久久 | 麻豆国产av国片精品| 亚洲 欧美 日韩 在线 免费| 99riav亚洲国产免费| 国产精品98久久久久久宅男小说| 午夜福利在线观看吧| 欧美日韩瑟瑟在线播放| 一级毛片久久久久久久久女| 国产免费男女视频| 日本免费a在线| 91在线观看av| 听说在线观看完整版免费高清| 中文字幕av在线有码专区| 久久久久久国产a免费观看| 免费人成在线观看视频色| 亚洲熟妇中文字幕五十中出| 美女被艹到高潮喷水动态| 亚洲美女视频黄频| 国产精品不卡视频一区二区 | 男人舔女人下体高潮全视频| 18美女黄网站色大片免费观看| 色5月婷婷丁香| 欧美精品国产亚洲| 级片在线观看| 亚洲美女黄片视频| 成人性生交大片免费视频hd| 国产老妇女一区| 国产高清有码在线观看视频| 免费在线观看日本一区| 亚洲精品成人久久久久久| а√天堂www在线а√下载| 一卡2卡三卡四卡精品乱码亚洲| 国内精品一区二区在线观看| 亚洲国产精品999在线| 十八禁人妻一区二区| 亚洲av电影不卡..在线观看| 国产视频一区二区在线看| 成人特级av手机在线观看| 一级av片app| 久久精品国产亚洲av涩爱 | 哪里可以看免费的av片| 久久久久九九精品影院| a级一级毛片免费在线观看| 两个人的视频大全免费| 亚洲aⅴ乱码一区二区在线播放| 国产aⅴ精品一区二区三区波| 国产av在哪里看| 俺也久久电影网| 韩国av一区二区三区四区| av在线观看视频网站免费| 国产精品99久久久久久久久| 2021天堂中文幕一二区在线观| 国产一区二区亚洲精品在线观看| 欧美丝袜亚洲另类 | 国产成人a区在线观看| www日本黄色视频网| 亚洲人与动物交配视频| 在线天堂最新版资源| 国产高清有码在线观看视频| 欧美最黄视频在线播放免费| 欧美日本亚洲视频在线播放| 国产真实乱freesex| 757午夜福利合集在线观看| 在线观看一区二区三区| 色精品久久人妻99蜜桃| 级片在线观看| 亚洲一区二区三区色噜噜| 噜噜噜噜噜久久久久久91| 久久草成人影院| 每晚都被弄得嗷嗷叫到高潮| 老鸭窝网址在线观看| 国产色爽女视频免费观看| av在线观看视频网站免费| 啪啪无遮挡十八禁网站| 久久伊人香网站| 日本免费一区二区三区高清不卡| 在线观看美女被高潮喷水网站 | 老司机深夜福利视频在线观看| 国产国拍精品亚洲av在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品一区二区三区四区久久| 蜜桃久久精品国产亚洲av| 国产欧美日韩精品亚洲av| 国产一区二区激情短视频| www.熟女人妻精品国产| 人人妻人人澡欧美一区二区| 欧美乱妇无乱码| 黄色日韩在线| 国产精品自产拍在线观看55亚洲| 高潮久久久久久久久久久不卡| 搡女人真爽免费视频火全软件 | 欧美最新免费一区二区三区 | 高清在线国产一区| 亚洲av成人av| 亚洲国产日韩欧美精品在线观看| 午夜亚洲福利在线播放| 亚洲专区国产一区二区| 精品一区二区三区视频在线| 欧美又色又爽又黄视频| 又爽又黄无遮挡网站| avwww免费| 久久国产精品人妻蜜桃| 亚洲精品粉嫩美女一区| 特级一级黄色大片| 中国美女看黄片| 色哟哟哟哟哟哟| 一级黄片播放器| 精华霜和精华液先用哪个| 国产精品久久电影中文字幕| 深夜精品福利| 国产亚洲精品av在线| 日本免费a在线| .国产精品久久| 午夜福利视频1000在线观看| 男人舔奶头视频| 亚洲av不卡在线观看| 亚洲综合色惰| 可以在线观看毛片的网站| 噜噜噜噜噜久久久久久91| 欧美日韩瑟瑟在线播放| 青草久久国产| 人人妻,人人澡人人爽秒播| 欧美成人免费av一区二区三区| 丰满的人妻完整版| 看免费av毛片| 亚洲av一区综合| 激情在线观看视频在线高清| 亚洲五月婷婷丁香| 午夜福利在线在线| 亚洲男人的天堂狠狠| 免费av毛片视频| 久久久精品大字幕| 亚洲最大成人av| 伦理电影大哥的女人| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av在线| 校园春色视频在线观看| 久久久久久久久大av| av专区在线播放| 观看美女的网站| 欧美区成人在线视频| 国产精品美女特级片免费视频播放器| 亚洲成人中文字幕在线播放| 精品久久久久久久久久免费视频| 一进一出好大好爽视频| 看黄色毛片网站| 丝袜美腿在线中文| 国产一级毛片七仙女欲春2| 欧美色欧美亚洲另类二区| 搡老岳熟女国产| 十八禁国产超污无遮挡网站| 欧美性猛交╳xxx乱大交人| 国产精品1区2区在线观看.| 国产真实乱freesex| 日韩欧美精品v在线| 国内久久婷婷六月综合欲色啪| 天堂√8在线中文| 亚洲av电影在线进入| 亚洲色图av天堂| 国产亚洲av嫩草精品影院| 国产视频一区二区在线看| 国模一区二区三区四区视频| h日本视频在线播放| 亚洲黑人精品在线| 人妻制服诱惑在线中文字幕| 精品免费久久久久久久清纯| 欧美绝顶高潮抽搐喷水| 国产精品女同一区二区软件 | 国产在线精品亚洲第一网站| 久久这里只有精品中国| 国内精品久久久久久久电影| 国产视频一区二区在线看| 欧美黑人巨大hd| 婷婷精品国产亚洲av| 男女之事视频高清在线观看| 亚洲一区二区三区不卡视频| 免费观看人在逋| 伊人久久精品亚洲午夜| 69人妻影院| 欧美日韩瑟瑟在线播放| av视频在线观看入口| 日韩精品中文字幕看吧| 69人妻影院| 白带黄色成豆腐渣| 欧美成人a在线观看| av天堂中文字幕网| 亚洲精华国产精华精| 亚洲av二区三区四区| 欧美成人一区二区免费高清观看| 亚洲精品一卡2卡三卡4卡5卡| 中国美女看黄片| 成人特级黄色片久久久久久久| 毛片女人毛片| 悠悠久久av| 亚洲人与动物交配视频| 日本免费一区二区三区高清不卡| 婷婷丁香在线五月| 国产精品一区二区三区四区久久| 免费看光身美女| 精品一区二区三区视频在线| 色噜噜av男人的天堂激情| 精品国内亚洲2022精品成人| 免费人成视频x8x8入口观看| 久久精品人妻少妇| 亚洲国产精品久久男人天堂| 久久久久久国产a免费观看| 国语自产精品视频在线第100页| 欧美xxxx性猛交bbbb| av欧美777| 小蜜桃在线观看免费完整版高清| 午夜福利在线观看吧| 精品人妻1区二区| 最近最新中文字幕大全电影3| 超碰av人人做人人爽久久| 永久网站在线| 老司机午夜福利在线观看视频| 一二三四社区在线视频社区8| 又黄又爽又免费观看的视频| 日韩 亚洲 欧美在线| 黄色女人牲交| 搡老熟女国产l中国老女人| 午夜免费激情av| 成人三级黄色视频| 亚洲在线观看片| 嫩草影院新地址| 亚洲中文字幕一区二区三区有码在线看| 99久国产av精品| 国产三级黄色录像| 亚洲av五月六月丁香网| 亚洲人成伊人成综合网2020| 精品乱码久久久久久99久播| 久久精品国产亚洲av涩爱 | av天堂在线播放| 国产在线精品亚洲第一网站| 一区二区三区四区激情视频 | 精品午夜福利视频在线观看一区| 99在线人妻在线中文字幕| 国语自产精品视频在线第100页| 国内精品久久久久久久电影| 亚洲,欧美精品.| 日本熟妇午夜| 亚洲人与动物交配视频| 国产精品一及| 亚洲va日本ⅴa欧美va伊人久久| 久9热在线精品视频| 欧美bdsm另类| 欧美高清成人免费视频www| 免费观看的影片在线观看| 亚洲欧美日韩无卡精品| 人妻丰满熟妇av一区二区三区| 久久亚洲真实| 2021天堂中文幕一二区在线观| 国产色婷婷99| 色播亚洲综合网| av天堂在线播放| 国产色婷婷99| 午夜福利在线观看吧| 少妇人妻一区二区三区视频| 免费在线观看日本一区| 中亚洲国语对白在线视频| 亚洲自拍偷在线| 精品国内亚洲2022精品成人| 18美女黄网站色大片免费观看| 亚洲精品一区av在线观看|