• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Design and Control of Variable Camber Wing Driven by Ultrasonic Motors

    2015-11-24 02:39:13LiuWeidong劉衛(wèi)東ZhuHua朱華ZhouShengqiang周盛強(qiáng)EaiYalei白亞磊ZhaoChunsheng趙淳生
    關(guān)鍵詞:劉衛(wèi)東

    Liu Weidong(劉衛(wèi)東)'Zhu Hua(朱華)'Zhou Shengqiang(周盛強(qiáng))' Eai Yalei(白亞磊)'Zhao Chunsheng(趙淳生)

    State Key Laboratory of Mechanics and Control of Mechanical Structures'Nanjing University of Aeronautics and Astronautics'Nanjing 210016'P.R.China

    Structural Design and Control of Variable Camber Wing Driven by Ultrasonic Motors

    Liu Weidong(劉衛(wèi)東)'Zhu Hua(朱華)*'Zhou Shengqiang(周盛強(qiáng))' Eai Yalei(白亞磊)'Zhao Chunsheng(趙淳生)

    State Key Laboratory of Mechanics and Control of Mechanical Structures'Nanjing University of Aeronautics and Astronautics'Nanjing 210016'P.R.China

    A novel variable camber wing driven by ultrasonic motors is proposed.Key techniques of distributed layout of drive mechanisms'coordination control of distributed ultrasonic motors as well as novel flexible skin undergoing one-dimensional morphing are studied.The system integration of small variable camber wing is achieved. Distributed layout of parallelogram linkages driven by geared ultrasonic motors is adopted for morphing'aimed at reducing the load for each motor and producing various aerodynamic configurations suitable for different flying states.Programmable system-on-chip(PSoC)is used to realize the coordination control of the distributed ultrasonic motors.All the morphing driving systems are assembled in the interior of the wing.The wing surface is covered with a novel smooth flexible skin in order to maintain wing shape and decrease the aerodynamic drag during morphing.Wind tunnel test shows that the variable camber wing can realize morphing under low speed flight condition.Lift and drag characteristics and aerodynamic efficiency of the wing are improved.Appropriate configurations can be selected to satisfy aerodynamic requirements of different flight conditions.The study provides a practical application of piezoelectric precision driving technology in flow control.

    variable camber wing;ultrasonic motors(USMs);morphing skin;control system;wind tunnel test

    0 Introduction

    Aerodynamic performances'control characteristics can be improved and flight envelopes can be expanded through active deformations of morphing aircrafts.Various flight demands can be achieved by increasing the lift'reducing the drag' extending the range'and suppressing the flutter[1-2].

    As the wing is the main source of the lift of aircraft'most researches concentrate on the morphing wing design.At the beginning of the 21st century'Defense advanced research projects agency(DARPA)started to research on morphing techniques of trailing edge based on smart materials.Active flexible wing was assembled on E/A-18.Traditional leading edge flap and trailing edge aileron were adopted to make the wing twist. Wind tunnel test shows that precisely transformation of the wing shape can considerably reduce aerodynamic drag and transonic shock wave[3-4]. The approach also demonstrates that flexibility of the wing can be used to improve aerodynamic performance of the wing.However'the approach mainly concentrates on the traditional morphing technology.With the rapid development of smart materials recently'newly developed actuators based on smart materials should be taken into consideration in the design of morphing wings.

    National aeronautics and space administration(NASA)and DARPA are focusing on developing novel tailless smart aircraft.Several design proposals based on electroactive polymer'piezoelectric/hydraulic pump'shape memory alloy(SMA)and ultrasonic motor(USM)are studied. USM is a motor with a new working principle of the inverse piezoelectric effect of piezoelectric materials.Ey stimulating the elliptical motion of the medium particle contacts with the rotor(or slider)'the rotor(or slider)is driven to do rotary(or linear)motion by means of friction-driven.It is pointed out that power density of USM is superior to other actuators and the effect of distributed driving is better than traditional drive mode[5-7].In face'in 1998'Wlezien'et al.at Langley proposed that piezoelectric actuator was the best choice for morphing aircraft'except the disadvantage of small deformation of the piezoelectric element[8].The drawback can be settled by USM because it can amplify the high-frequency micro-amplitude vibration of the piezoceramics.The new conceptual motor is now developing rapidly and applied to the aerospace field[9-10].

    As described by Thill'et al.'a morphing skin can be envisaged as an aerodynamic fairing to cover an underlying morphing structure and transfer aerodynamic loads of the morphing wing. Therefore'flexible skin becomes one of the key technologies of morphing aircraft[11].Tomohiro' et al.proposed an out-of-plane corrugated flexible skin structure manufactured from carbon fiber plain woven fabrics[12].Olympio'et al.studied 0-Poisson′s ratio honeycombed structures'the hybrid and accordion honeycomb.The two are also designed for one-dimensional morphing and can be easily manufactured by water jet cutting[13]. Gandhi'et al.proposed some design considerations for flexible skins.It is significant that the skins must have low in-plane stiffness to minimize actuation energy[14].The lower the in-plane stiffness of the structure is'the less energy the morphing consumes.Therefore'structure with lower stiffness in the morphing direction should be developed to constitute a more efficiency flexible skin.

    With the same dimension in small scale'the output drive power of USM is larger than electromagnetic motor[6].In the paper'a feasible application technology of USM is proposed and a new kind of small variable camber wing driven by USMs is designed.Distributed layout of parallelogram linkages is adopted to transmit the rotation from the geared USMs to the trailing edge'so as to realize the function of variable camber.A new kind of flexible cosine honeycombed skin is designed to maintain aerodynamic shape of the wing.The working principle and design procedures of the wing will be discussed.Einally'the corresponding aerodynamic performances of seven typical aerodynamic shapes of the wing will be presented which are obtained by wind tunnel test.

    1 ConcePtual Model

    Small rectangular wing for small unmanned aerial vehicle(SUAV)is chosen as the design object.Considering the low speed flying characteristics of SUAV and installation dimensions of the driving mechanisms'NACA23018 which has a relatively large thickness and is suitable for low speed aircraft wing is adopted as the airfoil for the wing.Wing parameters are listed in Table 1.

    Table 1 Wing Parameters

    As shown in Eig.1'double spar type structure is applied to the whole wing.The front spar is arranged at the location of 25%chord length' and the drivers for the actuators are assembled on it.The rear spar is positioned at 53%chord length.The wing is assumed to be divided into several equal segments along spanwise direction and USMs are aligned at equal spacing on the rear spar in a distributed way.The number of USMs will be determined by the torque required by morphing and aerodynamic loads.The corresponding rib tips are driven by actuators respectively.To ensure that the whole trailing edge deform smoothly'two flexible carbon sticks are arranged along the spanwise direction in the interior of the trailing edge.In addition'small wing rib tips areadded to the trailing edge to maintain the airfoil' so the trailing edge can obtain continuous appearance during rotating or twisting deflections.

    Eig.1 Conceptual wing structure

    2 Methods

    2.1 Drive mechanism for morPhing

    To assemble the USMs in the interior as well as realize large deformation of the wing'parallelogram mechanisms driven by distributed geared USMs are adopted in each segment of the wing to drive the trailing edge'as shown in Eig.2.Compared with existing morphing methods'this kind of drive mechanism is simple and reliable'and can be easily manufactured and integrated into the whole system.The output shaft of geared motor is assembled in Hole 1 to supply the driving torque for the whole mechanism.The angular displacement transducer is located at Hole 2 to provide real-time feedback for the control system. Although the trailing edge can be driven by the linkages to have a deflection range of more than ±20°'a deflection range of±10°is selected as a verification test in this study.

    Eig.2 Parallelogram mechanism

    2.2 High elastic telescoPe skin

    The 60%to 80%of the chord is designed to be flexible section of the wing.Taking the airfoil whose chord length is 1 as an example'the lengths of the morphing parts of the top and bottom surfaces of the airfoil are obtained by interpolation method and listed in Table 2 when the trailing edge deflects up and down smoothly.In Table 2'the biggest strain of 3.8%exists on the top of the airfoil when the trailing edge deflects downward to 10°.

    Table 2 Length of toP and bottom surfaces of morPhing section of unit-chord airfoil

    Elexible skin for variable camber wing requires light weight'high flexibility for in-plane morphing and large bending stiffness to afford aerodynamic pressure.Coreless semi-rigid skin is proposed to satisfy the mentioned requirements. Elastic structure with high flexibility in morphing direction works as a support to help the skin resist the normal pressure on the surface.A smooth silastic film is covered on the structure to reduce the aerodynamic drag.

    The length of the flexible skin in morphing direction is calculated to be 63.819 mm.The whole length is finally set to be 80 mm considering the assembly of the elastic structure.The deformation part is 63 mm'and each of the two supports is 8.5 mm.Polyoxymethylene(POM)' a kind of plastic whose elastic modulus is about 1.7 GPa'is adopted to manufacture this structure.The elastic structure is designed to be a cosine type honeycomb which is appropriate for stretching.Three longitudinal beams are inserted to strengthen the stiffness in nondeformable directions.Sample of the elastic structure is manufactured'as shown in Eig.3.

    Eig.3 Sample of elastic structure

    Einite element(EE)model and test of the sample are shown in Eig.4.The result of the finite element analysis shows that the stiffness in X direction of the cosine honeycomb is only 0.187 MPa.It is just 1.1×10-4of the raw material′s stiffness'which consists well with test result.Therefore'a distributed force of 27.6 N/m is required to apply on right edge of the structure to obtain the strain of 3.8%.

    Eig.4 EEM and test of sample

    2.3 Performance of USMs

    Assume that the two flexible carbon sticks inserted in the trailing edge has very fine diameters and has little contribution to the drive mechanisms'the drive mechanisms have to conquer three resisting torques.Therefore'the total torque required by the mechanisms is

    where Mteis the aerodynamic torque of the trailing edge'Mmsthe torque for flexible skin morphing'and Mfthe torque results from frictions of the mechanisms.

    Aerodynamic torque of the trailing edge can be calculated as follows

    whereρv2is the dynamic pressure'S the wing area'b the span of the wing'and Cmtethe torque coefficient of the trailing edge.And Cmtecan be obtained by aerodynamic calculation.

    The torque for skin morphing can be approximately calculated as follows

    where F is the tension or compression required by deformed skin'and l cosθthe corresponding arm of force.

    The torque results from frictions can be calculated by structure dynamic simulation.

    Supposing the cruising speed is 0.2Ma'the angle of attack is 2°.Considering the maximum morphing state of the wing'the trailing edge deflects down to 10°.Three resisting torques can be obtained respectively and the total torque required by the mechanisms is figured out to be 4.274 N· m.

    Considering space limitations'speed and torque requirements'USM40 with the external diameter of 40 mm and the rated torque of 0.15 N·m is adopted here.Main technique data of the motor are listed in Table 3.

    Table 3 SPecifications of USM40

    As mentioned by Kudva'a minimum actuation rate of 25°flap deflection in 0.33 s'producing a slew rate of 75°/s'is desired of morphing wing[5].In order to slow down the rotation speed and increase the torque of the parallelogram linkages'gear transmission with a reduction ratio of 1∶10 is assembled between the motor and the linkage.Then the rotation speed decreases to 75°/s and the drive torque increaseas to 1.5 N·m.5 geared USMs can totally provide a drive torque of 7.5 N·m and satisfy the torque requirement.

    2.4 Control system

    Programmable system-on-chip(PSoC)isadopted to realize the coordination control of the distributed USMs.Elock diagram of the driver circuit based on PSoC for USMs is shown in Eig.5.The driver and upper computer control interface are realized in C++.In each segment of the wing'the change of the angle of the trailing edge is detected and sent back to the control system by the angular displacement transducer.In addition'two limit switches are assembled to control the deflection range of the trailing edge.

    Eig.5 Driver circuit of USMs

    2.5 PrototyPe of wing

    A prototype of the variable camber wing is manufactured'as shown in Eig.6.The spars and ribs of the wing are made of aluminum.Due to self-lock of USM'there is no need to use additional self-lock devices.The drive mechanisms and control system'including mechanical structures and electronic components'are all assembled in the interior of the wing.The leading edge'which is invariable'is covered with heat shrinkable skin.The morphing part of the wing is covered with the flexible skin mentioned above. Thus the wing can obtain a gapless configuration.

    Eig.6 Prototype of wing without skin

    3 Wind Tunnel Test

    Wind tunnel test is conducted in a low speed wind tunnel in Nanjing University of Aeronautics and Astronautics'as shown in Eig.7.The measuring system concludes a strain-gauge balance with six components'signal amplifier for the balance'data acquisition card and the processing software.The measuring range of the balance is 3 kg and the test accuracy is 0.5%.The wind speed is set to be 20 m/s.Reynolds number is 4.3×105.

    Eig.7 Wind tunnel test of morphing wing

    The variable camber wing can realize various shapes due to its flexible trailing edge and the distributed driving mechanism.Seven typical shapes(as shown in Eig.8)are selected to study the aerodynamic characteristics.The lift and drag forces of the seven typical shapes are measured when the angle of attack changes from-6°to 28°.

    4 Result and Discussion

    Eig.9 shows the coefficients of lift of mentioned seven typical shapes versus different angles of attack.In Eig.9'the maximum lift coefficients exist when the trailing edge deflects downward to 10°(which is the shape in Eig.8(b))'while the minimum lift coefficients can be obtained when the trailing edge deflects upward to-10°(which is the shape in Eig.8(c)).The lift coefficients of the shape in Eig.8(c)are 57.9%larger than the shape in Eig.8(b)on average.Other configurations obtain lift coefficients between them.The more the trailing edge deflects down'the larger lift coefficient will be obtained.It can be seenclearly that the variable camber wing can remarkably change its lift characteristics.

    Eig.8 Seven typical shapes of wing

    Eig.9 Coefficients of lift of seven typical shapes v.s. different angles of attack

    Eig.10 shows the lift-to-drag ratios of seven typical shapes versus different angles of attack.It is clear that the wing shapes with different cambers have distinguishable effects on the lift-todrag ratio of the wing and can be adopted under different flight conditions.Raising the lift-to-drag ratio can reduce flight consumption.Therefore' choosing the best wing shape under certain flight condition can effectively raise flight efficiency. Eor the angles of attack of-6°to 3°'the shape in Eig.8(b)gets the largest lift-to-drag ratio'and the shape is suitable for landing and cruising.Eor the angles of attack of 3°to 5°'the shape in Eig.8(f)is the best choice and the shape is suitable for taking off.

    Eig.10 Lift-to-drag ratios of seven typical shapes v.s. different angles of attack

    5 Conclusions

    A new type of variable camber wing based on USMs is designed and manufactured.Distributed layout of driving mechanisms can reduce torque requirement for each motor and realize various wing shapes.USM40 is selected as the best actuator for the wing considering certain morphing requirements.Coordination control of distributed USMs is realized based on PSoC.A coreless semi-rigid skin which is suitable for morphing wing is proposed and studied.Prototype of the wing is manufactured and aerodynamic test is done in a low speed wind tunnel.Results show that the wing can realize expected morphing under low speed flight conditions.

    Seven typical aerodynamic shapes are proposed of which the aerodynamic performances are considerably different from each other.It can be seen from wind tunnel test results that compared with traditional invariable camber wings'the variable camber wing can provide appropriate wing shapes for various flight conditions which can help to obtain a better aerodynamic performance.

    The exploratory work of variable camber wing driven by USMs synthesizes multi-disciplinary problems.Aerodynamic performance'mechanical design'material selection and drive and control system design have to be taken into consideration simultaneously.The study demonstrates that USMs can be used as actuators for global deformation of small morphing wings ofSUAV.Due to its outstanding characteristics'it can hopefully be adopted for local flow control for larger aircrafts.

    Acknowledgements

    This work was supported by the National Natural Science Eoundation of China(Nos.50905085'91116020)'the Aviation Science Eoundation of China(No.20100112005).

    [1] Weisshaar T A.Morphing aircraft technology-new shapes for aircraft design[R].RTO-MP-AVT-141. Erance:NATD Science and Technology Orgnization' 2006.

    [2] Justin E M.Analysis and design of a hyper-elliptical cambered span morphing aircraft wing[D].New York:Cornell University Graduate School'2006.

    [3] Hans P M.Realization of an optimized wing camber by using form variable flap structures[J].Aerospace Science and Technology'2001'5(7):445-455.

    [4] Reed Jr J L'Hemmelgarn C D'Pelley E M'et al. Adaptive wing structures[C]//Proceedings SPIE' Smart Structures and Materials 2005:Industrial and Commercial Applications of Smart Structures Technologies.San Diego'CA:SPIE'2005'5762:132-142.

    [5] Kudva J N.Overview of the DARPA smart wing project[J].Journal of Intelligent Material Systems and Structures'2004'15(4):261-269.

    [6] Jonathan D'Eartley C.Development of high-rate'adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J].Journal of Intelligence Material Systems and Structures'2004'15(4):279-292.

    [7] Loewy R L.Recent developments in smart structures with aeronautical applications[J].Smart Materials and Structures'1997'6(5):R11-R42.

    [8] Wlezien R W'Horner G C'Mc Gowan A R'et al. The aircraft morphing program[R].AIAA 98-1927' 1998.

    [9] Zhao Chunsheng.Ultrasonic motors technologies and applications[M].Eeijing:Science Press'2007:1-19.(in Chinese)

    [10]Zhu Hua'Liu Weidong'Zhao Chunsheng.Morphing aircraft and its morph-driving techniques[J].Machine Euilding Automation'2010'39(2):8-14'125.(in Chinese)

    [11]Thill C'Etches J'Eond I'et al.Morphing skins[J]. Aeronautical Journal'2008'112(1129):117-139.

    [12]Tomohiro Y'Shin-ichi T'Toshio O'et al.Mechanical properties of corrugated composites for candidate materials of flexible wing structures[J].Composites Part A:Applied Science and Manufacturing'2006'37(10):1578-1586.

    [13]Olympio K R'Gandhi E.Zero Poisson′s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing[J].Journal of Intelligent Material Systems and Structures'2010'21(17):1737-1753.

    [14]Gandhi E'Anusonti-Inthra P.Skin design studies for variable camber morphing airfoils[J].Smart Materials and Structures'2008'17(1):015025-015033.

    (Executive editor:Xu Chengting)

    V11 Document code:A Article ID:1005-1120(2015)02-0180-07

    *CorresPonding author:Zhu Hua'Associate Researcher'E-mail:hzhu103@nuaa.edu.cn.

    How to cite this article:Liu Weidong'Zhu Hua'Zhou Shengqiang'et al.Structural design and control of variable camber wing driven by ultrasonic motors[J].Trans.Nanjing U.Aero.Astro.'2015'32(2):180-186.

    http://dx.doi.org/10.16356/j.1005-1120.2015.02.180

    (Received 18 September 2013;revised 2 January 2014;accepted 12 January 2014)

    猜你喜歡
    劉衛(wèi)東
    陪伴
    特高壓GIS特快速暫態(tài)過(guò)電壓試驗(yàn)重復(fù)擊穿過(guò)程研究
    StePPing Control Method of Linear DisPlacement Mechanism Driven by TRUM Based on PSoC
    15萬(wàn)張紅豆餅
    37°女人(2015年2期)2015-11-21 00:38:27
    小攤販與副教授:15萬(wàn)張紅豆餅見(jiàn)證愛(ài)的高度
    婦女生活(2015年2期)2015-09-10 07:22:44
    咱沒(méi)收過(guò)禮
    幸?!傋x(2014年12期)2015-01-17 01:22:07
    午夜福利在线观看吧| 丰满少妇做爰视频| 亚洲av.av天堂| 国产乱人偷精品视频| 老司机影院成人| 超碰av人人做人人爽久久| 亚洲激情五月婷婷啪啪| 黄色一级大片看看| 亚洲av电影不卡..在线观看| 一级毛片电影观看| 高清午夜精品一区二区三区| 中文字幕制服av| 好男人在线观看高清免费视频| 亚洲最大成人av| 日韩人妻高清精品专区| 欧美97在线视频| 国产视频内射| 麻豆成人午夜福利视频| 日韩制服骚丝袜av| 国产精品不卡视频一区二区| 成年免费大片在线观看| 国产精品日韩av在线免费观看| 成人亚洲欧美一区二区av| 国产精品久久视频播放| av.在线天堂| 99热全是精品| 日韩强制内射视频| 免费黄网站久久成人精品| 日本wwww免费看| 日韩欧美一区视频在线观看 | 亚洲国产av新网站| 亚洲精华国产精华液的使用体验| 在现免费观看毛片| 欧美bdsm另类| 国产在线男女| 久久国内精品自在自线图片| 街头女战士在线观看网站| 精品99又大又爽又粗少妇毛片| 亚洲一级一片aⅴ在线观看| 国产伦精品一区二区三区四那| 日本爱情动作片www.在线观看| 日韩欧美国产在线观看| 久久久久久久午夜电影| 六月丁香七月| 亚洲精品自拍成人| 久久草成人影院| 99久久中文字幕三级久久日本| 超碰97精品在线观看| 国产 一区精品| 亚洲在线观看片| 日韩人妻高清精品专区| 建设人人有责人人尽责人人享有的 | 免费高清在线观看视频在线观看| 99热这里只有是精品在线观看| 精品一区二区免费观看| 真实男女啪啪啪动态图| 日日干狠狠操夜夜爽| 天堂中文最新版在线下载 | 国模一区二区三区四区视频| 肉色欧美久久久久久久蜜桃 | 国产伦一二天堂av在线观看| 国产乱来视频区| 久久精品久久久久久噜噜老黄| 少妇的逼水好多| 最近的中文字幕免费完整| 我要看日韩黄色一级片| 天堂中文最新版在线下载 | 亚洲精华国产精华液的使用体验| 国产男人的电影天堂91| 国产又色又爽无遮挡免| 亚洲四区av| 少妇人妻一区二区三区视频| 午夜福利成人在线免费观看| 午夜亚洲福利在线播放| 成人毛片60女人毛片免费| 国产精品一区www在线观看| 欧美区成人在线视频| 日日干狠狠操夜夜爽| 男人舔奶头视频| 国产精品麻豆人妻色哟哟久久 | 男女视频在线观看网站免费| 永久免费av网站大全| av线在线观看网站| 精品久久久久久久末码| 街头女战士在线观看网站| 欧美人与善性xxx| 乱系列少妇在线播放| 国产欧美另类精品又又久久亚洲欧美| 最近2019中文字幕mv第一页| 国产亚洲5aaaaa淫片| 亚洲人成网站高清观看| 日本av手机在线免费观看| 男女边摸边吃奶| 欧美97在线视频| 日本免费a在线| 国产一区二区三区av在线| 国产黄片美女视频| 久久久久久久久久久丰满| 国产黄色小视频在线观看| 精品不卡国产一区二区三区| 亚洲综合精品二区| 国产精品av视频在线免费观看| 国产一区有黄有色的免费视频 | 3wmmmm亚洲av在线观看| 精品一区二区三卡| 亚洲综合色惰| 亚洲精品第二区| 午夜福利高清视频| 国产大屁股一区二区在线视频| 在线免费十八禁| 日本免费在线观看一区| 极品教师在线视频| 国产一区亚洲一区在线观看| 欧美三级亚洲精品| 最近最新中文字幕大全电影3| 日韩亚洲欧美综合| 免费av毛片视频| 亚洲成色77777| 亚洲精品乱码久久久v下载方式| 激情 狠狠 欧美| av播播在线观看一区| 色综合色国产| 日日啪夜夜爽| 一区二区三区免费毛片| 街头女战士在线观看网站| 亚洲欧美成人精品一区二区| 国产久久久一区二区三区| 精品欧美国产一区二区三| 免费看美女性在线毛片视频| 亚洲熟女精品中文字幕| 人妻制服诱惑在线中文字幕| 国产大屁股一区二区在线视频| 免费看美女性在线毛片视频| 欧美xxⅹ黑人| 日韩一区二区视频免费看| 丰满人妻一区二区三区视频av| 亚洲天堂国产精品一区在线| 成人特级av手机在线观看| 亚洲最大成人中文| 极品教师在线视频| 久久99热这里只频精品6学生| 国内少妇人妻偷人精品xxx网站| 久久久a久久爽久久v久久| 中文乱码字字幕精品一区二区三区 | 毛片女人毛片| 精品国产三级普通话版| 国产成人午夜福利电影在线观看| 国产亚洲一区二区精品| 插阴视频在线观看视频| 青春草亚洲视频在线观看| 亚洲精品成人久久久久久| 18+在线观看网站| 中文字幕免费在线视频6| 性色avwww在线观看| 3wmmmm亚洲av在线观看| 国产高清三级在线| 国产在视频线精品| 搡女人真爽免费视频火全软件| 大香蕉久久网| 国产精品不卡视频一区二区| 高清欧美精品videossex| 2022亚洲国产成人精品| 国产成人freesex在线| 极品少妇高潮喷水抽搐| 亚洲婷婷狠狠爱综合网| 一级片'在线观看视频| 国产爱豆传媒在线观看| 极品教师在线视频| av在线天堂中文字幕| 精品久久久久久电影网| 男女啪啪激烈高潮av片| 午夜免费观看性视频| 免费观看无遮挡的男女| 亚洲18禁久久av| 久久国产乱子免费精品| 久久久久免费精品人妻一区二区| 水蜜桃什么品种好| 一个人免费在线观看电影| 2021天堂中文幕一二区在线观| 美女被艹到高潮喷水动态| 在现免费观看毛片| 国产不卡一卡二| 国产亚洲91精品色在线| 永久网站在线| 日日啪夜夜爽| 麻豆乱淫一区二区| 欧美xxxx黑人xx丫x性爽| 国产男人的电影天堂91| 91久久精品电影网| 中文字幕av在线有码专区| 久久精品国产亚洲av天美| 欧美成人一区二区免费高清观看| 九色成人免费人妻av| 黄片wwwwww| 日韩av不卡免费在线播放| 亚洲国产高清在线一区二区三| 国产精品蜜桃在线观看| 少妇猛男粗大的猛烈进出视频 | 久久久久久久久久人人人人人人| 日韩一区二区视频免费看| 少妇熟女欧美另类| 欧美成人一区二区免费高清观看| 亚洲熟女精品中文字幕| 美女脱内裤让男人舔精品视频| 国产亚洲av嫩草精品影院| 国产国拍精品亚洲av在线观看| 亚洲自拍偷在线| 中文天堂在线官网| av福利片在线观看| 天天一区二区日本电影三级| 国产在线男女| 免费在线观看成人毛片| 天天躁日日操中文字幕| 777米奇影视久久| 精品一区二区免费观看| 日本免费在线观看一区| 少妇高潮的动态图| 真实男女啪啪啪动态图| 青春草国产在线视频| 插阴视频在线观看视频| 国产黄片视频在线免费观看| 日韩伦理黄色片| 国产成人精品福利久久| 可以在线观看毛片的网站| 国产精品嫩草影院av在线观看| 午夜老司机福利剧场| 亚洲欧洲日产国产| 久久久久久久久大av| 成人毛片60女人毛片免费| 亚洲成色77777| .国产精品久久| 美女被艹到高潮喷水动态| 亚洲av不卡在线观看| 免费黄色在线免费观看| 亚洲最大成人手机在线| 六月丁香七月| 美女内射精品一级片tv| 国产成人精品婷婷| 看非洲黑人一级黄片| 久久久亚洲精品成人影院| 美女脱内裤让男人舔精品视频| 免费大片黄手机在线观看| 伦精品一区二区三区| 国产午夜精品论理片| 赤兔流量卡办理| 啦啦啦啦在线视频资源| 免费看av在线观看网站| 国产精品熟女久久久久浪| 2021少妇久久久久久久久久久| 超碰av人人做人人爽久久| 亚洲熟女精品中文字幕| 国产爱豆传媒在线观看| 亚洲经典国产精华液单| 搞女人的毛片| 亚洲,欧美,日韩| 欧美潮喷喷水| 大又大粗又爽又黄少妇毛片口| 午夜久久久久精精品| 在线免费观看不下载黄p国产| 国产精品美女特级片免费视频播放器| 婷婷色综合www| 国产人妻一区二区三区在| 一级黄片播放器| 亚洲久久久久久中文字幕| 精品久久久噜噜| 亚洲欧美成人精品一区二区| 老司机影院毛片| 色网站视频免费| ponron亚洲| 少妇被粗大猛烈的视频| 国产一区二区在线观看日韩| 亚洲av中文av极速乱| 乱系列少妇在线播放| 精品欧美国产一区二区三| 欧美极品一区二区三区四区| 日本一本二区三区精品| kizo精华| 看十八女毛片水多多多| 国产一级毛片七仙女欲春2| 日韩欧美 国产精品| 自拍偷自拍亚洲精品老妇| 少妇丰满av| 亚洲国产欧美在线一区| 免费观看性生交大片5| 性色avwww在线观看| 国产人妻一区二区三区在| 超碰97精品在线观看| 精品一区二区三卡| 国产精品一区二区三区四区免费观看| 寂寞人妻少妇视频99o| 久久99精品国语久久久| 我的女老师完整版在线观看| 亚州av有码| 观看美女的网站| 亚洲婷婷狠狠爱综合网| 毛片一级片免费看久久久久| 欧美xxxx性猛交bbbb| 欧美 日韩 精品 国产| 亚洲在线自拍视频| 国产一区二区三区综合在线观看 | av播播在线观看一区| 日韩三级伦理在线观看| 视频中文字幕在线观看| 久久久色成人| 少妇人妻精品综合一区二区| 成人亚洲精品av一区二区| 欧美高清成人免费视频www| 精品少妇黑人巨大在线播放| 麻豆久久精品国产亚洲av| 99久久中文字幕三级久久日本| 91久久精品国产一区二区三区| 亚洲高清免费不卡视频| 蜜桃亚洲精品一区二区三区| 亚洲三级黄色毛片| 日韩欧美一区视频在线观看 | 草草在线视频免费看| 国产av国产精品国产| 精品99又大又爽又粗少妇毛片| 久久久久国产网址| 久久国产乱子免费精品| 国产一区二区亚洲精品在线观看| 国产黄色小视频在线观看| 国产精品熟女久久久久浪| 亚洲人成网站高清观看| 伊人久久精品亚洲午夜| 99re6热这里在线精品视频| 国产老妇女一区| 国内少妇人妻偷人精品xxx网站| 日韩欧美精品v在线| 久久久久久久久大av| 国产亚洲最大av| 亚洲国产精品成人综合色| 久热久热在线精品观看| 联通29元200g的流量卡| 久久久久免费精品人妻一区二区| 插逼视频在线观看| 亚洲精品日韩av片在线观看| 九九久久精品国产亚洲av麻豆| 亚洲欧美成人综合另类久久久| 久久人人爽人人爽人人片va| 美女主播在线视频| 最近视频中文字幕2019在线8| 日韩亚洲欧美综合| 男人狂女人下面高潮的视频| 美女cb高潮喷水在线观看| 免费在线观看成人毛片| 美女高潮的动态| 成人亚洲精品av一区二区| 国产一级毛片七仙女欲春2| 97超视频在线观看视频| 午夜免费激情av| 高清在线视频一区二区三区| 亚洲经典国产精华液单| av网站免费在线观看视频 | 久久综合国产亚洲精品| 欧美成人午夜免费资源| 国产成人精品福利久久| 久久精品国产自在天天线| or卡值多少钱| 国产单亲对白刺激| 国产成人精品福利久久| 尾随美女入室| 欧美激情国产日韩精品一区| 波野结衣二区三区在线| 纵有疾风起免费观看全集完整版 | 人人妻人人澡欧美一区二区| 久久精品久久久久久噜噜老黄| 搡老乐熟女国产| 在线免费十八禁| 久久人人爽人人片av| 观看免费一级毛片| 久久这里有精品视频免费| 亚洲av二区三区四区| 国产一级毛片七仙女欲春2| 菩萨蛮人人尽说江南好唐韦庄| 亚洲高清免费不卡视频| 久久午夜福利片| 国产淫片久久久久久久久| 色5月婷婷丁香| 中文在线观看免费www的网站| 国产高清三级在线| 赤兔流量卡办理| 国产精品.久久久| 最新中文字幕久久久久| 大话2 男鬼变身卡| 美女主播在线视频| 久久久国产一区二区| 少妇裸体淫交视频免费看高清| 久久久久精品性色| 蜜桃久久精品国产亚洲av| 久久亚洲国产成人精品v| 国产精品麻豆人妻色哟哟久久 | 欧美 日韩 精品 国产| 亚洲精品中文字幕在线视频 | 亚洲精品国产av蜜桃| 18+在线观看网站| 夜夜爽夜夜爽视频| 精品一区二区三区人妻视频| 97人妻精品一区二区三区麻豆| 激情五月婷婷亚洲| 久久精品国产亚洲网站| 婷婷色av中文字幕| 成人综合一区亚洲| 国产男女超爽视频在线观看| av在线蜜桃| 日韩av在线免费看完整版不卡| 亚洲av电影在线观看一区二区三区 | 国产乱人视频| 亚洲18禁久久av| 禁无遮挡网站| 日本一本二区三区精品| 国产一级毛片七仙女欲春2| 日韩欧美三级三区| 国产高清有码在线观看视频| 禁无遮挡网站| 国产日韩欧美在线精品| 欧美区成人在线视频| 亚洲精品乱久久久久久| 欧美性感艳星| 久久综合国产亚洲精品| 亚洲人与动物交配视频| 日韩一区二区视频免费看| 成年女人看的毛片在线观看| eeuss影院久久| 少妇的逼好多水| 女人十人毛片免费观看3o分钟| 99热全是精品| 可以在线观看毛片的网站| 国产免费福利视频在线观看| 99久久中文字幕三级久久日本| 91aial.com中文字幕在线观看| 黑人高潮一二区| 亚洲欧美清纯卡通| 亚洲一区高清亚洲精品| 久久久久久久国产电影| 特大巨黑吊av在线直播| 伦精品一区二区三区| 亚洲成人av在线免费| 全区人妻精品视频| 亚洲精品日韩在线中文字幕| 亚洲精品成人久久久久久| 国产亚洲午夜精品一区二区久久 | 亚洲精品,欧美精品| 在线观看一区二区三区| 久久久精品欧美日韩精品| 乱系列少妇在线播放| 午夜激情福利司机影院| 观看免费一级毛片| 老司机影院毛片| 久久这里只有精品中国| 久久99热这里只频精品6学生| 久久久久久久国产电影| 99久久精品一区二区三区| 国产精品人妻久久久久久| 亚洲激情五月婷婷啪啪| 大片免费播放器 马上看| 免费看不卡的av| 97超视频在线观看视频| 少妇人妻精品综合一区二区| 精品不卡国产一区二区三区| 一级黄片播放器| 性插视频无遮挡在线免费观看| 免费黄频网站在线观看国产| 亚洲成人精品中文字幕电影| 成年人午夜在线观看视频 | 肉色欧美久久久久久久蜜桃 | 亚洲最大成人av| 欧美高清性xxxxhd video| 国产爱豆传媒在线观看| 一夜夜www| 老女人水多毛片| 身体一侧抽搐| 精品久久久久久久末码| 久久久欧美国产精品| 99热网站在线观看| 国产乱来视频区| 欧美xxⅹ黑人| 一夜夜www| 99久久精品一区二区三区| 91aial.com中文字幕在线观看| 高清欧美精品videossex| 国产伦一二天堂av在线观看| 最近最新中文字幕免费大全7| 青春草国产在线视频| 国产av码专区亚洲av| 欧美性猛交╳xxx乱大交人| 久久久a久久爽久久v久久| 黄片无遮挡物在线观看| 亚洲av免费高清在线观看| 波多野结衣巨乳人妻| 日韩制服骚丝袜av| 免费在线观看成人毛片| 亚洲电影在线观看av| 嫩草影院新地址| 国产一区有黄有色的免费视频 | 波野结衣二区三区在线| 在线天堂最新版资源| 嫩草影院精品99| 精品久久久噜噜| 又大又黄又爽视频免费| 乱系列少妇在线播放| 免费大片黄手机在线观看| 亚洲精品国产成人久久av| 又爽又黄a免费视频| 免费观看a级毛片全部| 三级国产精品片| 午夜日本视频在线| 男插女下体视频免费在线播放| 免费无遮挡裸体视频| 欧美一区二区亚洲| 国产欧美日韩精品一区二区| 国产成人免费观看mmmm| 日本三级黄在线观看| 精华霜和精华液先用哪个| 亚洲精品中文字幕在线视频 | 国产精品不卡视频一区二区| 丰满人妻一区二区三区视频av| 国产亚洲一区二区精品| 日韩一本色道免费dvd| 2021少妇久久久久久久久久久| 伦理电影大哥的女人| 国产一区二区亚洲精品在线观看| 男女那种视频在线观看| 色综合亚洲欧美另类图片| 五月天丁香电影| 插逼视频在线观看| 综合色av麻豆| 亚洲av电影不卡..在线观看| 免费高清在线观看视频在线观看| 国产精品熟女久久久久浪| 国产高清不卡午夜福利| 成人漫画全彩无遮挡| 伦精品一区二区三区| 国产综合精华液| www.av在线官网国产| videossex国产| .国产精品久久| 欧美xxxx黑人xx丫x性爽| 老司机影院毛片| 毛片女人毛片| 麻豆久久精品国产亚洲av| 久久精品夜色国产| 国产午夜精品久久久久久一区二区三区| 中文乱码字字幕精品一区二区三区 | 国产精品一区二区性色av| 一个人观看的视频www高清免费观看| 亚洲精品一二三| 2018国产大陆天天弄谢| 国产成人a区在线观看| 免费播放大片免费观看视频在线观看| 啦啦啦啦在线视频资源| 午夜福利高清视频| 亚洲国产精品成人久久小说| 亚洲国产高清在线一区二区三| 男女视频在线观看网站免费| 91狼人影院| 丰满乱子伦码专区| 成人一区二区视频在线观看| 久久久久久久久久黄片| 精品人妻一区二区三区麻豆| 亚洲av男天堂| 国产综合懂色| 九九久久精品国产亚洲av麻豆| 极品教师在线视频| 国产黄色免费在线视频| 少妇熟女欧美另类| 免费高清在线观看视频在线观看| 简卡轻食公司| 欧美xxⅹ黑人| 在线 av 中文字幕| 一区二区三区高清视频在线| 亚洲国产精品成人久久小说| 日韩人妻高清精品专区| 欧美xxxx性猛交bbbb| 亚洲欧美精品自产自拍| 乱系列少妇在线播放| 午夜福利网站1000一区二区三区| 亚洲精品日本国产第一区| 1000部很黄的大片| 亚洲最大成人手机在线| 人体艺术视频欧美日本| 亚洲欧美清纯卡通| 色网站视频免费| 99久国产av精品国产电影| 永久免费av网站大全| 精品人妻熟女av久视频| 欧美三级亚洲精品| 午夜精品在线福利| 国产精品综合久久久久久久免费| 少妇熟女欧美另类| 中文欧美无线码| 亚洲久久久久久中文字幕| eeuss影院久久| 嘟嘟电影网在线观看| 精品国产三级普通话版| 国产乱人偷精品视频| 99热网站在线观看| 尤物成人国产欧美一区二区三区| 婷婷色综合大香蕉| 蜜桃亚洲精品一区二区三区| 国产av在哪里看| 国产精品蜜桃在线观看| 七月丁香在线播放| 久久精品熟女亚洲av麻豆精品 | 亚洲国产最新在线播放| 九九在线视频观看精品| 亚洲综合精品二区| ponron亚洲| 99热全是精品| 黄片wwwwww| 人妻系列 视频| 日本wwww免费看| 精品久久久久久久人妻蜜臀av| 国产高清有码在线观看视频| 亚洲成色77777|