• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Loads and Wake Prediction for Large Wind Turbines Based on Free Wake Method

    2015-11-24 02:39:22CaoJiufa曹九發(fā)WangTongguang王同光LongHui龍慧KeShitang柯世堂XuEofeng許波峰
    關(guān)鍵詞:波峰入射角粗糙度

    Cao Jiufa(曹九發(fā))'Wang Tongguang(王同光)' Long Hui(龍慧)'Ke Shitang(柯世堂)'Xu Eofeng(許波峰)

    1.Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design' Nanjing University of Aeronautics&Astronautics'Nanjing 210016'P.R.China;

    2.Department of Mechanical Engineering'The University of Sheffield'Sheffield S1 3JD'UK

    Dynamic Loads and Wake Prediction for Large Wind Turbines Based on Free Wake Method

    Cao Jiufa(曹九發(fā))1'2'Wang Tongguang(王同光)1*' Long Hui(龍慧)2'Ke Shitang(柯世堂)1'Xu Eofeng(許波峰)1

    1.Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design' Nanjing University of Aeronautics&Astronautics'Nanjing 210016'P.R.China;

    2.Department of Mechanical Engineering'The University of Sheffield'Sheffield S1 3JD'UK

    With large scale wind turbines'the issue of aerodynamic elastic response is even more significant on dynamic behaviour of the system.Unsteady free vortex wake method is proposed to calculate the shape of wake and aerodynamic load.Considering the effect of aerodynamic load'inertial load and gravity load'the decoupling dynamic equations are established by using finite element method in conjunction of the modal method and equations are solved numerically by Newmark approach.Einally'the numerical simulation of a large scale wind turbine is performed through coupling the free vortex wake modelling with structural modelling.The results show that this coupling model can predict the flexible wind turbine dynamic characteristics effectively and efficiently.Under the influence of the gravitational force'the dynamic response of flapwise direction contributes to the dynamic behavior of edgewise direction under the operational condition of steady wind speed.The difference in dynamic response between the flexible and rigid wind turbines manifests when the aerodynamics/structure coupling effect is of significance in both wind turbine design and performance calculation.

    wind turbine;free wake method;aerodynamic dynamics;structural dynamics

    0 Introduction

    Large scale wind turbines operate in complicated conditions'which contain all kinds of unsteady and coupling effects of wind condition and blade structure'thus making accurate prediction of the turbine performance very difficult.Particularly'when unsteady flow field'accompanying frequent changes in both wind speed and wind direction'passes through the long and slender blades as well as through the tall tower'it inevitably results in the so-called aero-elastic problem' i.e.the interaction between aerodynamic forces and rotor motion.Therefore'it is necessary to develop accurate coupled methods between the aerodynamic model with structure model in wind turbine design to enable vibration alleviation and to develop control strategy.

    Among the different aerodynamic theories to model the rotor aerodynamics[1-3]'the vortex theory is considered as one of the most suitable approximations because of its affordable computational costs and reasonably accurate results.In addition'vortex models are made up of a blade aerodynamic model including lifting line'lifting surface or panel method[4]to describe the flow around the blade'as well as to calculate the trailed and shed vorticitis released to the wake' using prescribed[5-7]or free wake[8-11]models to describe the wake geometry.The free wake models are more suitable for general rotor configurations'since the wake is allowed to freely distortunder the influence of the local velocity field.In the present work'the free wake model consists of near vortex sheets and far wake tip vertical filaments.Eor aero-elastic simulations'the free wake model is complemented with an elastic rotor model for the rotor dynamics[12-14].The modal superposition method is used to solve the wind turbine elastic problem in this paper.

    1 Aerodynamic Model

    It is assumed that the flow field is incompressible and potential in the free vortex wake(EVW)model for the wind turbine.The blade is modeled as a series of elements'which are represented as a line of bound vorticity lying along the blade quarter chord line.The vertical filaments'

    extending downstream from the trailing edge of the blade element boundary'are allowed to freely distort under the influence of local velocity field. The governing equation of the vertical filaments can be written in the form of a partial differential equation as

    where the blade azimuth angleψis a temporal coordinate and the wake age angleζis a spatial coordinate.On the right hand side of Eq.(1)'Vindequals to the mean value of the induced velocities at the surrounding four grid points calculated by the Eiot-Savart law.To solve the partial differential equation numerically'the finite difference approximations are used to approximate the derivatives on the left hand side.Eor the spatial(ζ)derivative'a five-point central difference approximation has been used based on the predictor-corrector central(PCC)difference[15]and the predictor-corrector second backward(PC2E)[16].The accuracy of the temporal(ψ)derivative approximation plays a significant role in the time-accurate free vortex method.The PC2E algorithm uses a second-order backward difference approximation'whereas the PCC algorithm still uses a five-point central difference approximation.

    Eig.1 Schematic of discretized tip vortex geometry

    In the present work'a new time-accurate algorithm is developed for overall convergence in the numerical iterations.Eor this'Eq.(1)can be written in another form as

    Eq.(2)can be written in a general form of ordinary derivative equation as

    The predictor process in the predictor-corrector algorithm adopts an explicit format'whereas the corrector process adopts an implicit format. Assuming the steps are equal'the general form of the linear multistep method for Eq.(3)is written as

    where yn+jand fn+jrepresent the terms of y(xn+j)and f(xn+j'yn+j)'respectively.The values of constantsαjandβj(j=0'1…'k)can be obtained using the method of undetermined coefficients.An explicit three-step linear multistep method is given by

    The local truncation error of Eq.(5)is

    An implicit three-step linear multistep method is given by

    The local truncation error of Eq.(7)is

    The explicit and implicit three-step linear multistep methods are used in the temporal(ψ)derivative approximation.A new predictorcorrector algorithm is developed as

    Eor the predictor

    and for the corrector

    It is obvious from the local truncation errors of Eqs.(5'7)that the new predictor-corrector algorithm has third-order accuracy'and therefore this algorithm is referred as the three-step and third-order predictor-corrector(D3PC)algorithm.PCC is a single-step algorithm and has second-order accuracy.The single-step algorithm is simple'but its numerical stability is not good enough.The multistep method has recently been widely used since it has better stability and convergence.Although the PC3E algorithm is a three-step algorithm'it only achieves secondorder accuracy'which results in low efficiency. The D3PC algorithm developed in this paper is also a three-step algorithm'but is of third-order accuracy.

    In this paper'the three-dimensional rotational model is included in the aerodynamic model. The three-dimensional rotational effect is one of the typical differences between rotor and fixed wing'which is characterised by significantly increased lift coefficient compared with the corresponding 2D case.The higher anales of attack can contribute to the delay of the occurrence of flow separation.Du-Selig stall-delay model[17]0 coupled with the free vortex wake model is used to modify the airfoil aerodynamic data by consideration of the three-dimensional rotational effect here.

    The aerodynamic loading is caused by the flow past the wind turbine structure composed of the blades and the tower.The air loads can be calculated through the discrete blade element method.Every blade element is regarded as a 2-D airfoil'and the relative velocity vector Vrelis obtained from

    2 Dynamics Equation for Aerodynamic and Structural CouPling

    If a wind turbine is described as a discretized mechanical system'the principle work is to correctly set up the mass matrix M'stiffness matrix K'and damping matrix C'for the dynamics equation

    where{F(t)}denotes the generalized force vector associated with the external loads.x is the generalized displacement.In this paper'the Newmark method is used to solve the dynamics equation. The discretized calculation process to solve the dynamics equation is presented aswhere the subscript represents the time-step number.The displacements at the time step n+1 are calculated from the results of the previous time step n'at which the displacements'velocities'and accelerations for each node are already known.

    The generalized displacement and velocity in the form of expansion from the time step n to the time step n+1 are given by

    whereγ=0.5 andβ=0.25 are the trapezoidal conditions in order to guarantee unconditional convergence.It is worthy to note that a small enough computing time step is required for gaining more accurate structural dynamic response. Here'the time step is chosen on the basis of the one tenth of the rotating cycle when the structural response is significant enough.The calculation procedure is shown in Eig.2.(EVW:the free vortex wake method'EEM:the finite element modeling)

    Eig.2 Calculation procedures for dynamic responses

    The blade gravitational force and centrifugal force are included in the calculation.Gravity is responsible for a sinusoidal loading of the blades with a frequency corresponding to the rotation of the rotor.The blade experiences tensile stress and compressive stress because of the gravitational loads'thus resulting in the blade vibration deformation and affecting the rotor aerodynamic performance.The gravitational loading is obtained from

    where A is the coordinate system transformation matrix'mithe i th blade element mass'and dfgthe gravitational loading of the i th blade element.

    The inertial loading stems from the centrifugal force on the blades due to rotation.The centrifugal force dfcacting on the blade element at a radius r from the rotational axis is obtained by

    3 Numerical Results and Analyses

    3.1 Calculation model validation

    對(duì)3種不同粗糙度的鋁材料進(jìn)行BRDF對(duì)比測(cè)試,所選粗糙度Ra分別為2.5,5,8 μm。入射角度θi分別為0°和30°,實(shí)驗(yàn)測(cè)量的BRDF,如圖7所示。

    The National Renewable Energy Laboratory(NREL)Phase VI rotor geometry'aerodynamic and structural properties are well documented in Ref.[18].The operating condition for the experiment is varied from wind speed of 7 to 25 m/s. The rotor speed is 72 r/min with the cone angle of tip pitch being 3°and 0°.The rotor radius is 5.029 m.

    Eig.3 shows the variation of rotor torque with wind speed'and comparison with the experiment data.The calculation results agree well with the experimental data at low wind speeds. At higher wind speeds'however'there are discrepancies'probably due to the stall effects.

    Eig.3 Variation of rotor torque with wind speed

    Eig.4 shows the variation of normal and tangential coefficients at different span with wind speed.Ranging from low to high wind speeds'it is found that the normal and tangential force coef-ficients of the blade root are slightly worse than other part of the blade'which is due to the fact that the blade root suffers the serious stall effect. It is difficult to simulate the stall situation.The better stall model is needed to use in the free wake method.However'both the middle and tip part of blade have a good match with the experimental data.Therefore'one can say that the calculation model is well used to calculation the loads of the wind turbine.

    Eig.4 Variation of normal and tangential coefficients at different wind speeds

    3.2 Large-scale wind turbine numerical results and analyses

    The NH1500 wind turbine is adopted as a calculation example in this paper.The calculation time step is 10°/Ω.The wind speed is 8 m/s.To reflect the similarity of NH1500 and real 1.5 MW wind turbine'the rotor main parameters are shown in Table 1.It can be seem that the rated power of NH1500 is 1.5 MW.The NH1500 and real 1.5 MW wind turbine have the similar blade length and wind speed operational condition.And the NH1500 also adopts the variable-pitch variable speed control strategy.Moreover'to describe the NH1500 detailedly'the NH1500 blade main structural parameters are shown in Table 2.All the aerodynamic centers of blade are located in a quarter chord length.Mass and elastic centers are given through chord length percentage in the airfoil coordinates.

    Table 1 NH1500 rotor Parameters

    Here'the finite element method is applied to establish the wind turbine structural model. Two-node beams and shell elements are used to model the blade and tower'respectively.The nacelle mass and moment of inertia are simulated through the 0D element in PATRAN software. The rotor is rigidly connected to the tower.The boundary conditions are imposed at the bottom of the tower through fixed constraints.The modes of NH1500 wind turbine are calculated at the rotational speed of 17.2 r/min with the calculatedmodes shown in Table 3.

    Table 2 Main structural Parameters for the NH1500 blade

    Table 3 Mode descriPtion

    Eig.5 shows the comparison of calculated value and experimental value.NH1500 is a 1/16 scaled model on the experiment.The calculated data and experimental data changing trend are basically consistent.In Eig.5'the calculation values are slightly higher than the experiment data. The probable reason is that the experiment wind turbine model is a scaled model.

    Eig.6 shows the downstream displacements of the blade tip vortex'calculated from the EVW method.To investigate the blade deformation effect'the NH1500 blade is considered rigid and flexible'respectively.It can be clearly seen from Eig.6 that the difference in the vortex position between the assumed rigid blade and the actual flexible blade.The displacement difference increases from 0.05R to 0.1R as the tip vortex fila-ment moves downstream.It can be reasoned that this difference has influence on the air load calculation through the induced velocity calculation' which depends on the spatial distance of the vortex to the blade.

    Eig.5 Cpof NH1500

    Eor further analysis'the wind speed distribution and the vorticity of the wake are calculated.The wind speed of the wake V(Vx'Vy'Vz)is defined as

    To find the wind speed of the wake seen by V(Vx'Vy'Vz)'the induced velocity of the tip vortex'the induced velocity of the bound vortex'the induced velocity of the trailed vortex'and the induced velocity of the shed vortex'must be added as vectors into the inflow velocity'V∞.

    As the wind speed distribution is known'the vorticityis calculated by

    Eigs.7'8 give the development and evolvement of the tip vortex for the rigid and flexible blades with the axial downstream distance'respectively.The vortical strength increases downstream just behind the rotor with a wake expansion'but gradually dissipates as the axial distance further increases for the both cases.However' both the vortical strength and the wake expansion for the assumed rigid rotor are stronger than those for the actual flexible rotor.

    Eig.7 Axial distribution of tip vortex for rigid blade

    Eig.8 Axial distribution of tip vortex for flexible blade

    Eig.9 0R section distribution of wind speed Vz(m/s)of rigid blade

    Eig.10 0R section distribution of wind speed Vz(m/s)of flexible blade

    Eig.9 shows the 0R section distribution of the wind speed of the rigid blade.Eig.10 shows the 0R section distribution of the wind speed of the flexible blade.It is found that the 0R section wind speeds of the flexible blade are weaker than the rigid due to the structural deformation.The effect is significant for wake prediction.

    Eig.11 illustrates some representative numerical results among which the aerodynamic characteristics are presented by the blade root loads for the flexible case at the wind speed of 8 m/s.The root loads all fluctuate sinusoidally with azimuthally angle for both cases with and without gravity considered.Nevertheless'the amplitudes of the load variation differ from each other due to the gravitational effect.In addition' the blade dynamic deformation is also influenced by the gravity.The dynamic displacement in the flapwise direction when gravitational force is not considered is only about 4%of that when the gravitational force is taken into account'as shown in Eig.12.

    Eig.11 Edgewise force at blade root

    Eig.12 Dynamic displacements at blade tip in flapwise direction

    Eig.13 Wind turbine power coefficients'V∞=8 m/s

    It is obvious from Eig.13'where the windturbine power coefficient Cpis compared between the rigid and flexible considerations'that the flexible wind turbine Cpis larger than the rigid one and changes with azimuth angle.According to the comparison of minimum value'the flexible wind turbine Cpis 1.6%more than the rigid one. It is the reason that the flapwise direction induced velocity of flexible blade has a larger change amplitude than the edgewise direction induced velocity.And the flapwise direction induced velocity is weaker than the rigid one.Thus'the attack angle and the flow angle of flexible blade are both larger.Einally'the tangential force coefficient to the rotor is larger'which can lead to the increasing of torque and Cp.

    4 Conclusions

    The numerical analysis of wind turbine wake and loads are presented in this paper.An aerodynamically and structurally coupled model is developed and used to predict the flexible wind turbine loads and aerodynamic performance.The results demonstrate that EVW and EEM coupling model can predict the wind turbine dynamic characteristics effectively and efficiently.The dynamic displacement in the flapwise direction without considering gravitational force is only 4%of that with gravitational force.Moreover'according to the comparison of minimum value of Cp'the Cpvalue of the flexible wind turbine is 1.6%more than that of the rigid one.Despite the fact that the accuracy of the calculated results needs to be improved for further validation by experiment data'the wind turbine wake and dynamic response can be better understood through the results obtained from this study.

    Acknowledgements

    This work was supported by the National Easic Research Program of China(973 Program)(No. 2014CE046200)'the Jiangsu Province Natural Science Eoundation(No.EK2012390)'the Eundamental Research Eunds for the Central Universities'and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    [1] Ghadirian A'Dehghan M'Torabi E.Considering induction factor using EEM method in wind farm layout optimization[J].Journal of Wind Engineering and Industrial Aerodynamics'2014'129:31-39.

    [2] Zhang Zhenyu'Zhou Hanwei'Wang Tongguang. Numerical analysis of influence of Gurney flaps applied to wind turbines[J].Transactions of Nanjing University of Aeronautics&Astronautics'2014'31(5):576-579.

    [3] Hsu MingChen'Akkerman I'Eazilevs Y.Einite element simulation of wind turbine aerodynamics:Validation study using NREL Phase VI experiment[J]. Wind Energy'2014'17:461-481.

    [4] Grasso E'van Garrel A'Schepers G.Development and validation of generalized lifting line based code for wind turbine aerodynamics[C]∥The 30th ASME wind energy symposium'Elorida'USA:[s.n.]' 2011:146-152.

    [5] Scheurich E'Eletcher T M'Erown R E.Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine[J].Wind Energy'2011'14(2):159-177.

    [6] Ereton S P'Coton E N'Moe G.A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and NREL phase VI experiment data[J].Wind Energy'2008'11:459-482.

    [7] Wang T G.Unsteady aerodynamic modelling of horizontal axis wind turbine performance[D].Scotland' UK:University of Glasgow'1999.

    [8] Sebastian T'Lackner MA.Development of a free vortex wake method code for offshore floating wind turbines[J].Renewable Energy'2012'46:269-275.

    [9] Zhou W P'Tang S L'LüH.Computation on aerodynamic performance of horizontal axis wind turbine based on time-marching free vortex method[J].Chin Soc for Elec Eng'2011'31(29):124-130.

    [10]Jeon M'Lee S.Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method[J].Renewable Energy' 2014'65:207-212.

    [11]Gupta S'Leishman J G.Performance pre-dictions of the NREL phaseⅥcombined Ex-periment rotor using a free-vortex wake model[C]∥Collection ofTechnical Papers—44th AIAA Aerospace Sciences Meeting.[S.l.]:AIAA'2006:4544-4564.

    [12]Eelco H'Gustaaf J'Asfaw E.Aero-elastic behavior of a flexible blade for wind turbine application:A 2D computational study[J].Energy'2010'35:778-785.

    [13]Ahlstrom A.Aeroelastic simulation of wind turbine dynamics[D].Sweden:Royal Institute of Technology Department of Mechanics'2005.

    [14]Ng E E'Hesse H'Palacios R.Aeroservoelastic state space vortex lattice modeling and load alleviation of wind turbine blades[J].Wind Energy'2014' 17(4):DOI:10.1002/we.1752.

    [15]Ehagwat M J'Leishman J G.Rotor aerodynamics during maneuvering flight usinga time-accurate freevortex wake[J].Journal of the American Helicopter Society'2003'48:143-158.

    [16]Ehagwat M J'Leishman J G.Time-accurate free vortex wake model for dynamic rotor response[C]∥American Helicopter Society Specialist Meeting.Atlanta'USA:[s.n.]'2000.

    [17]Du Z'Selig M S.A 3-D stall-delay model for horizontal axis wind turbine performance prediction[R]. AIAA-98-0021'1998.

    [18]Hand M'Simms D A.Unsteady aerodynamicexperiment phase VI:Wind tunnel test configurations and available data campaigns[R].National Renewable Energy Laboratory.Colorado:National Technical Information Service'2001.

    (Executive editor:Xu Chengting)

    O35 Document code:A Article ID:1005-1120(2015)02-0240-10

    *CorresPonding author:Wang Tongguang'Professor'E-mail:tgwang@nuaa.edu.cn.

    How to cite this article:Cao Jiufa'Wang Tongguang'Long Hui'et al.Dynamic loads and wake prediction for large wind turbines based on free wake method[J].Trans.Nanjing U.Aero.Astro.'2015'32(2):240-249.

    http://dx.doi.org/10.16356/j.1005-1120.2015.02.240

    (Received 13 November 2014;revised 7 January 2015;accepted 12 January 2015)

    猜你喜歡
    波峰入射角粗糙度
    一般三棱鏡偏向角與入射角的關(guān)系
    炮制工程騙錢的“甲方”
    作用于直立堤墻與樁柱的波峰高度分析計(jì)算
    基于無人機(jī)影像的巖體結(jié)構(gòu)面粗糙度獲取
    甘肅科技(2020年20期)2020-04-13 00:30:18
    冷沖模磨削表面粗糙度的加工試驗(yàn)與應(yīng)用
    模具制造(2019年4期)2019-06-24 03:36:48
    預(yù)制圓柱形鎢破片斜穿甲鋼靶的破孔能力分析*
    用經(jīng)典定理證明各向異性巖石界面異常入射角的存在
    基于BP神經(jīng)網(wǎng)絡(luò)的面齒輪齒面粗糙度研究
    鋼材銹蝕率與表面三維粗糙度參數(shù)的關(guān)系
    兒童標(biāo)準(zhǔn)12導(dǎo)聯(lián)T波峰末間期的分析
    99在线人妻在线中文字幕| 亚洲一区二区三区不卡视频| 成人性生交大片免费视频hd| 69人妻影院| or卡值多少钱| 国产一区二区亚洲精品在线观看| 久久久久久久久久黄片| 黄色女人牲交| 久久久久久九九精品二区国产| 在线观看免费视频日本深夜| 午夜两性在线视频| 久久久久久久久久黄片| 亚洲成av人片免费观看| 天堂网av新在线| 免费av不卡在线播放| 啦啦啦免费观看视频1| 乱人视频在线观看| 99久久精品国产亚洲精品| 欧美一级a爱片免费观看看| h日本视频在线播放| 97人妻精品一区二区三区麻豆| 综合色av麻豆| aaaaa片日本免费| 法律面前人人平等表现在哪些方面| 成人鲁丝片一二三区免费| 日本黄色片子视频| 亚洲精品456在线播放app | 成年女人毛片免费观看观看9| 精品久久久久久久人妻蜜臀av| 亚洲一区二区三区色噜噜| 国产精品久久久久久精品电影| 国产高清有码在线观看视频| 国产v大片淫在线免费观看| 亚洲中文日韩欧美视频| 亚洲av成人不卡在线观看播放网| 黄色视频,在线免费观看| 国产成人av教育| 国产av麻豆久久久久久久| 麻豆久久精品国产亚洲av| 91麻豆精品激情在线观看国产| 69人妻影院| 性欧美人与动物交配| 亚洲国产欧美网| 久久久久久九九精品二区国产| 十八禁网站免费在线| 日韩欧美精品免费久久 | 婷婷精品国产亚洲av| 搡老岳熟女国产| 日本免费a在线| 国产视频内射| 国内精品一区二区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 精品免费久久久久久久清纯| 精品99又大又爽又粗少妇毛片 | 日日摸夜夜添夜夜添小说| 不卡一级毛片| 国产亚洲欧美在线一区二区| 成年免费大片在线观看| 日韩精品中文字幕看吧| 草草在线视频免费看| av视频在线观看入口| 国产单亲对白刺激| 国产精品99久久99久久久不卡| 在线观看一区二区三区| 亚洲精品久久国产高清桃花| 十八禁人妻一区二区| 九色成人免费人妻av| 欧美国产日韩亚洲一区| 午夜福利免费观看在线| 久久婷婷人人爽人人干人人爱| 精品国产亚洲在线| 亚洲人成电影免费在线| 一级黄片播放器| 欧美日韩中文字幕国产精品一区二区三区| 丰满人妻一区二区三区视频av | 一个人免费在线观看电影| 男女之事视频高清在线观看| 欧美激情在线99| 日韩高清综合在线| 久久久色成人| 亚洲欧美激情综合另类| 99久久综合精品五月天人人| 欧洲精品卡2卡3卡4卡5卡区| 国产 一区 欧美 日韩| 国产午夜精品论理片| 亚洲欧美日韩无卡精品| 欧美成人a在线观看| 亚洲国产中文字幕在线视频| 九九在线视频观看精品| 天堂√8在线中文| 亚洲五月婷婷丁香| 国产欧美日韩精品一区二区| 精品久久久久久,| 国产伦人伦偷精品视频| 成人18禁在线播放| 两个人的视频大全免费| 日韩欧美免费精品| 亚洲不卡免费看| 欧美区成人在线视频| 91麻豆精品激情在线观看国产| 午夜免费激情av| 最近最新中文字幕大全电影3| 变态另类成人亚洲欧美熟女| 长腿黑丝高跟| 在线免费观看不下载黄p国产 | 成人欧美大片| 啦啦啦免费观看视频1| 欧美成人a在线观看| 久久人妻av系列| 一区二区三区高清视频在线| 制服丝袜大香蕉在线| 亚洲男人的天堂狠狠| 三级男女做爰猛烈吃奶摸视频| 午夜免费观看网址| 久久久色成人| 日本熟妇午夜| АⅤ资源中文在线天堂| 美女高潮的动态| 国产熟女xx| 亚洲男人的天堂狠狠| 免费av不卡在线播放| 国产91精品成人一区二区三区| 最近在线观看免费完整版| 午夜日韩欧美国产| 99久久精品热视频| 亚洲人与动物交配视频| 天天一区二区日本电影三级| 88av欧美| 国产成人欧美在线观看| 欧美三级亚洲精品| 日本免费a在线| svipshipincom国产片| 一区二区三区激情视频| 国产一区二区激情短视频| 三级毛片av免费| 国产探花极品一区二区| 亚洲av成人av| 校园春色视频在线观看| 大型黄色视频在线免费观看| 欧美zozozo另类| 国产高清三级在线| 国产免费一级a男人的天堂| 精品久久久久久久毛片微露脸| www国产在线视频色| 老熟妇乱子伦视频在线观看| 亚洲精品色激情综合| 午夜激情福利司机影院| 国产精品99久久99久久久不卡| 亚洲精品色激情综合| 三级毛片av免费| 成人高潮视频无遮挡免费网站| 国产伦精品一区二区三区视频9 | 欧美日韩综合久久久久久 | 午夜福利在线在线| 国产成人影院久久av| 日日摸夜夜添夜夜添小说| 精品久久久久久,| 18美女黄网站色大片免费观看| 国产探花在线观看一区二区| 午夜a级毛片| 毛片女人毛片| 免费av观看视频| 国内揄拍国产精品人妻在线| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品合色在线| 欧美日韩中文字幕国产精品一区二区三区| 91麻豆av在线| 亚洲专区中文字幕在线| 丝袜美腿在线中文| netflix在线观看网站| 国内揄拍国产精品人妻在线| 很黄的视频免费| 特级一级黄色大片| 九色成人免费人妻av| 狂野欧美激情性xxxx| 麻豆成人av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美另类亚洲清纯唯美| 久久久久亚洲av毛片大全| 精品免费久久久久久久清纯| 日日夜夜操网爽| 91av网一区二区| 一本久久中文字幕| 亚洲国产精品合色在线| 亚洲av电影在线进入| 老司机福利观看| 国内精品美女久久久久久| 国内毛片毛片毛片毛片毛片| 国产高清三级在线| 18禁黄网站禁片免费观看直播| www.www免费av| 午夜日韩欧美国产| 99精品欧美一区二区三区四区| 国内精品久久久久久久电影| 757午夜福利合集在线观看| 国产真人三级小视频在线观看| 国产黄片美女视频| 中文资源天堂在线| 一区二区三区激情视频| 免费av不卡在线播放| 亚洲欧美日韩无卡精品| 欧美性感艳星| 午夜激情欧美在线| 99久久精品一区二区三区| 国产精品综合久久久久久久免费| 久久久国产成人免费| 亚洲人成网站高清观看| 动漫黄色视频在线观看| 丰满人妻一区二区三区视频av | 国产69精品久久久久777片| 91九色精品人成在线观看| 欧美av亚洲av综合av国产av| 少妇裸体淫交视频免费看高清| 亚洲成a人片在线一区二区| 国产伦在线观看视频一区| 欧美中文综合在线视频| 国产精品一区二区免费欧美| 日本黄大片高清| 国产三级中文精品| 超碰av人人做人人爽久久 | www国产在线视频色| 午夜免费男女啪啪视频观看 | 亚洲av免费在线观看| 青草久久国产| 男女那种视频在线观看| 亚洲国产高清在线一区二区三| 日韩欧美三级三区| 男人和女人高潮做爰伦理| 久久久精品大字幕| 大型黄色视频在线免费观看| 成人特级av手机在线观看| 一级黄片播放器| 国产伦在线观看视频一区| 欧美在线黄色| 一区二区三区免费毛片| 怎么达到女性高潮| 欧美+亚洲+日韩+国产| 听说在线观看完整版免费高清| 又爽又黄无遮挡网站| 国产av一区在线观看免费| 国产色爽女视频免费观看| 日本熟妇午夜| 亚洲自拍偷在线| 国产精品自产拍在线观看55亚洲| 欧美乱妇无乱码| 国产精品 欧美亚洲| 国产乱人伦免费视频| 国产高清激情床上av| 桃红色精品国产亚洲av| 精品人妻一区二区三区麻豆 | 亚洲天堂国产精品一区在线| 久久精品91蜜桃| 麻豆国产97在线/欧美| 18禁黄网站禁片午夜丰满| 亚洲国产欧美网| 国产成人系列免费观看| 91久久精品国产一区二区成人 | 精品国产亚洲在线| 少妇的逼好多水| 狂野欧美白嫩少妇大欣赏| 国产午夜精品论理片| 国产精品香港三级国产av潘金莲| 男插女下体视频免费在线播放| 脱女人内裤的视频| 国产三级中文精品| 亚洲欧美一区二区三区黑人| 精品99又大又爽又粗少妇毛片 | 国产色婷婷99| 在线观看66精品国产| 少妇的逼好多水| 99热6这里只有精品| 国产又黄又爽又无遮挡在线| 婷婷精品国产亚洲av| 国产精品久久久人人做人人爽| 久久性视频一级片| 成人18禁在线播放| 成人特级黄色片久久久久久久| 有码 亚洲区| 成人鲁丝片一二三区免费| 国产精品一区二区三区四区免费观看 | 亚洲国产精品999在线| 老鸭窝网址在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成人精品一区二区免费| 日韩欧美精品v在线| 天天躁日日操中文字幕| xxx96com| 97碰自拍视频| 成人午夜高清在线视频| 观看免费一级毛片| 亚洲 国产 在线| 两个人视频免费观看高清| 精品久久久久久久久久久久久| 成人av一区二区三区在线看| av在线天堂中文字幕| 欧美另类亚洲清纯唯美| 国产午夜福利久久久久久| 精品久久久久久久毛片微露脸| 人妻久久中文字幕网| 国产午夜福利久久久久久| or卡值多少钱| 亚洲精品乱码久久久v下载方式 | 99精品久久久久人妻精品| 久久精品亚洲精品国产色婷小说| 婷婷六月久久综合丁香| 午夜免费激情av| 中文字幕高清在线视频| 亚洲精品日韩av片在线观看 | 国产精品电影一区二区三区| 人人妻,人人澡人人爽秒播| 欧美zozozo另类| 怎么达到女性高潮| 日韩欧美精品v在线| a在线观看视频网站| 波多野结衣巨乳人妻| 国产真人三级小视频在线观看| 久久性视频一级片| 国产欧美日韩精品一区二区| 亚洲真实伦在线观看| 18禁美女被吸乳视频| 制服人妻中文乱码| 亚洲 国产 在线| 日韩av在线大香蕉| 淫妇啪啪啪对白视频| 久久人人精品亚洲av| 中国美女看黄片| 亚洲中文日韩欧美视频| 免费大片18禁| 尤物成人国产欧美一区二区三区| 大型黄色视频在线免费观看| 亚洲av熟女| 99热精品在线国产| 18禁黄网站禁片免费观看直播| 桃红色精品国产亚洲av| 在线播放无遮挡| 国产精品久久久久久精品电影| 黄色片一级片一级黄色片| 欧美不卡视频在线免费观看| 男女床上黄色一级片免费看| 99在线视频只有这里精品首页| 香蕉久久夜色| 亚洲,欧美精品.| 日本黄色片子视频| 久久精品91蜜桃| 我要搜黄色片| 精品一区二区三区av网在线观看| 亚洲欧美日韩无卡精品| 亚洲av免费高清在线观看| 欧美+日韩+精品| 亚洲av免费在线观看| 首页视频小说图片口味搜索| 成人特级黄色片久久久久久久| 极品教师在线免费播放| 欧美大码av| 亚洲欧美日韩无卡精品| 一本一本综合久久| 欧美日韩瑟瑟在线播放| 床上黄色一级片| 国产精品久久电影中文字幕| 日本黄大片高清| 深爱激情五月婷婷| 国产成人啪精品午夜网站| 亚洲 国产 在线| 欧美xxxx黑人xx丫x性爽| 在线国产一区二区在线| 欧美午夜高清在线| bbb黄色大片| 一个人看的www免费观看视频| 19禁男女啪啪无遮挡网站| 欧美中文综合在线视频| 在线观看av片永久免费下载| 欧美zozozo另类| a级一级毛片免费在线观看| 黄色女人牲交| 可以在线观看的亚洲视频| 国内精品一区二区在线观看| 久久精品影院6| 欧美另类亚洲清纯唯美| 嫩草影视91久久| 日韩欧美精品免费久久 | 99国产精品一区二区三区| 丰满人妻一区二区三区视频av | h日本视频在线播放| 天天添夜夜摸| 欧美一级a爱片免费观看看| 欧美在线黄色| 黄色片一级片一级黄色片| 在线a可以看的网站| 天天添夜夜摸| 国产成人av激情在线播放| 中文字幕人成人乱码亚洲影| 三级毛片av免费| 在线天堂最新版资源| а√天堂www在线а√下载| 国产精品野战在线观看| 国产精品久久久久久精品电影| 色视频www国产| 成人av一区二区三区在线看| 成人午夜高清在线视频| 中文字幕av在线有码专区| 黄片小视频在线播放| 精品午夜福利视频在线观看一区| 1000部很黄的大片| 最近最新免费中文字幕在线| 久久精品国产综合久久久| 日本精品一区二区三区蜜桃| 中出人妻视频一区二区| 精品电影一区二区在线| 日韩欧美精品免费久久 | 精品国产超薄肉色丝袜足j| 欧美激情在线99| 免费av观看视频| 亚洲精品美女久久久久99蜜臀| 校园春色视频在线观看| 婷婷精品国产亚洲av在线| 男人和女人高潮做爰伦理| 国产精品1区2区在线观看.| 欧美性感艳星| 99久久精品一区二区三区| 国产精品免费一区二区三区在线| 99久久综合精品五月天人人| 日韩欧美国产一区二区入口| 黄片大片在线免费观看| 少妇高潮的动态图| 听说在线观看完整版免费高清| 成人一区二区视频在线观看| 宅男免费午夜| 99热这里只有精品一区| 2021天堂中文幕一二区在线观| 国产真实乱freesex| 夜夜看夜夜爽夜夜摸| 久久亚洲真实| 一本综合久久免费| 国产av不卡久久| 精品久久久久久久久久久久久| 亚洲精品成人久久久久久| 狂野欧美白嫩少妇大欣赏| 亚洲一区二区三区色噜噜| 一区二区三区免费毛片| 757午夜福利合集在线观看| or卡值多少钱| 国产欧美日韩精品一区二区| 99热只有精品国产| 成人18禁在线播放| 日韩 欧美 亚洲 中文字幕| 国产亚洲欧美98| 久久久久久九九精品二区国产| 男人的好看免费观看在线视频| 精品福利观看| 乱人视频在线观看| 怎么达到女性高潮| 日韩欧美三级三区| 国内久久婷婷六月综合欲色啪| 99精品欧美一区二区三区四区| 精品久久久久久久末码| 少妇的丰满在线观看| 身体一侧抽搐| 国内毛片毛片毛片毛片毛片| 级片在线观看| 国产免费av片在线观看野外av| 亚洲av电影不卡..在线观看| 色在线成人网| 国产视频内射| 久久久久亚洲av毛片大全| 亚洲人成电影免费在线| 国产99白浆流出| 亚洲精品久久国产高清桃花| 亚洲欧美日韩东京热| 香蕉丝袜av| 麻豆一二三区av精品| 中文字幕人妻丝袜一区二区| 内地一区二区视频在线| 亚洲乱码一区二区免费版| 熟女人妻精品中文字幕| 12—13女人毛片做爰片一| 桃红色精品国产亚洲av| 一级黄色大片毛片| 一夜夜www| netflix在线观看网站| 90打野战视频偷拍视频| 欧美最黄视频在线播放免费| 婷婷精品国产亚洲av在线| 欧美成狂野欧美在线观看| 女同久久另类99精品国产91| 久久亚洲真实| h日本视频在线播放| 啪啪无遮挡十八禁网站| 亚洲国产精品合色在线| 两个人视频免费观看高清| 午夜视频国产福利| 天堂√8在线中文| 国产精品一区二区免费欧美| 国产高清激情床上av| 国产精品久久久久久久久免 | 成年版毛片免费区| 亚洲国产精品成人综合色| 日韩精品中文字幕看吧| 欧美激情在线99| 日本熟妇午夜| 久久6这里有精品| 国产精品一区二区三区四区免费观看 | 亚洲精品国产精品久久久不卡| 啦啦啦观看免费观看视频高清| 88av欧美| 欧美一级a爱片免费观看看| 日本精品一区二区三区蜜桃| 99热这里只有是精品50| 99精品欧美一区二区三区四区| 日韩欧美国产在线观看| www.色视频.com| 成熟少妇高潮喷水视频| 搡老岳熟女国产| 国产69精品久久久久777片| 亚洲成人精品中文字幕电影| aaaaa片日本免费| 日本五十路高清| 无人区码免费观看不卡| ponron亚洲| 精品熟女少妇八av免费久了| 91久久精品电影网| 精品一区二区三区视频在线 | 亚洲国产色片| 91字幕亚洲| x7x7x7水蜜桃| 国产三级在线视频| 亚洲精品456在线播放app | 看免费av毛片| 国产黄a三级三级三级人| 99久久精品一区二区三区| a级毛片a级免费在线| 波多野结衣巨乳人妻| 丰满乱子伦码专区| 美女被艹到高潮喷水动态| 国产精品日韩av在线免费观看| a级一级毛片免费在线观看| 午夜福利免费观看在线| 无限看片的www在线观看| 国产高清有码在线观看视频| 又黄又爽又免费观看的视频| 欧美成人一区二区免费高清观看| 欧美日韩黄片免| 久99久视频精品免费| 中文字幕av成人在线电影| 精品无人区乱码1区二区| 人人妻人人澡欧美一区二区| 色视频www国产| 美女免费视频网站| 欧美中文综合在线视频| 他把我摸到了高潮在线观看| 久久国产精品人妻蜜桃| 国产欧美日韩精品亚洲av| 日日摸夜夜添夜夜添小说| 精品久久久久久久毛片微露脸| 一本综合久久免费| 91在线精品国自产拍蜜月 | 69av精品久久久久久| 婷婷精品国产亚洲av| 久久午夜亚洲精品久久| 久久久久久九九精品二区国产| 一级黄片播放器| 啦啦啦免费观看视频1| 亚洲第一电影网av| 亚洲18禁久久av| 丁香六月欧美| 免费观看人在逋| 免费av不卡在线播放| 给我免费播放毛片高清在线观看| 每晚都被弄得嗷嗷叫到高潮| 午夜激情欧美在线| 无遮挡黄片免费观看| 精品99又大又爽又粗少妇毛片 | 欧美日韩瑟瑟在线播放| 午夜老司机福利剧场| 99久久久亚洲精品蜜臀av| av片东京热男人的天堂| 最新中文字幕久久久久| 制服人妻中文乱码| 亚洲无线在线观看| 成人高潮视频无遮挡免费网站| 日韩欧美精品免费久久 | 国产成人系列免费观看| 国产久久久一区二区三区| 日韩欧美三级三区| 人妻丰满熟妇av一区二区三区| 午夜福利免费观看在线| 又黄又粗又硬又大视频| 亚洲精华国产精华精| 精品国产超薄肉色丝袜足j| 久99久视频精品免费| 日本五十路高清| 亚洲男人的天堂狠狠| 五月玫瑰六月丁香| 亚洲午夜理论影院| 狠狠狠狠99中文字幕| 久久香蕉精品热| 麻豆成人午夜福利视频| 久久欧美精品欧美久久欧美| 老司机福利观看| 深夜精品福利| 色综合婷婷激情| 成人午夜高清在线视频| 久久精品91蜜桃| 成人性生交大片免费视频hd| 国产成人系列免费观看| 亚洲人成网站高清观看| 18禁在线播放成人免费| 欧美不卡视频在线免费观看| 黄片大片在线免费观看| 成人国产一区最新在线观看| 久久久国产成人精品二区| 久久精品国产亚洲av香蕉五月| 夜夜躁狠狠躁天天躁| 叶爱在线成人免费视频播放| 亚洲色图av天堂| 99在线视频只有这里精品首页|