• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Loads and Wake Prediction for Large Wind Turbines Based on Free Wake Method

    2015-11-24 02:39:22CaoJiufa曹九發(fā)WangTongguang王同光LongHui龍慧KeShitang柯世堂XuEofeng許波峰
    關(guān)鍵詞:波峰入射角粗糙度

    Cao Jiufa(曹九發(fā))'Wang Tongguang(王同光)' Long Hui(龍慧)'Ke Shitang(柯世堂)'Xu Eofeng(許波峰)

    1.Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design' Nanjing University of Aeronautics&Astronautics'Nanjing 210016'P.R.China;

    2.Department of Mechanical Engineering'The University of Sheffield'Sheffield S1 3JD'UK

    Dynamic Loads and Wake Prediction for Large Wind Turbines Based on Free Wake Method

    Cao Jiufa(曹九發(fā))1'2'Wang Tongguang(王同光)1*' Long Hui(龍慧)2'Ke Shitang(柯世堂)1'Xu Eofeng(許波峰)1

    1.Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design' Nanjing University of Aeronautics&Astronautics'Nanjing 210016'P.R.China;

    2.Department of Mechanical Engineering'The University of Sheffield'Sheffield S1 3JD'UK

    With large scale wind turbines'the issue of aerodynamic elastic response is even more significant on dynamic behaviour of the system.Unsteady free vortex wake method is proposed to calculate the shape of wake and aerodynamic load.Considering the effect of aerodynamic load'inertial load and gravity load'the decoupling dynamic equations are established by using finite element method in conjunction of the modal method and equations are solved numerically by Newmark approach.Einally'the numerical simulation of a large scale wind turbine is performed through coupling the free vortex wake modelling with structural modelling.The results show that this coupling model can predict the flexible wind turbine dynamic characteristics effectively and efficiently.Under the influence of the gravitational force'the dynamic response of flapwise direction contributes to the dynamic behavior of edgewise direction under the operational condition of steady wind speed.The difference in dynamic response between the flexible and rigid wind turbines manifests when the aerodynamics/structure coupling effect is of significance in both wind turbine design and performance calculation.

    wind turbine;free wake method;aerodynamic dynamics;structural dynamics

    0 Introduction

    Large scale wind turbines operate in complicated conditions'which contain all kinds of unsteady and coupling effects of wind condition and blade structure'thus making accurate prediction of the turbine performance very difficult.Particularly'when unsteady flow field'accompanying frequent changes in both wind speed and wind direction'passes through the long and slender blades as well as through the tall tower'it inevitably results in the so-called aero-elastic problem' i.e.the interaction between aerodynamic forces and rotor motion.Therefore'it is necessary to develop accurate coupled methods between the aerodynamic model with structure model in wind turbine design to enable vibration alleviation and to develop control strategy.

    Among the different aerodynamic theories to model the rotor aerodynamics[1-3]'the vortex theory is considered as one of the most suitable approximations because of its affordable computational costs and reasonably accurate results.In addition'vortex models are made up of a blade aerodynamic model including lifting line'lifting surface or panel method[4]to describe the flow around the blade'as well as to calculate the trailed and shed vorticitis released to the wake' using prescribed[5-7]or free wake[8-11]models to describe the wake geometry.The free wake models are more suitable for general rotor configurations'since the wake is allowed to freely distortunder the influence of the local velocity field.In the present work'the free wake model consists of near vortex sheets and far wake tip vertical filaments.Eor aero-elastic simulations'the free wake model is complemented with an elastic rotor model for the rotor dynamics[12-14].The modal superposition method is used to solve the wind turbine elastic problem in this paper.

    1 Aerodynamic Model

    It is assumed that the flow field is incompressible and potential in the free vortex wake(EVW)model for the wind turbine.The blade is modeled as a series of elements'which are represented as a line of bound vorticity lying along the blade quarter chord line.The vertical filaments'

    extending downstream from the trailing edge of the blade element boundary'are allowed to freely distort under the influence of local velocity field. The governing equation of the vertical filaments can be written in the form of a partial differential equation as

    where the blade azimuth angleψis a temporal coordinate and the wake age angleζis a spatial coordinate.On the right hand side of Eq.(1)'Vindequals to the mean value of the induced velocities at the surrounding four grid points calculated by the Eiot-Savart law.To solve the partial differential equation numerically'the finite difference approximations are used to approximate the derivatives on the left hand side.Eor the spatial(ζ)derivative'a five-point central difference approximation has been used based on the predictor-corrector central(PCC)difference[15]and the predictor-corrector second backward(PC2E)[16].The accuracy of the temporal(ψ)derivative approximation plays a significant role in the time-accurate free vortex method.The PC2E algorithm uses a second-order backward difference approximation'whereas the PCC algorithm still uses a five-point central difference approximation.

    Eig.1 Schematic of discretized tip vortex geometry

    In the present work'a new time-accurate algorithm is developed for overall convergence in the numerical iterations.Eor this'Eq.(1)can be written in another form as

    Eq.(2)can be written in a general form of ordinary derivative equation as

    The predictor process in the predictor-corrector algorithm adopts an explicit format'whereas the corrector process adopts an implicit format. Assuming the steps are equal'the general form of the linear multistep method for Eq.(3)is written as

    where yn+jand fn+jrepresent the terms of y(xn+j)and f(xn+j'yn+j)'respectively.The values of constantsαjandβj(j=0'1…'k)can be obtained using the method of undetermined coefficients.An explicit three-step linear multistep method is given by

    The local truncation error of Eq.(5)is

    An implicit three-step linear multistep method is given by

    The local truncation error of Eq.(7)is

    The explicit and implicit three-step linear multistep methods are used in the temporal(ψ)derivative approximation.A new predictorcorrector algorithm is developed as

    Eor the predictor

    and for the corrector

    It is obvious from the local truncation errors of Eqs.(5'7)that the new predictor-corrector algorithm has third-order accuracy'and therefore this algorithm is referred as the three-step and third-order predictor-corrector(D3PC)algorithm.PCC is a single-step algorithm and has second-order accuracy.The single-step algorithm is simple'but its numerical stability is not good enough.The multistep method has recently been widely used since it has better stability and convergence.Although the PC3E algorithm is a three-step algorithm'it only achieves secondorder accuracy'which results in low efficiency. The D3PC algorithm developed in this paper is also a three-step algorithm'but is of third-order accuracy.

    In this paper'the three-dimensional rotational model is included in the aerodynamic model. The three-dimensional rotational effect is one of the typical differences between rotor and fixed wing'which is characterised by significantly increased lift coefficient compared with the corresponding 2D case.The higher anales of attack can contribute to the delay of the occurrence of flow separation.Du-Selig stall-delay model[17]0 coupled with the free vortex wake model is used to modify the airfoil aerodynamic data by consideration of the three-dimensional rotational effect here.

    The aerodynamic loading is caused by the flow past the wind turbine structure composed of the blades and the tower.The air loads can be calculated through the discrete blade element method.Every blade element is regarded as a 2-D airfoil'and the relative velocity vector Vrelis obtained from

    2 Dynamics Equation for Aerodynamic and Structural CouPling

    If a wind turbine is described as a discretized mechanical system'the principle work is to correctly set up the mass matrix M'stiffness matrix K'and damping matrix C'for the dynamics equation

    where{F(t)}denotes the generalized force vector associated with the external loads.x is the generalized displacement.In this paper'the Newmark method is used to solve the dynamics equation. The discretized calculation process to solve the dynamics equation is presented aswhere the subscript represents the time-step number.The displacements at the time step n+1 are calculated from the results of the previous time step n'at which the displacements'velocities'and accelerations for each node are already known.

    The generalized displacement and velocity in the form of expansion from the time step n to the time step n+1 are given by

    whereγ=0.5 andβ=0.25 are the trapezoidal conditions in order to guarantee unconditional convergence.It is worthy to note that a small enough computing time step is required for gaining more accurate structural dynamic response. Here'the time step is chosen on the basis of the one tenth of the rotating cycle when the structural response is significant enough.The calculation procedure is shown in Eig.2.(EVW:the free vortex wake method'EEM:the finite element modeling)

    Eig.2 Calculation procedures for dynamic responses

    The blade gravitational force and centrifugal force are included in the calculation.Gravity is responsible for a sinusoidal loading of the blades with a frequency corresponding to the rotation of the rotor.The blade experiences tensile stress and compressive stress because of the gravitational loads'thus resulting in the blade vibration deformation and affecting the rotor aerodynamic performance.The gravitational loading is obtained from

    where A is the coordinate system transformation matrix'mithe i th blade element mass'and dfgthe gravitational loading of the i th blade element.

    The inertial loading stems from the centrifugal force on the blades due to rotation.The centrifugal force dfcacting on the blade element at a radius r from the rotational axis is obtained by

    3 Numerical Results and Analyses

    3.1 Calculation model validation

    對(duì)3種不同粗糙度的鋁材料進(jìn)行BRDF對(duì)比測(cè)試,所選粗糙度Ra分別為2.5,5,8 μm。入射角度θi分別為0°和30°,實(shí)驗(yàn)測(cè)量的BRDF,如圖7所示。

    The National Renewable Energy Laboratory(NREL)Phase VI rotor geometry'aerodynamic and structural properties are well documented in Ref.[18].The operating condition for the experiment is varied from wind speed of 7 to 25 m/s. The rotor speed is 72 r/min with the cone angle of tip pitch being 3°and 0°.The rotor radius is 5.029 m.

    Eig.3 shows the variation of rotor torque with wind speed'and comparison with the experiment data.The calculation results agree well with the experimental data at low wind speeds. At higher wind speeds'however'there are discrepancies'probably due to the stall effects.

    Eig.3 Variation of rotor torque with wind speed

    Eig.4 shows the variation of normal and tangential coefficients at different span with wind speed.Ranging from low to high wind speeds'it is found that the normal and tangential force coef-ficients of the blade root are slightly worse than other part of the blade'which is due to the fact that the blade root suffers the serious stall effect. It is difficult to simulate the stall situation.The better stall model is needed to use in the free wake method.However'both the middle and tip part of blade have a good match with the experimental data.Therefore'one can say that the calculation model is well used to calculation the loads of the wind turbine.

    Eig.4 Variation of normal and tangential coefficients at different wind speeds

    3.2 Large-scale wind turbine numerical results and analyses

    The NH1500 wind turbine is adopted as a calculation example in this paper.The calculation time step is 10°/Ω.The wind speed is 8 m/s.To reflect the similarity of NH1500 and real 1.5 MW wind turbine'the rotor main parameters are shown in Table 1.It can be seem that the rated power of NH1500 is 1.5 MW.The NH1500 and real 1.5 MW wind turbine have the similar blade length and wind speed operational condition.And the NH1500 also adopts the variable-pitch variable speed control strategy.Moreover'to describe the NH1500 detailedly'the NH1500 blade main structural parameters are shown in Table 2.All the aerodynamic centers of blade are located in a quarter chord length.Mass and elastic centers are given through chord length percentage in the airfoil coordinates.

    Table 1 NH1500 rotor Parameters

    Here'the finite element method is applied to establish the wind turbine structural model. Two-node beams and shell elements are used to model the blade and tower'respectively.The nacelle mass and moment of inertia are simulated through the 0D element in PATRAN software. The rotor is rigidly connected to the tower.The boundary conditions are imposed at the bottom of the tower through fixed constraints.The modes of NH1500 wind turbine are calculated at the rotational speed of 17.2 r/min with the calculatedmodes shown in Table 3.

    Table 2 Main structural Parameters for the NH1500 blade

    Table 3 Mode descriPtion

    Eig.5 shows the comparison of calculated value and experimental value.NH1500 is a 1/16 scaled model on the experiment.The calculated data and experimental data changing trend are basically consistent.In Eig.5'the calculation values are slightly higher than the experiment data. The probable reason is that the experiment wind turbine model is a scaled model.

    Eig.6 shows the downstream displacements of the blade tip vortex'calculated from the EVW method.To investigate the blade deformation effect'the NH1500 blade is considered rigid and flexible'respectively.It can be clearly seen from Eig.6 that the difference in the vortex position between the assumed rigid blade and the actual flexible blade.The displacement difference increases from 0.05R to 0.1R as the tip vortex fila-ment moves downstream.It can be reasoned that this difference has influence on the air load calculation through the induced velocity calculation' which depends on the spatial distance of the vortex to the blade.

    Eig.5 Cpof NH1500

    Eor further analysis'the wind speed distribution and the vorticity of the wake are calculated.The wind speed of the wake V(Vx'Vy'Vz)is defined as

    To find the wind speed of the wake seen by V(Vx'Vy'Vz)'the induced velocity of the tip vortex'the induced velocity of the bound vortex'the induced velocity of the trailed vortex'and the induced velocity of the shed vortex'must be added as vectors into the inflow velocity'V∞.

    As the wind speed distribution is known'the vorticityis calculated by

    Eigs.7'8 give the development and evolvement of the tip vortex for the rigid and flexible blades with the axial downstream distance'respectively.The vortical strength increases downstream just behind the rotor with a wake expansion'but gradually dissipates as the axial distance further increases for the both cases.However' both the vortical strength and the wake expansion for the assumed rigid rotor are stronger than those for the actual flexible rotor.

    Eig.7 Axial distribution of tip vortex for rigid blade

    Eig.8 Axial distribution of tip vortex for flexible blade

    Eig.9 0R section distribution of wind speed Vz(m/s)of rigid blade

    Eig.10 0R section distribution of wind speed Vz(m/s)of flexible blade

    Eig.9 shows the 0R section distribution of the wind speed of the rigid blade.Eig.10 shows the 0R section distribution of the wind speed of the flexible blade.It is found that the 0R section wind speeds of the flexible blade are weaker than the rigid due to the structural deformation.The effect is significant for wake prediction.

    Eig.11 illustrates some representative numerical results among which the aerodynamic characteristics are presented by the blade root loads for the flexible case at the wind speed of 8 m/s.The root loads all fluctuate sinusoidally with azimuthally angle for both cases with and without gravity considered.Nevertheless'the amplitudes of the load variation differ from each other due to the gravitational effect.In addition' the blade dynamic deformation is also influenced by the gravity.The dynamic displacement in the flapwise direction when gravitational force is not considered is only about 4%of that when the gravitational force is taken into account'as shown in Eig.12.

    Eig.11 Edgewise force at blade root

    Eig.12 Dynamic displacements at blade tip in flapwise direction

    Eig.13 Wind turbine power coefficients'V∞=8 m/s

    It is obvious from Eig.13'where the windturbine power coefficient Cpis compared between the rigid and flexible considerations'that the flexible wind turbine Cpis larger than the rigid one and changes with azimuth angle.According to the comparison of minimum value'the flexible wind turbine Cpis 1.6%more than the rigid one. It is the reason that the flapwise direction induced velocity of flexible blade has a larger change amplitude than the edgewise direction induced velocity.And the flapwise direction induced velocity is weaker than the rigid one.Thus'the attack angle and the flow angle of flexible blade are both larger.Einally'the tangential force coefficient to the rotor is larger'which can lead to the increasing of torque and Cp.

    4 Conclusions

    The numerical analysis of wind turbine wake and loads are presented in this paper.An aerodynamically and structurally coupled model is developed and used to predict the flexible wind turbine loads and aerodynamic performance.The results demonstrate that EVW and EEM coupling model can predict the wind turbine dynamic characteristics effectively and efficiently.The dynamic displacement in the flapwise direction without considering gravitational force is only 4%of that with gravitational force.Moreover'according to the comparison of minimum value of Cp'the Cpvalue of the flexible wind turbine is 1.6%more than that of the rigid one.Despite the fact that the accuracy of the calculated results needs to be improved for further validation by experiment data'the wind turbine wake and dynamic response can be better understood through the results obtained from this study.

    Acknowledgements

    This work was supported by the National Easic Research Program of China(973 Program)(No. 2014CE046200)'the Jiangsu Province Natural Science Eoundation(No.EK2012390)'the Eundamental Research Eunds for the Central Universities'and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    [1] Ghadirian A'Dehghan M'Torabi E.Considering induction factor using EEM method in wind farm layout optimization[J].Journal of Wind Engineering and Industrial Aerodynamics'2014'129:31-39.

    [2] Zhang Zhenyu'Zhou Hanwei'Wang Tongguang. Numerical analysis of influence of Gurney flaps applied to wind turbines[J].Transactions of Nanjing University of Aeronautics&Astronautics'2014'31(5):576-579.

    [3] Hsu MingChen'Akkerman I'Eazilevs Y.Einite element simulation of wind turbine aerodynamics:Validation study using NREL Phase VI experiment[J]. Wind Energy'2014'17:461-481.

    [4] Grasso E'van Garrel A'Schepers G.Development and validation of generalized lifting line based code for wind turbine aerodynamics[C]∥The 30th ASME wind energy symposium'Elorida'USA:[s.n.]' 2011:146-152.

    [5] Scheurich E'Eletcher T M'Erown R E.Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine[J].Wind Energy'2011'14(2):159-177.

    [6] Ereton S P'Coton E N'Moe G.A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and NREL phase VI experiment data[J].Wind Energy'2008'11:459-482.

    [7] Wang T G.Unsteady aerodynamic modelling of horizontal axis wind turbine performance[D].Scotland' UK:University of Glasgow'1999.

    [8] Sebastian T'Lackner MA.Development of a free vortex wake method code for offshore floating wind turbines[J].Renewable Energy'2012'46:269-275.

    [9] Zhou W P'Tang S L'LüH.Computation on aerodynamic performance of horizontal axis wind turbine based on time-marching free vortex method[J].Chin Soc for Elec Eng'2011'31(29):124-130.

    [10]Jeon M'Lee S.Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method[J].Renewable Energy' 2014'65:207-212.

    [11]Gupta S'Leishman J G.Performance pre-dictions of the NREL phaseⅥcombined Ex-periment rotor using a free-vortex wake model[C]∥Collection ofTechnical Papers—44th AIAA Aerospace Sciences Meeting.[S.l.]:AIAA'2006:4544-4564.

    [12]Eelco H'Gustaaf J'Asfaw E.Aero-elastic behavior of a flexible blade for wind turbine application:A 2D computational study[J].Energy'2010'35:778-785.

    [13]Ahlstrom A.Aeroelastic simulation of wind turbine dynamics[D].Sweden:Royal Institute of Technology Department of Mechanics'2005.

    [14]Ng E E'Hesse H'Palacios R.Aeroservoelastic state space vortex lattice modeling and load alleviation of wind turbine blades[J].Wind Energy'2014' 17(4):DOI:10.1002/we.1752.

    [15]Ehagwat M J'Leishman J G.Rotor aerodynamics during maneuvering flight usinga time-accurate freevortex wake[J].Journal of the American Helicopter Society'2003'48:143-158.

    [16]Ehagwat M J'Leishman J G.Time-accurate free vortex wake model for dynamic rotor response[C]∥American Helicopter Society Specialist Meeting.Atlanta'USA:[s.n.]'2000.

    [17]Du Z'Selig M S.A 3-D stall-delay model for horizontal axis wind turbine performance prediction[R]. AIAA-98-0021'1998.

    [18]Hand M'Simms D A.Unsteady aerodynamicexperiment phase VI:Wind tunnel test configurations and available data campaigns[R].National Renewable Energy Laboratory.Colorado:National Technical Information Service'2001.

    (Executive editor:Xu Chengting)

    O35 Document code:A Article ID:1005-1120(2015)02-0240-10

    *CorresPonding author:Wang Tongguang'Professor'E-mail:tgwang@nuaa.edu.cn.

    How to cite this article:Cao Jiufa'Wang Tongguang'Long Hui'et al.Dynamic loads and wake prediction for large wind turbines based on free wake method[J].Trans.Nanjing U.Aero.Astro.'2015'32(2):240-249.

    http://dx.doi.org/10.16356/j.1005-1120.2015.02.240

    (Received 13 November 2014;revised 7 January 2015;accepted 12 January 2015)

    猜你喜歡
    波峰入射角粗糙度
    一般三棱鏡偏向角與入射角的關(guān)系
    炮制工程騙錢的“甲方”
    作用于直立堤墻與樁柱的波峰高度分析計(jì)算
    基于無人機(jī)影像的巖體結(jié)構(gòu)面粗糙度獲取
    甘肅科技(2020年20期)2020-04-13 00:30:18
    冷沖模磨削表面粗糙度的加工試驗(yàn)與應(yīng)用
    模具制造(2019年4期)2019-06-24 03:36:48
    預(yù)制圓柱形鎢破片斜穿甲鋼靶的破孔能力分析*
    用經(jīng)典定理證明各向異性巖石界面異常入射角的存在
    基于BP神經(jīng)網(wǎng)絡(luò)的面齒輪齒面粗糙度研究
    鋼材銹蝕率與表面三維粗糙度參數(shù)的關(guān)系
    兒童標(biāo)準(zhǔn)12導(dǎo)聯(lián)T波峰末間期的分析
    欧美另类亚洲清纯唯美| 亚洲,欧美精品.| 亚洲av电影在线进入| 国产黄色免费在线视频| 正在播放国产对白刺激| 久久国产精品影院| 国产精品香港三级国产av潘金莲| 精品久久久久久久毛片微露脸 | 一级毛片电影观看| 国产精品免费视频内射| 国产欧美日韩一区二区三 | 久久国产亚洲av麻豆专区| 狂野欧美激情性bbbbbb| 国产欧美日韩一区二区三 | 超碰成人久久| 欧美在线黄色| 五月开心婷婷网| 亚洲色图 男人天堂 中文字幕| 伦理电影免费视频| 又紧又爽又黄一区二区| h视频一区二区三区| 日本a在线网址| 菩萨蛮人人尽说江南好唐韦庄| 久久ye,这里只有精品| www日本在线高清视频| 男女午夜视频在线观看| 亚洲av电影在线进入| 99香蕉大伊视频| 狂野欧美激情性xxxx| 搡老熟女国产l中国老女人| 狠狠精品人妻久久久久久综合| 亚洲成av片中文字幕在线观看| 亚洲精品久久久久久婷婷小说| 国产精品免费大片| 黄色视频在线播放观看不卡| 考比视频在线观看| 久久天躁狠狠躁夜夜2o2o| 狂野欧美激情性xxxx| 亚洲欧美一区二区三区久久| 纯流量卡能插随身wifi吗| 宅男免费午夜| 桃红色精品国产亚洲av| 亚洲精品国产色婷婷电影| 搡老熟女国产l中国老女人| 狠狠精品人妻久久久久久综合| 国产精品国产av在线观看| 成在线人永久免费视频| 日韩欧美一区二区三区在线观看 | 色婷婷久久久亚洲欧美| 黑人巨大精品欧美一区二区蜜桃| 国产在线视频一区二区| 美女主播在线视频| 精品一区二区三区av网在线观看 | 成人18禁高潮啪啪吃奶动态图| 国产精品熟女久久久久浪| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久毛片微露脸 | 亚洲专区字幕在线| 精品亚洲乱码少妇综合久久| 国产三级黄色录像| 黄色片一级片一级黄色片| 亚洲欧美日韩高清在线视频 | 黑人操中国人逼视频| 亚洲 国产 在线| 国产在线免费精品| 成年人黄色毛片网站| 色综合欧美亚洲国产小说| 午夜91福利影院| 欧美+亚洲+日韩+国产| 99精品欧美一区二区三区四区| 日韩人妻精品一区2区三区| 2018国产大陆天天弄谢| 国产精品久久久久成人av| 久久人人97超碰香蕉20202| 精品少妇黑人巨大在线播放| 中文字幕人妻熟女乱码| 亚洲情色 制服丝袜| 丝袜脚勾引网站| av在线老鸭窝| 美女脱内裤让男人舔精品视频| 国产欧美日韩一区二区精品| 久久这里只有精品19| 夜夜夜夜夜久久久久| 久久久国产一区二区| 精品国产乱子伦一区二区三区 | 日本黄色日本黄色录像| 麻豆国产av国片精品| 国产av国产精品国产| 老熟妇仑乱视频hdxx| 国产精品.久久久| 亚洲欧美成人综合另类久久久| 美女福利国产在线| 欧美av亚洲av综合av国产av| 中亚洲国语对白在线视频| 国产人伦9x9x在线观看| 嫩草影视91久久| 俄罗斯特黄特色一大片| 中文字幕色久视频| 日韩 亚洲 欧美在线| 久久精品国产亚洲av香蕉五月 | 欧美黑人精品巨大| 嫁个100分男人电影在线观看| 国产一区二区 视频在线| 黄色 视频免费看| www.av在线官网国产| 久久这里只有精品19| 日韩免费高清中文字幕av| 在线观看一区二区三区激情| 这个男人来自地球电影免费观看| 色视频在线一区二区三区| 国产一级毛片在线| 黄色视频,在线免费观看| 国产成人一区二区三区免费视频网站| 操美女的视频在线观看| 成人免费观看视频高清| 免费观看av网站的网址| 69精品国产乱码久久久| 午夜久久久在线观看| 中文字幕高清在线视频| 97人妻天天添夜夜摸| 欧美+亚洲+日韩+国产| 久久亚洲国产成人精品v| 狠狠婷婷综合久久久久久88av| 成年人黄色毛片网站| www.精华液| 精品久久久精品久久久| 女人被躁到高潮嗷嗷叫费观| 国产不卡av网站在线观看| 男女之事视频高清在线观看| 老司机午夜福利在线观看视频 | 老司机亚洲免费影院| 日韩欧美一区视频在线观看| 麻豆国产av国片精品| 亚洲欧美一区二区三区久久| kizo精华| 99热国产这里只有精品6| 欧美乱码精品一区二区三区| 欧美激情 高清一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美乱码精品一区二区三区| 午夜免费观看性视频| 亚洲五月婷婷丁香| 99国产精品99久久久久| 日韩电影二区| 亚洲人成电影观看| 啦啦啦视频在线资源免费观看| 女人高潮潮喷娇喘18禁视频| 一区二区三区精品91| 久久 成人 亚洲| 免费黄频网站在线观看国产| 香蕉国产在线看| 男男h啪啪无遮挡| 国产成人系列免费观看| 欧美人与性动交α欧美精品济南到| 咕卡用的链子| 深夜精品福利| 久久久久国产一级毛片高清牌| 亚洲专区国产一区二区| 精品久久久久久久毛片微露脸 | 在线观看人妻少妇| 久久久久久久久久久久大奶| av国产精品久久久久影院| 精品亚洲成a人片在线观看| 天天操日日干夜夜撸| 两个人看的免费小视频| 国产一区有黄有色的免费视频| 久久天躁狠狠躁夜夜2o2o| 啦啦啦在线免费观看视频4| 男女午夜视频在线观看| 男人操女人黄网站| 人妻人人澡人人爽人人| 高清视频免费观看一区二区| 91字幕亚洲| 老司机影院毛片| 熟女少妇亚洲综合色aaa.| 丰满饥渴人妻一区二区三| 国产男女超爽视频在线观看| 久久影院123| 亚洲精品一区蜜桃| 亚洲五月婷婷丁香| 男人爽女人下面视频在线观看| 国产精品二区激情视频| 亚洲精品国产一区二区精华液| 国产精品久久久久久精品古装| 大陆偷拍与自拍| svipshipincom国产片| 狠狠精品人妻久久久久久综合| 亚洲国产精品一区二区三区在线| 免费在线观看日本一区| 午夜福利乱码中文字幕| 69精品国产乱码久久久| 亚洲精品成人av观看孕妇| 黄色视频不卡| 国产男女内射视频| 99久久人妻综合| 69av精品久久久久久 | 热re99久久精品国产66热6| 99国产综合亚洲精品| av网站在线播放免费| 99热全是精品| 男女下面插进去视频免费观看| 亚洲av电影在线观看一区二区三区| 亚洲精品国产av蜜桃| 精品福利永久在线观看| 亚洲精品av麻豆狂野| 日本欧美视频一区| 三级毛片av免费| 久热爱精品视频在线9| 国产一区二区三区综合在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 老司机靠b影院| 久久人妻福利社区极品人妻图片| xxxhd国产人妻xxx| 久久精品aⅴ一区二区三区四区| 久9热在线精品视频| 亚洲专区字幕在线| 捣出白浆h1v1| 国产精品欧美亚洲77777| 韩国精品一区二区三区| 又大又爽又粗| 亚洲自偷自拍图片 自拍| 亚洲国产精品999| e午夜精品久久久久久久| 97人妻天天添夜夜摸| 日本黄色日本黄色录像| 多毛熟女@视频| 国产无遮挡羞羞视频在线观看| 91麻豆精品激情在线观看国产 | 婷婷丁香在线五月| 久久热在线av| 日韩 亚洲 欧美在线| 丁香六月天网| 亚洲av电影在线进入| 极品人妻少妇av视频| 一区二区三区四区激情视频| 亚洲精品中文字幕在线视频| 亚洲男人天堂网一区| 又大又爽又粗| 久久综合国产亚洲精品| 亚洲熟女毛片儿| 欧美变态另类bdsm刘玥| 最近最新免费中文字幕在线| 免费久久久久久久精品成人欧美视频| 色婷婷久久久亚洲欧美| 男人添女人高潮全过程视频| 国产精品 国内视频| 伦理电影免费视频| 国产精品国产三级国产专区5o| 一个人免费在线观看的高清视频 | 丁香六月天网| 18禁黄网站禁片午夜丰满| 国产精品久久久久久精品电影小说| 久久精品人人爽人人爽视色| 91大片在线观看| 国产日韩欧美亚洲二区| 亚洲欧美成人综合另类久久久| 亚洲精品第二区| 亚洲九九香蕉| xxxhd国产人妻xxx| 午夜福利乱码中文字幕| 狂野欧美激情性xxxx| 午夜精品国产一区二区电影| 黄片大片在线免费观看| 亚洲国产精品成人久久小说| 少妇裸体淫交视频免费看高清 | 黄片小视频在线播放| 最新在线观看一区二区三区| 韩国精品一区二区三区| 久久久国产成人免费| 欧美日韩精品网址| 国产亚洲精品久久久久5区| 日日摸夜夜添夜夜添小说| avwww免费| 日本vs欧美在线观看视频| 麻豆乱淫一区二区| 欧美精品一区二区大全| 一本久久精品| 久久国产精品大桥未久av| 制服人妻中文乱码| 日韩精品免费视频一区二区三区| 国产区一区二久久| 女人被躁到高潮嗷嗷叫费观| 国产精品一区二区在线观看99| 亚洲免费av在线视频| 精品卡一卡二卡四卡免费| 一个人免费看片子| 叶爱在线成人免费视频播放| 免费在线观看黄色视频的| 亚洲精品av麻豆狂野| 日韩欧美国产一区二区入口| 性色av乱码一区二区三区2| 777米奇影视久久| 精品福利观看| 91麻豆精品激情在线观看国产 | 久久99热这里只频精品6学生| 日韩欧美国产一区二区入口| 在线看a的网站| 一级毛片电影观看| 国产成人欧美| 国产精品一区二区在线观看99| 少妇的丰满在线观看| 侵犯人妻中文字幕一二三四区| 天天添夜夜摸| 国产成人精品久久二区二区免费| 成年人免费黄色播放视频| 午夜久久久在线观看| 国产在线观看jvid| 久久久久久亚洲精品国产蜜桃av| 18禁观看日本| 国产欧美日韩一区二区精品| 妹子高潮喷水视频| 中文欧美无线码| 手机成人av网站| 久久人人爽av亚洲精品天堂| 999精品在线视频| 岛国毛片在线播放| 1024视频免费在线观看| 青春草亚洲视频在线观看| 嫩草影视91久久| 99国产精品一区二区蜜桃av | 肉色欧美久久久久久久蜜桃| 欧美一级毛片孕妇| 好男人电影高清在线观看| 一区二区三区精品91| 国产精品免费视频内射| 电影成人av| 国产在视频线精品| 香蕉丝袜av| 国产免费视频播放在线视频| 国产一区二区三区综合在线观看| 成人影院久久| 亚洲,欧美精品.| svipshipincom国产片| 无遮挡黄片免费观看| 99热国产这里只有精品6| 啦啦啦啦在线视频资源| 欧美日韩视频精品一区| 欧美精品亚洲一区二区| 国产亚洲精品久久久久5区| 亚洲av片天天在线观看| 成在线人永久免费视频| 丝袜美足系列| 视频区欧美日本亚洲| 脱女人内裤的视频| 少妇被粗大的猛进出69影院| 亚洲欧洲日产国产| 两个人免费观看高清视频| 日韩中文字幕视频在线看片| 搡老岳熟女国产| 极品人妻少妇av视频| 亚洲精品国产av蜜桃| 中文欧美无线码| 麻豆乱淫一区二区| 日本av免费视频播放| 一级a爱视频在线免费观看| 肉色欧美久久久久久久蜜桃| 超碰成人久久| 交换朋友夫妻互换小说| 热99国产精品久久久久久7| 国内毛片毛片毛片毛片毛片| 国产精品熟女久久久久浪| 99re6热这里在线精品视频| 国产极品粉嫩免费观看在线| cao死你这个sao货| 法律面前人人平等表现在哪些方面 | 国产免费视频播放在线视频| 国产精品久久久av美女十八| 午夜福利在线观看吧| 人人妻人人添人人爽欧美一区卜| 乱人伦中国视频| 国产精品 国内视频| 精品国产乱子伦一区二区三区 | 极品人妻少妇av视频| 狂野欧美激情性bbbbbb| 成人免费观看视频高清| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美国产一区二区入口| 69av精品久久久久久 | 久久国产亚洲av麻豆专区| 老熟妇仑乱视频hdxx| 男女下面插进去视频免费观看| 日日夜夜操网爽| 日韩 欧美 亚洲 中文字幕| 麻豆国产av国片精品| 成年人午夜在线观看视频| 99re6热这里在线精品视频| 中文字幕色久视频| 午夜影院在线不卡| 国产精品免费大片| 久久毛片免费看一区二区三区| 爱豆传媒免费全集在线观看| 欧美在线黄色| 国产精品欧美亚洲77777| 欧美黑人精品巨大| 一级毛片电影观看| 午夜福利一区二区在线看| 777米奇影视久久| 国产真人三级小视频在线观看| 日本vs欧美在线观看视频| 天堂俺去俺来也www色官网| 午夜福利在线免费观看网站| 男女国产视频网站| 免费在线观看影片大全网站| 精品免费久久久久久久清纯 | 久久中文字幕一级| 中文字幕最新亚洲高清| 精品亚洲成国产av| 最新的欧美精品一区二区| 午夜91福利影院| 国产一卡二卡三卡精品| 性少妇av在线| 日韩中文字幕欧美一区二区| 日韩欧美免费精品| 国产精品一区二区免费欧美 | 99热网站在线观看| 国产精品国产三级国产专区5o| 国产精品av久久久久免费| 亚洲国产精品一区三区| 久久人人97超碰香蕉20202| 午夜福利在线观看吧| 亚洲精品国产av成人精品| 中文字幕人妻丝袜制服| 老司机亚洲免费影院| 最近最新免费中文字幕在线| 亚洲五月色婷婷综合| 日本av免费视频播放| 国产高清视频在线播放一区 | 一区福利在线观看| 精品一区在线观看国产| 高清视频免费观看一区二区| 午夜日韩欧美国产| 欧美xxⅹ黑人| 日韩一区二区三区影片| 久久九九热精品免费| 国产精品久久久久久精品古装| 国产国语露脸激情在线看| 嫩草影视91久久| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久av美女十八| 中文字幕最新亚洲高清| 亚洲国产日韩一区二区| 国产免费一区二区三区四区乱码| 91成年电影在线观看| 日日爽夜夜爽网站| 免费高清在线观看日韩| 欧美日韩av久久| 这个男人来自地球电影免费观看| 黄色 视频免费看| 性少妇av在线| avwww免费| 亚洲情色 制服丝袜| 19禁男女啪啪无遮挡网站| 丰满少妇做爰视频| 啪啪无遮挡十八禁网站| 美女视频免费永久观看网站| 热99re8久久精品国产| 国产日韩欧美在线精品| 成人影院久久| 大香蕉久久网| 老司机影院成人| 免费看十八禁软件| 亚洲专区中文字幕在线| 一本色道久久久久久精品综合| 成年动漫av网址| 欧美大码av| 在线天堂中文资源库| 美国免费a级毛片| 国产成人精品无人区| 天堂俺去俺来也www色官网| 99精品久久久久人妻精品| 男女午夜视频在线观看| 午夜成年电影在线免费观看| 啦啦啦 在线观看视频| 在线观看舔阴道视频| 久久久久久久久久久久大奶| 不卡一级毛片| 亚洲av男天堂| 啪啪无遮挡十八禁网站| 婷婷成人精品国产| 99热网站在线观看| 另类亚洲欧美激情| 我的亚洲天堂| 黄频高清免费视频| 亚洲精品成人av观看孕妇| 99热国产这里只有精品6| 午夜福利视频在线观看免费| 国产高清videossex| 精品人妻熟女毛片av久久网站| 国产免费视频播放在线视频| 天天操日日干夜夜撸| 激情视频va一区二区三区| 国产麻豆69| 男人添女人高潮全过程视频| 亚洲精品久久午夜乱码| 欧美激情高清一区二区三区| 亚洲熟女毛片儿| 视频区图区小说| 精品视频人人做人人爽| 黄色怎么调成土黄色| 精品国产乱码久久久久久男人| 97人妻天天添夜夜摸| 亚洲色图 男人天堂 中文字幕| 丁香六月天网| 国产高清国产精品国产三级| 久久精品人人爽人人爽视色| 一边摸一边抽搐一进一出视频| 桃红色精品国产亚洲av| 国产亚洲精品第一综合不卡| 国产亚洲午夜精品一区二区久久| 久久中文看片网| 色播在线永久视频| 国产精品久久久久久人妻精品电影 | 丝袜在线中文字幕| 性少妇av在线| 久久久欧美国产精品| 亚洲色图综合在线观看| 亚洲一码二码三码区别大吗| 婷婷色av中文字幕| 国产成人欧美在线观看 | 青春草视频在线免费观看| 黄片播放在线免费| 免费观看av网站的网址| 激情视频va一区二区三区| 十分钟在线观看高清视频www| 在线永久观看黄色视频| 啦啦啦在线免费观看视频4| 国产av精品麻豆| 亚洲精品一卡2卡三卡4卡5卡 | 另类精品久久| 一本—道久久a久久精品蜜桃钙片| 欧美精品高潮呻吟av久久| 青青草视频在线视频观看| 叶爱在线成人免费视频播放| 动漫黄色视频在线观看| 国产精品亚洲av一区麻豆| 久久av网站| 国产亚洲精品一区二区www | 最近最新免费中文字幕在线| 狠狠精品人妻久久久久久综合| 中文精品一卡2卡3卡4更新| 欧美黑人欧美精品刺激| 又黄又粗又硬又大视频| 成人黄色视频免费在线看| 丝袜喷水一区| 久久热在线av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产区一区二| 一本—道久久a久久精品蜜桃钙片| 人妻一区二区av| 丰满少妇做爰视频| 欧美亚洲 丝袜 人妻 在线| 热re99久久精品国产66热6| 国产区一区二久久| 99国产精品免费福利视频| 老司机深夜福利视频在线观看 | 欧美av亚洲av综合av国产av| 久久久久久久久免费视频了| 国产亚洲精品久久久久5区| 国产一级毛片在线| 色综合欧美亚洲国产小说| 国产一区二区激情短视频 | av福利片在线| av欧美777| 精品卡一卡二卡四卡免费| 国产黄色免费在线视频| tube8黄色片| 我的亚洲天堂| 精品福利永久在线观看| 国产成人欧美| 2018国产大陆天天弄谢| 国产精品.久久久| 亚洲欧美日韩另类电影网站| 两人在一起打扑克的视频| 人妻一区二区av| 免费在线观看视频国产中文字幕亚洲 | 曰老女人黄片| 99热国产这里只有精品6| 久久精品aⅴ一区二区三区四区| 国产免费一区二区三区四区乱码| cao死你这个sao货| 老司机靠b影院| 高清av免费在线| 午夜福利在线免费观看网站| 一级黄色大片毛片| 老司机午夜十八禁免费视频| 美女中出高潮动态图| 真人做人爱边吃奶动态| 1024视频免费在线观看| 一个人免费看片子| xxxhd国产人妻xxx| 一级,二级,三级黄色视频| 女人高潮潮喷娇喘18禁视频| 亚洲欧美日韩高清在线视频 | 欧美另类一区| 99国产综合亚洲精品| 国产无遮挡羞羞视频在线观看| 亚洲avbb在线观看| 国产精品一区二区在线观看99| 动漫黄色视频在线观看| 亚洲综合色网址| 日韩熟女老妇一区二区性免费视频| 97精品久久久久久久久久精品| 一本色道久久久久久精品综合| 久久久久精品人妻al黑| 国产精品一区二区精品视频观看| 精品国产一区二区久久| 久久亚洲国产成人精品v| 不卡av一区二区三区| 黄色片一级片一级黄色片| kizo精华| 美女国产高潮福利片在线看| 精品国产一区二区久久| 91精品三级在线观看| 老司机在亚洲福利影院| 99久久精品国产亚洲精品|