• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Friction Interface Contact on Ultrasonic Motor Efficiency Under Static Conditions

    2015-11-24 02:39:11ZhangYifeng張毅鋒ZhangWu張武XiaoAiwu肖愛武ZhuMeng朱萌PanYunhua潘云華ZhangXiaoya張小亞

    Zhang Yifeng(張毅鋒)'Zhang Wu(張武)'Xiao Aiwu(肖愛武)' Zhu Meng(朱萌)'Pan Yunhua(潘云華)'Zhang Xiaoya(張小亞)

    1.Xi′an Chuang Lian Ultrasonic Technology Co Ltd'Xi′an 710065'P.R.China;

    2.School of Marine Science and Tchnology'Northwest Polytechnical University'Xi′an 710065'P.R.China;

    3.Xi jing Electronic Corp'Xi′an 710065'P.R.China;

    4.Xi′an Modern Control Technology Research Institute'Xi′an 710065'P.R.China

    Influence of Friction Interface Contact on Ultrasonic Motor Efficiency Under Static Conditions

    Zhang Yifeng(張毅鋒)1'2*'Zhang Wu(張武)1'Xiao Aiwu(肖愛武)3' Zhu Meng(朱萌)4'Pan Yunhua(潘云華)1'Zhang Xiaoya(張小亞)1

    1.Xi′an Chuang Lian Ultrasonic Technology Co Ltd'Xi′an 710065'P.R.China;

    2.School of Marine Science and Tchnology'Northwest Polytechnical University'Xi′an 710065'P.R.China;

    3.Xi jing Electronic Corp'Xi′an 710065'P.R.China;

    4.Xi′an Modern Control Technology Research Institute'Xi′an 710065'P.R.China

    The friction interface matching plays a deterministic role in the motor efficiency'and the microcosmic contact status of friction interface should be investigated to improve the ultrasonic motor performance.The main purpose is to improve the effective output power of ultrasonic motor.Hence'one studies the contact condition of the friction interface of the ultrasonic motor'analyzes the micro condition of contact interface through finite element analysis'optimizes unreasonable structures'and compares the two different-structure ultrasonic motors through experiments.The results reflect the necessity of optimization.After optimization'the stator and rotor deform after pre-pressure and the contact interface of them full contact theoretically.When reaching heat balance the effective output of the motor is 37%'and the average effective output efficiency is 2.384 times higher than that of the unoptimized.It can be seen that the total consumption of the ultrasonic motor system decreases significantly. Therefore'when using in certain system the consumption taken from the system will decreases largely'especially in the system with a strict consumption control.

    ultrasonic motor;friction interface;contact area;efficiency

    0 Introduction

    Ultrasonic motor is a new concept of microspecial motor'featuring small volume'light weight'compact structure'fast response'low noise and no electro-magnetic interference.As the actuator of a control system'it has a wide application prospect'and has been used in precision positioning field.With high-tech development'the application system has more strict requirements for control accuracy of the movement process. Improving speed stability is necessary for the ultrasonic motor to be widely used in precision control system.Traveling wave type rotary ultrasonic motor(TRUM)(hereinafter referred to as the ultrasonic motor)uses the converse piezoelectric effect of piezoelectric materials to activate vibration of the stator'and turns the micro-amplitude of the stator into rotary movement of the rotor' and exports power[1].The speed stability of the ultrasonic motor is closely related to the contact interface of the stator and rotor.Kurosawa et al.[2-4]analyzed friction loss between the stator and rotor of the ultrasonic motor in 1988'and theoretically depicted the maximum input and output efficiency of the ultrasonic motor.Wallaschek[5]'Zhao et al.[6-7]and Xia et al.[8]qualitatively dissertated that there might be stick-slip on the stator and rotor contact interface'and analyzed the influence of tangential deformation. Storck et al.[9]also studied the influence of the tangential elasticity of the contact on electro-me-chanical performance of the ultrasonic motor. Maeno et al.[10-11]studied the function of pressure on the friction interface.With consideration of rotor inertia influence on interface'they computed the rotational speed-torque characteristic of the ultrasonic motor and motor performance parameters like energy loss and efficiency.In the condition of contact between flexible stator and rigid rotor'Zharii et al.[12-14]computed the speed and energy conversion efficiency of the ultrasonic motor'and also studied the stator and rotor smooth contact model and stick contact model for the ultrasonic motor.Duan et al.[15]established a complete 3-D model for piezoelectric ceramic and rotor coupling as well as stator and rotor contact interface of the ultrasonic motor.Ey using finite element software'Zhou et al.established a simplified finite element model which was used to analyze contact of the ultrasonic motor[16]'and simulated the influence of pre-pressure and the stator vibration amplitude on output performance of the ultrasonic motor[17].Radi and Hami[18]conducted the dynamic contact model of stator and rotor contact interface of the ultrasonic motor by variational principle'and used the model into exploring the ineffective model of the ultrasonic motor.However'the above references do not mention the influence of the contact interface on the ultrasonic motor efficiency when the elastic stator and rotor are used under static conditions.Therefore'the structural improvement is presented for current USM-45 ultrasonic motor via redesign of some key parts as well as design of full contact of the stator and rotor contact interface.Some tests have also been conducted.The test results show that'the average output efficiency of improved ultrasonic motor is greatly increased'and the thermal loss rate is decreased by about 30%.

    1 Average Effective OutPut Efficiency of Ultrasonic Motor ProPerty

    The average effective output efficiency of the ultrasonic motor is mainly determined by the stator and rotor friction interface and stator structure(mainly elastomer).The stator and rotor of the ultrasonic motor contact directly'they are driven by friction.Generally'alternating voltage is applied on the piezoelectric ceramic element stuck to the stator of the ultrasonic motor'capable of activating mechanical vibration of the stator.The vibration is turned into orientation movement of rotor by the stator and rotor contact friction. Hence'two-energy conversion process exists in the ultrasonic motor.The electro-mechanical energy conversion between the piezoelectric ceramic and stator is fulfilled by converse piezoelectric effect.If the lag effect of the piezoelectric ceramic and elastomer is ignored'the rotor free vibration and electro-mechanical energy conversion of piezoelectric ceramic are linearly reversible.Reversely' electric energy is generated.Eased on the above' although the ultrasonic motor is driven by friction'the motor must have greater energy loss. With friction making the motor be heated'the temperature is increasing higher'leading the motor output power to be increasingly smaller. When the ultrasonic motor reaches thermal balance'its effective output power also reaches balance.Therefore'the friction interface matching plays a deterministic role in the motor efficiency' and the microcosmic contact status of friction interface must be studied to improve the ultrasonic motor performance.Curves of torque and rotational speed'and efficiency and torque are as shown in Eig.1.

    In the meantime'the elastomer structure has great effect on effective output efficiency of the ultrasonic motor.Eig.2 shows a common elastomer structure.A is the total thickness of the elastomer'and E the base thickness of the elastomer.The base thickness of the elastomer has obvious effect on the dynamics of the stator'directly influencing modal frequency and modal amplitude as well as working current of the motor.The base thickness is bigger'the stator rigidity increases' the same-order modal frequency increases'the working current of the motor increases greatly' the motor heating gradient increases'and the power loss decreases.The base thickness is smaller'the stator rigidity decreases'the same-order modal frequency decreases'the motor output moment decreases while the working current of the motor is decreasing.Therefore'it is not proper to change the elastomer base thickness.If it is required to change'overall evaluation and optimization with more complicated process must be conducted.

    Eig.2 Elastomer structure

    In conclusion'research on the average effective output power of the ultrasonic motor is actually the research on the stator-rotor friction interface contact and rotor base thickness.The paper mainly presents the research on the stator and rotor friction interface contact'optimization design for the stator and rotor friction interface for improvement of the average effective output power of the ultrasonic motor.

    2 Stator and Rotor Friction Interface of Ultrasonic Motor Analysis

    2.1 Stator and rotor friction interface

    The contact model is Hertz contact model. Although stator and rotor contact of the traveling wave ultrasonic motor is not fully the same as general Hertz contact'the Hertz contact theory can better solve the contact friction problem of the traveling wave ultrasonic motor'the torque mathematics model is built.

    There are the following hypotheses as per actual working status of the motor:

    (1)The materials of the stator and rotor of the traveling wave ultrasonic motor are all elastomer;

    (2)The traveling wave surface of the stator and the stator and rotor contact are smooth;

    (3)The stator and rotor surfaces are not fully closely contacted;

    (4)The stator and rotor of the traveling wave ultrasonic motor do not have relative movement;

    (5)The contact of the stator and rotor of the traveling wave ultrasonic motor at the traveling wave peak is curvature cylinder surface contact.

    Eig.3 is the contact model of the iso-curvature radius cylinder and the elatomer plane.It is assumed that'the stator is a iso-curvature radius cylinder at the traveling wave peak'the rotor is a elastic plane'and the rotor contacts the stator within the area with the width of a under pressure action.The contact width a[19-21]is

    where D is the cylinder diameter'FNthe pressure applied on the rotor(at each peak)'i.e.pre-pressure'and CEa parameter related to material characteristic that can be expressed by

    where E1and E2are elastic moduli of materials of the stator and rotor'respectively;γ1andγ2the Poisson ratios of materials of the stator and rotor' respectively.

    Eig.3 Hertz contact model

    The locked rotor torque of the motor M[22]iswhereμdis the friction coefficient'and r the average radius of the rotor.

    The effective output power of the motor Poutputis

    Erom Eqs.(1'3'4)'the relationship between the contact area and effective output power can be obtained

    The variables in Eq.(5)are n0and a'the other paramenters can be marked as constant Z

    Then Eq.(5)can be simplified as

    Erom Eq.(7)'we can obtain the conclusion that'when the rotating speed of the motor is not changed'the output power of the motor is directly proportional to the square of the stator and rotor contact width.The wider the contact width is'the bigger the contact area is'and vice versa.

    2.2 Stator and rotor contact model of ultrasonic motor

    The structure of the traveling wave ultrasonic motor is shown in Eig.4.Eirstly'the elastomer is fixed on the motor base'then the rotor is placed on the elastomer'the circular disk at the rotor center is used to apply pre-pressure.To make the traveling wave ultrasonic motor output great moment'great axial pre-pressure is usually applied between the stator and rotor.In the mean time' the pre-pressure can make the stator and rotor bend in radial.

    It is found that'because of radial bending' the actual stator and rotor contact area decreases greatly'and pressure is not evenly distributed. The stator and rotor contact is rapidly worn and heat loss power is sharply increased'leading to very low ultrasonic motor efficiency'as shown in Eig.5.

    Eig.4 Stator and rotor coordination section of ultrasonic motor

    Eig.5 Stator and rotor radial bending effect

    2.3 Simulation analysis

    2.3.1 Euilding finite element model

    The finite element model is built by means of AEAQUS[23].Since the rotor and stator model is equally divided into three parts along the circumference'the finite element model is only for the 1/3 part of the model(Eig.6).In the model'the inner circular ring at the base of the stator is taken as the rigid body'the Kulun friction coeficient of the stator and rotor is 0.2'the prepressure is 160 N'i.e.about 1 MPa pressure intensity is applied onto the disk at the rotor center.

    2.3.2 Model analysis

    Eig.6 Einite element analysis model of USM45 ultrasonic motor

    Eig.7 USM45 stator finite element analysis of displacement

    The whole analysis result is shown in Eig.7. In Eig.7'it is found that'the displacement of the rotor outer edge is up(positive value)'and the displacement of the stator outer edge is down(negative value)'at this time'there is gap at the contact between the stator outer edge and rotor outer edge.That is'the stator and rotor contact width is not the whole rotor contact surface'is a part of the rotor contact surface.Check the displacement diagrams respectively'as shown in Eigs.8'9.In the diagrams'XIA-1 is the simulation data of the stator'and SHANG-1 the simulation data of the rotor.Draw the curvesby the data'as shown in Eig.10.It is shown that'the 2 mm length of rotor radial contact is actually inner 0.3 mm contact with an area of 42.96 mm2' and outer ring width is 1.7 mm'being separated' with an area of 252.61 mm2.The contact acreage of the stator and rotor is only 14.5%of the theoretical contact acreage'which makes the pressure of the contact acreage too high and increases the inner cycling stress of the friction materials'and finally makes rapid wear of the friction materials and heat of the moter.At this time'the heat energy loss of the motor is increased to 3 times as much as the theoretical heat energy loss'making the effective output power of the motor decreases greatly.

    2.4 Structure oPtimization

    Eig.8 Stator displacement before optimization

    Eig.9 Rotor displacement before optimization

    Eig.10 Displacements of stator and rotor contacting ring surface in pre-pressure status

    The data shown in Eig.10 are the reference for the stator and rotor structure optimization. The optimization idea is to make the two curves in Eig.10 approach to coincide.Where s is the displacement.Therefore'deformation displacements of the stator and rotor are approximately the same'and the actual contact area is close to the theoretical contact area.According to the data analysis in Table 1'after deformation'the displacement of the inner rotor is 0.001 968 mm more than that of the inner stator'and the displacement of the outer rotor is 0.012 071 3 mmless than that of the outer elastomer.The inner displacement difference value is only 1/6 of the outer one.The optimization neglects the inner displacement difference value'focusing on the outer displacement difference value.

    Table 1 DisPlacement data of stator and rotor contacting ring surface in Pre-Pressure status

    In new structure'with consideration of the friction surface of the rotor being stuck with friction slice'so only the stator structure is optimized.The original design is that the friction surface of the stator is a parallel surface.Now the friction surface of the stator is designed into a conical surface with an outside displacement difference from the inner to the outer'to counteract the outer displacement difference while the stator and rotor deforming.The converted angle is about 0.2°.Therefore'in elatomer structure design'the tooth surface of the elatomer is designed as taper and the conical degree is 0.2°' which makes the two curves shown in Eig.7 approach to coincide'structure before and after contrast is shown in Eig.11.

    Eig.11 Stator structure

    Draw a 3-D mathematic model again as per the optimized structure'and analysis by AEAQUS.The friction coefficient and pre-pressure are set the same as those before optimization.The analysis results are shown in Eigs.12' 13.XIA-1 is the stator simulation data'SHANG-1 is the rotor simulation data.Concrete analysis data are shown in Table 2.Draw the curves by means of the analysis data of Table 2'as shown in Eig.14.It is found that'the deformation amount of the rotor is basic the same from the inner ring contacting to the outer ring contacting'and the changing magnitude is 10—14 mm'which can be neglected during actual machining and grinding. According to the displacement data of the rotor contacting the ring surface'it is found that the down displacement of the outer ring is more than that of the inner ring.It is obtained by calculation that'the deformation angle for ring surface contacting is about 0.194°'which approaches to the converted angle in stator optimization design'i.e. the contact surface of stator is approximately parallel to the fixed bottom after stator deformation. Additionally'on the basis of the deformation data in Eig.14'it is found that'the deformation displacement values of the nodes corresponding to the inner stator and rotor of the ring surface of the contract circle are-5.43×10-2and-5.66× 10-2'respectively'the difference is 1.7μm.The nodes can be considered as deformation coincidence.

    Table 2 DisPlacement data of stator and rotor contacting ring surface in Pre-Pressure status after oPtimization

    Eig.12 Stator displacement after optimization

    Eig.13 Rotor displacement after optimization

    Eig.14 Displacements of stator and rotor contacting ring surface in pre-pressure status after optimization

    Therefore'it is concluded that'after optimization'when the stator and rotor are deformed in pre-pressure status'the stator and rotor contact surface fully contacts in a theoretical manner.

    3 ExPeriment

    3.1 ExPerimental facilities

    Magtrol power analyzer is used'including electric analyzer and motor test system.Electric analyzer includes Dynamom Etermodel:DSP6001 and Power analyzer model:6510S(Eigs.15'16).

    Eig.15 Electric analyzer

    Eig.16 Motor test system

    3.2 ExPerimental law

    Conduct machining as per the optimized stator'and assemble into a motor to do the performance experiment.The experimental law is as follows:

    Set the input voltage as U=24 V'the environmental temperature 21℃'the start rotating speedτ=115 r/min'and the start pre-pressure 0.5 N·m'the experimental law is tested once every 5 min.The data to be tested include current I'rotating speed r'temperature t'and locked rotor torque M.Moreover'test the data for twostructure motors before and after optimization' and test the data for one-hour motor running. There are 13 groups of data in total'as shown in Tables 3'4'respectively.

    Table 3 Motor test data before oPtimization

    3.3 Result analysis

    3.3.1 Easic curve analysis

    It is shown in Tables 3'4 that'the tempera ture at which the motor reaches heat balance be-fore optimization is 80℃'and is 57℃after optimization.Eefore optimization'the null running current of the motor for each test is average 1.6 times as much as the post-optimization one.After optimization'the locked rotor torque of the motor for each test is average 1.5 times as much as the pre-optimization one.Eecause the locked rotor torque M and the current I are percentile data' when draw curves as per the data in Tables 3'4' the locked rotor torque M and the current I are magnified 100 times'the tested 4 types of parameters can be used for drawing in a same curve graph'as shown in Eigs.17'18.

    Table 4 Motor test data after oPtimization

    Eig.17 Pre-optimization motor parameter-time

    3.3.2 Ultrasonic motor efficiency analysis

    The total power consumption of the ultrasonic motor consists of the power consumption of the motor-driven controller and the power consumption of the motor.The motor power consumption includes the motor effective output power consumption and the motor heating power consumption

    Eig.18 Post-optimization motor parameter-time

    In test'the input voltage of the motor is 24 V'the motor current changes with time.The solvable motor power changing with time is the total power consumption of the motor.There are two calculation schemes for the power consumption of the ultrasonic motor-driven controller. The first is adding power consumption of each element/device.The second one is testing the controlling circuit board bus over current of the ultrasonic motor driver in the case of voltage for the fixed value'and then multiplying the current by the voltage.Here'the second scheme is adopted' the tested overcurrent of the circuit board is 5 m A'then the power consumption of the driver circuit board is

    The output power of the ultrasonic motor is

    where M is the locked rotor torque of the motor' ωthe no-load angular speed of the motor'and n0the on-load rotating speed of the motor.

    The effective output power of the motor is

    The Ptotal'Pmotor'Pdrive'Pheatandηcan be calculated by Eqs.(8—12).

    According to Tables 3'4'calculate corresponding parameters shown in Tables 5'6.Thendraw each power curve as per Tables 5'6'as shown in Eigs.19'20.After optimization'the efficiency comparison result is shown in Eig.21.It is known that'before optimization'the highest effective output efficiency of the motor is only 0.224'when heat balance is reached'the effective output efficiency of the motor is only 0.151'and the average effective output efficiency is 0.172' and the loss efficiency by motor heating rises to 0.84 after heat balance from the start 0.765.After optimization'the effective output efficiency of the motor is increased greatly with the highest value of 0.561'and it is about 0.37 after heat balance'the average output efficiency is 0.41. Meanwhile'the motor heating loss efficiency is decreased greatly'rising to 0.613 from 0.422 with the average value of 0.575.Additionally'itis also found that'the total power of the motor decreases greatly.The total power of the motor before optimization is 12.8 W in average'and it is only 7.38 W after optimization.That is to say' when the ultrasonic motor is used in a system' the power consumption of a whole system decreases greatly'being very important for application in a system with strict control for power consumption.

    Table 5 Power and efficiency of motor before oPtimization

    Table 6 Power and efficiency of motor after oPtimization

    Eig.20 Motor power after optimization

    Eig.21 Motor efficiency before and after optimization

    4 Conclusions

    Eefore optimization'the contact area of stator and rotor is only 14.5%of theoretical area' and it makes the pressure of contact area too bigand enlarges the inner stress of friction material which makes rapid wear of it and heat of the motor'at last the effective output power of the motor is only 17%.After optimization'the stator and rotor deform after pre-pressure and the contact interface of both approaches theoretically full contact.When reaching heat balance the effective output of the motor is 37%'and the average effective output efficiency is 2.384 times compared with the one which has not been optimized.

    Meanwhile'the heat loss of motor deceases greatly'which comes from 10.48 W before optimization to 4.31 W after optimization'and according to the total power'the efficiency of heat loss decreases 30%after optimization.Moreover' the motor total power decreases greatly'which comes from 12.8 W the average before optimization to 7.38 W after it and is 58%of the one before optimization.It can be seen that the total consumption of the ultrasonic motor system decreases greatly'in other words'when using in certain system'the consumption will decreases greatly'especially in the system which has strict consumption control.

    [1] Zhao Chunsheng.Ultrasonic motors technologies and applications[M].Eeijing:Science Press'2007.

    [2] Minoru Kurosawa'Kentaro Nakamura'Takashi Okamoto'et al.An ultrasonic motor using bending vibration of a short cylinder[J].IEEE Transactions on Ultrasonic'Eerroelectrics and Erequency Control' 1989'36(5):517-521.

    [3] Minoru Kurosawa'Kentaro Nakamura'Sadayuki Ueha.Numerical analysis of the property of a hybird transducer type ultrasonic motor[C]∥IEEE Proceeding of Ultrasonic Symposium.[S.l.]:IEEE'1990: 1187-1190.

    [4] Minoru Kurosawa'Tatsuya Uchiki'Hideto Hanada' et al.Simulation and experimental study on elastic EIN ultrasonicmotor[C]∥IEEE Proceeding of Ultrasonic Symposium.[S.l.]:IEEE'1992:893-896.

    [5] Wallaschek J.Contact mechanics of piezoelectrical trasonic motors[J].Smart Materials&Structures' 1998'7(5):369-381.

    [6] Zhao Xiangdong.Study on the dynamic modeling and simulation of the traveling wave type ultrasonic motor[D].Nanjing:Nanjing University of Aeronautics and Astronautics'2000.(in Chinese)

    [7] Zhao Xiangdong'Chen Eo'Zhao Chunsheng.Nonlinearly frictional interface model of rotated traveling wave type ultrasonic motor[J].Journal of Nanjing University of Aeronautics&Astronautic'2003'35(6):629-633.(in Chinese)

    [8] Xia Changliang'Zheng Yao'Shi Tingna'et al.EEM analysis on stator vibration of traveling wave type contact ultrasonic motor[J].Proceedings of the CSEE'2002'21(2):25-28.(in Chinese)

    [9] Storck H'Wallaschek J.The effect of tangential elasticity of the contact layer between stator and rotor in travelling wave ultrasonic motors[J].International Journal of Non-Linear Mechanics'2003'38(2):143-159.

    [10]Takashi Maeno'Eogy David E.Effect of the hydrodynamic bearing on rotor/stator contact in a ring-type ultrasonic motor[J].IEEE Transactions on Ultrasonic Eerroelectric Erequency Control'1992'39(6): 675-682.

    [11]Takashi Maeno'Takayuki Tsukimoto'Akira Miyake.Einite-element analysis of the rotor/stator contact in a ring-type ultrasonic motor[J].IEEE Transactions on Ultrasonic Eerroelectric Erequency Control'1992'39(6):668-674.

    [12]Zharii O Y.Modeling of a mode conversion ultrasonic motor in the regime of slip[J].IEEE Transactions on Ultrasonic Eerroelectric Erequency Control'1993'40(4):411-417.

    [13]Zharii O Y.Adhesive contact between the running Rayleigh wave and a rigid strip[J].Transactions of the ASME'Journal of Applied Mechanicas'1995' 62:368-372.

    [14]Zharii O Y'Ulitko A E.Smooth contact between the running Rayleigh wave and a rigid strip[J].Transactions of the ASME'Journal of Applied Mechanicas' 1995'62:362-367.

    [15]Duan W H'Quek S T'Lim S P.Einite element solution for intermittent-contact problem with piezoelectric actuation in ring type USM[J].Einite Elements in Analysis and Design'2007'43(3):193-205.

    [16]Zhou Shengqiang'Zhao Chunsheng.Two simplified finite element models for contact analysis of ultrasonicmotor[J].Journal of Vibration'Measurement&Diagnosis'2009'29(3):251-255.(in Chinese)

    [17]Zhou Shengqiang'Zhao Chunsheng'Huang Weiqing. Contact analysis of traveling wave type rotary ultrasonic motor in space domain[J].Proceedings of the CSEE'2010'30(12):63-68.(in Chinese)

    [18]Radi E'Hami A E I.The study of the dynamic contact in ultrasonic motor[J].Applied Mathematical Modeling'2010'34(12):3767-3777.

    [19]Young W C.Roark′s formulas for stress and strain[M].New York:Mc Graw-Hill'2011.

    [20]Ding Huolin.Principles of tribology[M].Eeijing: China Machine Press'1981.

    [21]Wen Shizhu.Principles of tribology[M].Eeijing: Tsinghua University Press'1990.

    [22]Hu Minqiang'Jin Long'Gu Juping.Ultrasonic motor principles and design[M].Eeijing:Science Press' 2005.

    [23]Shi Yiping'Zhou Yurong.The AEAQUS finite element analysis example[M].Eeijing:China Machine Press'2006.

    (Executive editor:Xu Chengting)

    TM383 Document code:A Article ID:1005-1120(2015)02-0163-11

    *CorresPonding author:Zhang Yifeng'Senior Engineer'E-mail:no_bestzhyf@163.com.

    How to cite this article:Zhang Yifeng'Zhang Wu'Xiao Aiwu'et al.Influence of friction interface contact on ultrasonic motor efficiency under static conditions[J].Trans.Nanjing U.Aero.Asrto.'2015'32(2):163-173.

    http://dx.doi.org/10.16356/j.1005-1120.2015.02.163

    (Received 10 January 2015;revised 26 January 2015;accepted 28 Eebruary 2015)

    十八禁高潮呻吟视频| 国产亚洲精品第一综合不卡| 久久久久网色| 亚洲色图综合在线观看| 9色porny在线观看| 爱豆传媒免费全集在线观看| 国产片特级美女逼逼视频| 欧美日韩av久久| 久久国产亚洲av麻豆专区| 精品久久蜜臀av无| 日韩伦理黄色片| 精品福利永久在线观看| 久久人妻熟女aⅴ| 九草在线视频观看| 欧美av亚洲av综合av国产av | 久久狼人影院| 99久久人妻综合| 国产精品一二三区在线看| 精品少妇一区二区三区视频日本电影 | 亚洲精品视频女| 成人国产麻豆网| 欧美日韩亚洲国产一区二区在线观看 | 这个男人来自地球电影免费观看 | 久久热在线av| svipshipincom国产片| 人人妻人人添人人爽欧美一区卜| 久久久久久久久免费视频了| 亚洲国产av新网站| 午夜av观看不卡| 欧美日韩视频精品一区| 黄频高清免费视频| 99精国产麻豆久久婷婷| videosex国产| 天天操日日干夜夜撸| 亚洲国产精品一区二区三区在线| 亚洲av电影在线进入| 亚洲国产日韩一区二区| 日韩欧美一区视频在线观看| 亚洲成人免费av在线播放| 亚洲av综合色区一区| 国产精品久久久久久精品古装| 晚上一个人看的免费电影| 考比视频在线观看| av有码第一页| 色94色欧美一区二区| 80岁老熟妇乱子伦牲交| 深夜精品福利| 午夜福利免费观看在线| 亚洲精品美女久久久久99蜜臀 | 18禁观看日本| 国产爽快片一区二区三区| 精品国产超薄肉色丝袜足j| 国语对白做爰xxxⅹ性视频网站| 精品卡一卡二卡四卡免费| 中文字幕av电影在线播放| 日本爱情动作片www.在线观看| 中文字幕最新亚洲高清| av天堂久久9| 天天躁日日躁夜夜躁夜夜| 最近手机中文字幕大全| 一二三四中文在线观看免费高清| 日韩欧美精品免费久久| 青青草视频在线视频观看| 久久综合国产亚洲精品| 久久综合国产亚洲精品| xxxhd国产人妻xxx| 免费黄色在线免费观看| 高清在线视频一区二区三区| 国产亚洲精品第一综合不卡| 悠悠久久av| 悠悠久久av| av线在线观看网站| 国产亚洲精品第一综合不卡| av线在线观看网站| 亚洲少妇的诱惑av| 一本一本久久a久久精品综合妖精| 国产免费现黄频在线看| 大话2 男鬼变身卡| 满18在线观看网站| 免费观看人在逋| 国产av码专区亚洲av| 国产一区二区三区综合在线观看| 狠狠婷婷综合久久久久久88av| 岛国毛片在线播放| 国产有黄有色有爽视频| 在线观看免费日韩欧美大片| a级毛片在线看网站| 一级片免费观看大全| 十八禁人妻一区二区| 丝袜人妻中文字幕| 99热国产这里只有精品6| 波多野结衣一区麻豆| 日韩大码丰满熟妇| 久久久精品国产亚洲av高清涩受| 99香蕉大伊视频| 精品国产乱码久久久久久小说| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩一级在线毛片| 精品国产一区二区久久| 日韩中文字幕视频在线看片| 精品久久久久久电影网| 国产精品人妻久久久影院| 国产亚洲午夜精品一区二区久久| 夫妻午夜视频| 精品少妇久久久久久888优播| 久久 成人 亚洲| 咕卡用的链子| 777久久人妻少妇嫩草av网站| 伊人久久国产一区二区| 乱人伦中国视频| 天天躁夜夜躁狠狠躁躁| 波多野结衣av一区二区av| 国产又爽黄色视频| 人妻 亚洲 视频| 黄片小视频在线播放| 国产一区二区激情短视频 | 国产片内射在线| 国产精品女同一区二区软件| 精品少妇内射三级| 欧美日韩国产mv在线观看视频| 色婷婷久久久亚洲欧美| 亚洲熟女毛片儿| 精品亚洲乱码少妇综合久久| 老汉色av国产亚洲站长工具| 最近中文字幕2019免费版| 国产熟女欧美一区二区| 国产成人精品久久久久久| 国产福利在线免费观看视频| 久久久亚洲精品成人影院| 免费在线观看黄色视频的| 亚洲国产av新网站| 国产高清国产精品国产三级| 久久综合国产亚洲精品| 日本爱情动作片www.在线观看| 热re99久久国产66热| 丝袜脚勾引网站| 久久久精品区二区三区| 国产深夜福利视频在线观看| 青春草视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 高清黄色对白视频在线免费看| 亚洲精品,欧美精品| 色婷婷av一区二区三区视频| 大码成人一级视频| 久久久久精品国产欧美久久久 | 男男h啪啪无遮挡| 欧美 亚洲 国产 日韩一| 侵犯人妻中文字幕一二三四区| 伊人久久国产一区二区| 国产亚洲av片在线观看秒播厂| 国产色婷婷99| 亚洲久久久国产精品| 久久久国产精品麻豆| 1024视频免费在线观看| 国产极品粉嫩免费观看在线| 亚洲av男天堂| 国产成人av激情在线播放| 国产精品99久久99久久久不卡 | 日韩熟女老妇一区二区性免费视频| 免费观看人在逋| 国产精品偷伦视频观看了| 日韩伦理黄色片| 中文字幕最新亚洲高清| 日韩免费高清中文字幕av| 国产野战对白在线观看| 国产精品av久久久久免费| 久久精品久久久久久噜噜老黄| 夫妻午夜视频| 亚洲,一卡二卡三卡| 不卡av一区二区三区| 黄网站色视频无遮挡免费观看| 国产精品蜜桃在线观看| 成人午夜精彩视频在线观看| 成人免费观看视频高清| 青草久久国产| 美女福利国产在线| 久久精品国产a三级三级三级| 日韩熟女老妇一区二区性免费视频| 性高湖久久久久久久久免费观看| 大话2 男鬼变身卡| 国产极品天堂在线| 99热网站在线观看| 久久综合国产亚洲精品| 99久国产av精品国产电影| 国产在线一区二区三区精| 国产成人精品久久二区二区91 | 少妇精品久久久久久久| 欧美日韩亚洲综合一区二区三区_| 精品国产乱码久久久久久小说| 桃花免费在线播放| 国产视频首页在线观看| 久久97久久精品| 日韩 亚洲 欧美在线| av线在线观看网站| 久久久欧美国产精品| 国产高清不卡午夜福利| 国产成人91sexporn| 高清欧美精品videossex| 精品亚洲成国产av| 深夜精品福利| 成人亚洲欧美一区二区av| 亚洲精品自拍成人| 在线观看三级黄色| 啦啦啦在线观看免费高清www| 制服人妻中文乱码| 国产av国产精品国产| 一区二区三区激情视频| 国产不卡av网站在线观看| 香蕉丝袜av| 制服诱惑二区| svipshipincom国产片| 国产精品嫩草影院av在线观看| av国产精品久久久久影院| 亚洲国产最新在线播放| 欧美人与性动交α欧美软件| 9热在线视频观看99| 亚洲成人免费av在线播放| 波野结衣二区三区在线| 亚洲av国产av综合av卡| 午夜激情久久久久久久| av电影中文网址| 久久精品久久久久久久性| 日韩电影二区| 精品国产一区二区三区久久久樱花| 免费人妻精品一区二区三区视频| 中国国产av一级| 国产野战对白在线观看| 这个男人来自地球电影免费观看 | 嫩草影视91久久| 国产一区二区激情短视频 | 午夜免费男女啪啪视频观看| 国产成人精品无人区| 两性夫妻黄色片| 午夜激情久久久久久久| 日韩免费高清中文字幕av| 乱人伦中国视频| 成人免费观看视频高清| 制服诱惑二区| 国产精品一区二区在线不卡| 国产精品国产三级国产专区5o| 亚洲国产日韩一区二区| √禁漫天堂资源中文www| 久久精品国产a三级三级三级| 丝袜人妻中文字幕| 卡戴珊不雅视频在线播放| 亚洲精品一区蜜桃| videosex国产| 香蕉国产在线看| 多毛熟女@视频| 亚洲自偷自拍图片 自拍| av在线app专区| 夫妻性生交免费视频一级片| 亚洲欧洲国产日韩| 欧美精品av麻豆av| 亚洲熟女毛片儿| 国产免费现黄频在线看| 日韩大片免费观看网站| 黄色毛片三级朝国网站| 久久久久久久国产电影| 国产一区二区激情短视频 | 免费日韩欧美在线观看| 女人被躁到高潮嗷嗷叫费观| 黄色视频不卡| 又大又爽又粗| 黑人猛操日本美女一级片| www日本在线高清视频| 一个人免费看片子| 中文字幕人妻熟女乱码| 午夜91福利影院| 美女中出高潮动态图| 亚洲欧美一区二区三区黑人| 精品国产一区二区久久| 啦啦啦在线免费观看视频4| 99久久人妻综合| 黄色一级大片看看| 一级片免费观看大全| 亚洲精品国产一区二区精华液| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久久久久久免| 午夜福利在线免费观看网站| 国产97色在线日韩免费| 啦啦啦中文免费视频观看日本| 天堂俺去俺来也www色官网| 国产精品久久久人人做人人爽| 一级片免费观看大全| 日日撸夜夜添| 亚洲婷婷狠狠爱综合网| 如何舔出高潮| 亚洲国产日韩一区二区| 精品一区二区免费观看| 女人爽到高潮嗷嗷叫在线视频| 黄色 视频免费看| 两个人免费观看高清视频| 欧美激情高清一区二区三区 | 不卡av一区二区三区| 久久久久久久国产电影| 老汉色av国产亚洲站长工具| 国产麻豆69| 女性被躁到高潮视频| 另类亚洲欧美激情| 1024视频免费在线观看| 国产精品免费大片| 不卡av一区二区三区| 午夜福利一区二区在线看| 国产福利在线免费观看视频| 中国三级夫妇交换| 午夜日韩欧美国产| 人人妻,人人澡人人爽秒播 | 欧美 日韩 精品 国产| 国产伦理片在线播放av一区| av.在线天堂| 久久久精品国产亚洲av高清涩受| 国精品久久久久久国模美| 亚洲精品第二区| 日本欧美视频一区| 成年美女黄网站色视频大全免费| 色综合欧美亚洲国产小说| 欧美成人精品欧美一级黄| 免费观看人在逋| 精品一区在线观看国产| 2021少妇久久久久久久久久久| 日韩制服丝袜自拍偷拍| 成人免费观看视频高清| 中文字幕色久视频| 老司机影院成人| 久久精品熟女亚洲av麻豆精品| 男的添女的下面高潮视频| 亚洲欧洲日产国产| 美女视频免费永久观看网站| 国产精品 国内视频| 国产精品熟女久久久久浪| 亚洲精品美女久久久久99蜜臀 | 久久久久久久久久久久大奶| 国产97色在线日韩免费| 日韩免费高清中文字幕av| 日本欧美视频一区| 国产精品 国内视频| 丝袜美足系列| 五月开心婷婷网| 黑人欧美特级aaaaaa片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品,欧美精品| av天堂久久9| 午夜精品国产一区二区电影| 国产一区二区激情短视频 | 中文乱码字字幕精品一区二区三区| 91成人精品电影| 久久久亚洲精品成人影院| 91精品伊人久久大香线蕉| 亚洲人成网站在线观看播放| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产av成人精品| 少妇精品久久久久久久| 国产伦人伦偷精品视频| 亚洲一级一片aⅴ在线观看| 国产在视频线精品| 精品亚洲成国产av| 中文字幕人妻丝袜制服| 中文精品一卡2卡3卡4更新| 成年av动漫网址| 精品国产乱码久久久久久小说| 国产精品久久久久久久久免| 亚洲第一区二区三区不卡| 91老司机精品| 亚洲三区欧美一区| 午夜福利,免费看| av福利片在线| 丰满少妇做爰视频| 日韩 欧美 亚洲 中文字幕| 中文天堂在线官网| 成人影院久久| 午夜精品国产一区二区电影| 精品国产露脸久久av麻豆| 亚洲情色 制服丝袜| 免费黄网站久久成人精品| 99精国产麻豆久久婷婷| 可以免费在线观看a视频的电影网站 | 亚洲精品av麻豆狂野| 人人妻,人人澡人人爽秒播 | 99热全是精品| 欧美最新免费一区二区三区| 国产精品人妻久久久影院| 成年av动漫网址| 久久免费观看电影| 人人妻人人添人人爽欧美一区卜| 乱人伦中国视频| 丝袜人妻中文字幕| 国产精品久久久久成人av| 19禁男女啪啪无遮挡网站| 激情五月婷婷亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 中文欧美无线码| 99久国产av精品国产电影| 80岁老熟妇乱子伦牲交| 国产极品粉嫩免费观看在线| 亚洲精品国产av成人精品| 高清视频免费观看一区二区| av又黄又爽大尺度在线免费看| 免费黄网站久久成人精品| 成年美女黄网站色视频大全免费| 国产免费视频播放在线视频| tube8黄色片| 国产精品偷伦视频观看了| 夜夜骑夜夜射夜夜干| 人人妻人人爽人人添夜夜欢视频| 色综合欧美亚洲国产小说| 狂野欧美激情性bbbbbb| 免费在线观看完整版高清| 亚洲色图 男人天堂 中文字幕| 午夜福利影视在线免费观看| 精品人妻在线不人妻| 国产97色在线日韩免费| 精品国产超薄肉色丝袜足j| 亚洲av日韩在线播放| 色视频在线一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲精品久久久久久婷婷小说| 亚洲成人手机| 在线观看免费视频网站a站| 国产欧美日韩综合在线一区二区| 亚洲精品日本国产第一区| 午夜福利,免费看| 最新在线观看一区二区三区 | 亚洲综合色网址| 十八禁高潮呻吟视频| 美女主播在线视频| 免费黄色在线免费观看| 美女脱内裤让男人舔精品视频| 国产高清国产精品国产三级| 韩国精品一区二区三区| av网站免费在线观看视频| 看免费av毛片| 久久国产精品男人的天堂亚洲| 欧美亚洲 丝袜 人妻 在线| av国产久精品久网站免费入址| 少妇被粗大的猛进出69影院| 色吧在线观看| 婷婷成人精品国产| 最近最新中文字幕大全免费视频 | 亚洲欧美一区二区三区久久| 久久久欧美国产精品| 欧美日韩福利视频一区二区| 午夜激情av网站| 国产精品.久久久| 伦理电影免费视频| 精品一区二区三卡| 国产极品天堂在线| 亚洲精品国产av成人精品| 天堂中文最新版在线下载| 成人国产麻豆网| 国产老妇伦熟女老妇高清| 国产成人精品福利久久| 国产成人啪精品午夜网站| 狠狠精品人妻久久久久久综合| 欧美日韩成人在线一区二区| 一边摸一边抽搐一进一出视频| 午夜福利免费观看在线| av在线播放精品| 亚洲成av片中文字幕在线观看| 国产精品三级大全| 伊人久久国产一区二区| 91国产中文字幕| 婷婷色综合www| 国产成人精品福利久久| 精品第一国产精品| 色婷婷久久久亚洲欧美| 久久女婷五月综合色啪小说| 中文字幕最新亚洲高清| 青春草视频在线免费观看| e午夜精品久久久久久久| 久久久久久久国产电影| 丝袜人妻中文字幕| 一区二区三区乱码不卡18| 人妻一区二区av| 又粗又硬又长又爽又黄的视频| 乱人伦中国视频| 国产精品无大码| 97人妻天天添夜夜摸| 免费女性裸体啪啪无遮挡网站| 久久99热这里只频精品6学生| 黄片小视频在线播放| 免费久久久久久久精品成人欧美视频| 日韩制服丝袜自拍偷拍| 亚洲精品aⅴ在线观看| 人人妻人人添人人爽欧美一区卜| 精品亚洲成a人片在线观看| 国产精品一国产av| 久久精品久久久久久久性| 老鸭窝网址在线观看| 少妇猛男粗大的猛烈进出视频| 久久久精品免费免费高清| 精品久久久久久电影网| 成年av动漫网址| 69精品国产乱码久久久| 悠悠久久av| 99香蕉大伊视频| 天天躁夜夜躁狠狠躁躁| 国产一区二区三区av在线| 亚洲欧美日韩另类电影网站| 亚洲国产日韩一区二区| av天堂久久9| 久久久精品免费免费高清| 最近最新中文字幕免费大全7| 国产精品久久久久久精品古装| 日韩大码丰满熟妇| 热99国产精品久久久久久7| 大香蕉久久网| 青春草亚洲视频在线观看| 热99久久久久精品小说推荐| 国产精品欧美亚洲77777| 精品一区二区三卡| 中文字幕色久视频| 国产免费又黄又爽又色| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲精品第一综合不卡| 精品一区二区免费观看| 老司机靠b影院| 国产精品无大码| 在线 av 中文字幕| 天天添夜夜摸| 欧美乱码精品一区二区三区| 国产在线视频一区二区| 9色porny在线观看| 蜜桃在线观看..| 亚洲国产欧美在线一区| 高清在线视频一区二区三区| 日韩精品有码人妻一区| 国产在线一区二区三区精| 国产精品欧美亚洲77777| 女性生殖器流出的白浆| 国产黄色视频一区二区在线观看| 精品国产一区二区久久| 午夜免费男女啪啪视频观看| 精品一区二区三区av网在线观看 | 国产 精品1| 午夜福利网站1000一区二区三区| 一本大道久久a久久精品| 在线天堂中文资源库| 黄色怎么调成土黄色| 熟女av电影| 久久人人爽av亚洲精品天堂| 91精品三级在线观看| 人人妻人人添人人爽欧美一区卜| 波多野结衣av一区二区av| 18禁裸乳无遮挡动漫免费视频| 久久狼人影院| 国产人伦9x9x在线观看| 欧美黄色片欧美黄色片| 午夜福利视频精品| 99精国产麻豆久久婷婷| 99九九在线精品视频| 免费高清在线观看日韩| 亚洲欧美清纯卡通| 天堂中文最新版在线下载| 亚洲欧美一区二区三区久久| 色94色欧美一区二区| 熟女少妇亚洲综合色aaa.| 男女午夜视频在线观看| 亚洲精品乱久久久久久| 嫩草影视91久久| 69精品国产乱码久久久| 国产精品蜜桃在线观看| 美女主播在线视频| 熟妇人妻不卡中文字幕| 国产国语露脸激情在线看| 成年av动漫网址| bbb黄色大片| 国产野战对白在线观看| 日韩av免费高清视频| 宅男免费午夜| 久久99热这里只频精品6学生| 在线精品无人区一区二区三| 欧美中文综合在线视频| 波多野结衣av一区二区av| 久久久国产一区二区| 国产日韩欧美亚洲二区| 一本—道久久a久久精品蜜桃钙片| 欧美精品高潮呻吟av久久| 精品久久蜜臀av无| 午夜影院在线不卡| 久久久久视频综合| 久久狼人影院| 丰满乱子伦码专区| 1024香蕉在线观看| av国产精品久久久久影院| 成人亚洲精品一区在线观看| 在线 av 中文字幕| 亚洲av中文av极速乱| 丝袜在线中文字幕| 极品人妻少妇av视频| 国产成人系列免费观看| 久久这里只有精品19| 极品少妇高潮喷水抽搐| 久久久久视频综合| 男女无遮挡免费网站观看| 黑人猛操日本美女一级片| 中文字幕人妻丝袜一区二区 | 久久人人97超碰香蕉20202| 极品人妻少妇av视频| 精品亚洲成国产av| av一本久久久久| 91精品三级在线观看| 精品少妇内射三级| 满18在线观看网站| 国产亚洲一区二区精品| 日韩不卡一区二区三区视频在线| 天天影视国产精品| 制服人妻中文乱码| 九草在线视频观看| 日韩免费高清中文字幕av| 国产免费福利视频在线观看| 少妇 在线观看| 操出白浆在线播放| 精品亚洲成a人片在线观看| 男女高潮啪啪啪动态图|