• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ImProvement Design of BiochiP Towards High Stable BioParticle Detection Utilizing DielectroPhoresis ImPedance Measurement

    2015-11-24 02:39:08HuangHaibo黃海波QianCheng錢成LiXiangpeng李相鵬ChenLiguo陳立國(guó)XuWenkui徐文奎ZhengLiang鄭亮SunLining孫立寧
    關(guān)鍵詞:黃海波立國(guó)

    Huang Haibo(黃海波)'Qian Cheng(錢成)'Li Xiangpeng(李相鵬)' Chen Liguo(陳立國(guó))'Xu Wenkui(徐文奎)'Zheng Liang(鄭亮)'Sun Lining(孫立寧)

    Robotics and Microsystems Center'College of Mechanical and Electrical Engineering&Collaborative Innovation Center of Suzhou Nano Science and Technology'Soochow University'Suzhou 215000'P.R.China

    ImProvement Design of BiochiP Towards High Stable BioParticle Detection Utilizing DielectroPhoresis ImPedance Measurement

    Huang Haibo(黃海波)'Qian Cheng(錢成)'Li Xiangpeng(李相鵬)*' Chen Liguo(陳立國(guó))'Xu Wenkui(徐文奎)'Zheng Liang(鄭亮)'Sun Lining(孫立寧)

    Robotics and Microsystems Center'College of Mechanical and Electrical Engineering&Collaborative Innovation Center of Suzhou Nano Science and Technology'Soochow University'Suzhou 215000'P.R.China

    Dielectrophoresis impedance measurement(DEPIM)is a powerful tool for bioparticle detection due to its advantages of high efficiency'label-free and low costs.However'the strong electric field may decrease the viability of the bioparticle'thus leading to instability of impedance measurement.A new design of biochip is presented with high stable bioparticle detection capabilities by using both negative dielectrophoresis(nDEP)and traveling wave dielectrophoresis(tw DEP).In the biochip'a spiral electrode is arranged on the top of channel'while a detector is arranged on the bottom of the channel.The influence factors on the DEP force and tw DEP force are investigated by using the basic principle of DEP'based on which'the relationship between Clausius-Mossotti(CM)factor and the frequency of electric field is obtained.The two-dimensional model of the biochip is built by using Comsol Multiphysics.Electric potential distribution'force distribution and particle trajectory in the channel are then obtained by using the simulation model.Einally'both the simulations and experiments are performed to demonstrate that the new biochip can enhance the detection efficiency and reduce the negative effects of electric field on the bioparticles.

    dielectrophoresis;impedance measurement;detection;biosensor

    0 Introduction

    Impedance measurement is a powerful tool for analysis and characterization of bioparticles.It is widely used in bioparticle detection'e.g.bacterial content'but the traditional impedance measurement techniques suffer time-consuming and low sensitivity.An effective strategy to enhance sensitivity and reduce the testing time is to integrate with a dielectrophoresis(DEP)chip into the impedance measurement system.The integrated dielectrophoresis impedance measurement(DEPIM)has advantages of high efficiency'label-free and low costs.

    Suehiro designed a DEPIM chip for real-time bacteria monitoring[1]'in which the antibodiesantigens technique was adopted to increase the enrichment efficiency.The antibodies were fixed on the electrode surface'and the bacteria were attracted to the electrode by the DEP force.Then' bacteria could combine with the antibodies by adjusting DEP force and Stokes force properly.As a result'the target bacteria were trapped on the surface of chip'meanwhile'the non-target bacteria are taken to the outlet under the Stokes force. Yang[2]proposed a biochip design for foodborne bacteria detection.The experiment demonstrated that the biochip'which integrated with DEP chip'was more effective than the one without DEP chip.Higginbotham et al.[3]developed a biochip for bioparticle detection'which used traveling wave dielectrophoresis(tw DEP)force todrive bioparticles to detection area for detecting. Hamada et al.[4]designed the bacteria detection chip with both positive dielectrophoresis(p DEP)and negative dielectrophoresis(nDEP).Two working areas are designed in this chip:the concentration area and the detection area.When the bacteria passed through the concentration area' they were driven to the bottom of the channel under the nDEP force.After entering the detection area'the bacteria were captured at detector by the p DEP force.Compared with the detector with p DEP'the nDEP concentrator could further improve the DEP trapping efficiency.

    However'there are still some disadvantages in the biochips above.Eioparticles are captured at detector by p DEP force'and they are very close to the electrode.The electric field strength is very strong near the electrode'which has some negative effects on bioparticle viability.Kang et al.[5]found that live cancer cells died soon when they were exposed in a very high electric field.Eurthermore'Donato et al.[6]found that the cell metabolism was affected by the electric field after 10 min of exposure'cells no longer produce green fluorescent protein(GEP)after 15 min of exposure and the most of the cells being dead.In addition'Joule heating effect was obvious near the electrode'and it was harmful for the cell activity[7].Due to the negative effects of electric field on bioparticles viability'the concentration of the living bioparticles in the detection area was low'which significantly enlarged the detection time costs.Therefore'the biochips above are still inefficient and unstable.

    A novel biochip design is proposed for bioparticle detection with both nDEP and tw DEP' which can significantly enhance the detection efficiency'meanwhile reduce the negative effects caused by the electric field.The schematic diagram of the proposed bioparticle detection chip is shown in Eig.1'and the biochip is made up of microelectrode'microchannel and detector.The spiral electrode is arranged on the top of the channel'while the detector is arranged on the bottom of the channel.Eioparticles in the channel are pushed to the bottom of the channel under n DEP force and gravity.Meanwhile'they are driven to the centre of the detector under the tw DEP force. As a result'the bioparticles are captured on the detector.

    Eig.1 Schematic diagram of bioparticle detection chip based on nDEP and tw DEP

    1 Theoretical Analysis

    1.1 DEP force

    The dielectrophoresis force on the spherical particle which immersed in a solution can be formulated as[8]

    where r denotes the radius of the spherical particle'εmthe permittivity of the media'E2the RMS value of the electric field'φithe phase angle component in Cartesian coordinate'Re[KCM]the real part of Clausius-Mossotti factor which refers to p DEP and n DEP'Im[KCM]the imaginary part of Clausius-Mossotti factor'and KCMis formulated as

    In the paper'the polystyrene beads with radius 1μm are used to simulate the bioparticles. Tables 1 lists the related parameters of polystyrene beads and solution.

    Table 1 The related Parameters of Polystyrene beads and solution

    1.2 Gravity

    The gravity of the immersed particle can be formulated as

    where V andρpdenote the volume and density of the particle'respectively'andρmis the density of solution.

    1.3 Stokes force

    The Stokes force of the particle is formulated as follows

    whereηdenotes the dynamic viscosity of the solution'and v the relative velocity of the particle and the solution.

    As shown in Eig.2'particles in the channel are pushed to the bottom of the channel driven by the nDEP force and gravity.Meanwhile'they are driven toward the centre of the detector with the tw DEP force.As a result'the bioparticles are captured by the detector and detected with the impedance measurement method.

    Eig.2 Eorce analysis of particles in channel

    1.4 Influence factor

    The velocity of the particle determines the detection efficiency.Erom Eq.(1)'it is known that the velocity of the particle relates to three parameters:Re[KCM]'Im[KCM]and electric field intensity.Increasing the voltage applied to the electrode can enhance the strength of the electric field.However'excessive voltage is not conducive to the experimental operation.Hence'we only consider the influence of Clausius-Mossotti

    (CM)factor on the velocity.As shown in Eq.(2)'Re[KCM]and Im[KCM]are related to the frequency of the electric field'permittivity and conductivity of the particle and solution.Permittivity and conductivity remain unchanged for specific configuration of particles and solution. Therefore'the velocity of the particle is controlled by controlling the frequency of the electric field and conductivity of the solution.

    Eig.3 illustrates the relationship between CM factor and the frequency of the electric field when the polystyrene beads with conductivity of 5 mS/m are immersed in a solution of different conductivity.It is seen that Re[KCM]is always negative in the solution of conductivity 5 mS/m and 10 mS/m'and its variation range is small. Meanwhile'the variation range is larger in the solution of conductivity 1 mS/m than in the solution of conductivity 2'5 and 10 mS/m.As shown in Eig.3(b)'Im[KCM]can attains larger values in the solution of conductivity 1 mS/m than in the solution of conductivity 2'5 and 10 m S/m'which implies a larger tw DEP force generation.As a result'the solution of conductivity is set at 1 mS/m in the paper.

    Eig.3 Relationship between CM factor and frequency of electric field

    The polystyrene beads of conductivity 5 mS/ m are immersed in the solution of conductivity 1 mS/m'the relationship between CM factor and the frequency of the electric field is shown in Eig.4.

    Eig.4 CM factor in solution of conductivity 1 mS/m

    In order to speed up the collection rate in the horizontal plane'Im[KCM]should be minimized to its maximum.However'when the frequency of the electric field is 0.8 M Hz'Re[KCM]=0' nDEP force has no effect on the particle motion. Therefore'the frequency of the electric field is set at 1 MHz so that Re[KCM]=0.08'which can well meet the requirements of the experiment.

    2 Numerical Simulation

    Comsol Multiphysics 4.3 is used to study the electric field distribution and particle trajectory. The microchannel is designed a cylindrical area with radius 330μm and 150μm high.In order to collect particles better'a tilt angle with 5°is designed at the bottom of the channel'as shown in Eig.2.The spiral electrode is arranged on the top of the channel'both the width and spacing of the electrodes are 40μm.The other simulation parameters are listed in Table 2.

    Table 2 Simulation Parameters

    Since the cylindrical area is symmetric'its physical model can be simplified as a plane model.Electric potential distribution in the channel can be obtained by solving Laplace equation in the simulation area'as shown in Eig.5.The electrode potential is very high near the electrode on the top side of the channel'while it is low in the detection area at the bottom of the channel. Thus'the particles captured at the detection area are less affected by the electric field.The force distribution is illustrated in Eig.5'and it can be seen that the composite forces point to the detection area.The particle trajectory is shown in Eig. 6'and it is seen that particles move towards the detection area under composite forces successfully as we expected.

    Eig.5 Potential distribution and force distribution

    Eig.6 Particle trajectory

    Note that a whirlpool exists in the center of the spiral electrode'as shown in Eig.5.the composite forces within area enclosed by the red curve points to the center of the spiral electrode'and the particles within the area are driven to the center of the spiral electrode'as illustrated in Eig.6. Note that for improving the detection efficiency' the particles should be maintained outside the region enclosed by the red curve.

    3 ExPeriment

    An experiment is carried out with new biochip based on DEPIM'as shown in Eig.7.The biochip is made up of DEP chip'microchannel and detector.The DEP chip is made of ITO glass'and the spiral electrode is etched on the glass.A cylindrical microchannel is designed at the center of the glass substrate.Micro holes are designed around each side of the glass substrate as the inlet and outlet of the microchannel.In the later research'the detector will be arranged on the bottom of the channel.The DEP chip is upside down on the glass substrate'the electrode and conductor are connected by conductive adhesives.

    When the solution enter into the channel' the four electrodes are respectively applied an AC signal(V0sin(ωt)).It is seen that particles in the channel are pushed to the bottom of the channel under nDEP force and gravity.Meanwhile'they moves toward the centre of the detector under the tw DEP force(see Eigs.8(a—c)).Einally' the particles are captured on the detector'as seen in Eig.8(d).

    Eig.7 High stable impedance measurement based on biosensor(without detector)

    Eig.8 Particle concentration under DEP force

    4 Conclusions

    The traditional impedance measurement technique is time-consuming and low sensitivity. Ey integrating a DEP chip into the design of the impedance measurement system'the detection efficiency can be enhanced significantly.However' due to the fact that strong electric field may cause unexpected negative effects on bioparticle viability'thus causing instability in the impedance measurement.In the paper'a novel biochip design improving the detection efficiency and decreasing the negative effects caused by the electric field is presented.Ey inverting a DEP chip at the top of the channel'particles are concentrated at the detector by n DEP force'tw DEP force and gravity.Eased on DEP principle analyzing'the relationship between CM factor and the frequency of the electric field is obtained'furthermore' optimal simulation and experimental parameters are obtained.The two-dimensional model of the biochip is built with the help of Comsol Multiphysics.Electric potential distribution'force distribution and particle trajectory in the channel are obtained by solving the simulation model.Einally'both simulation and experiment are performed to prove the efficiency of the proposed biochip design.

    Acknowledgements

    This work was supported by the Project of Youth Eund of National Natural Science Eoundation(No. 61203208)'the National Natural Science Eoundation of China(No.61327802).

    [1] Suehiro J'Noutomi D'Shutou M'et al.Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with an antigen-antibody reaction[J].Journal of Electrostatics'2003'58(3):229-246.

    [2] Yang L.Dielectrophoresis assisted immuno-capture and detection of foodborne pathogenic bacteria in biochips[J].Talanta'2009'80(2):551-558.

    [3] Higginbotham S N'Sweatman D R.A combined travelling wave dielectrophoresis and impedance sensing device for sensing biological cell suspensions[J]. Journal of Physics D:Applied Physics'2008'41(17):1-9.

    [4] Hamada R'Takayama H'Shonishi Y'et al.A rapid bacteria detection technique utilizing impedance measurement combined with positive and negative dielectrophoresis[J].Sensors and Actuators E:Chemical'2013'181:439-445.

    [5] Kang Y'Li D'Kalams S A'et al.DC-dielectrophoretic separation of biological cells by size[J].Eiomedical Microdevices'2008'10(2):243-249.

    [6] Donato S S'Chu V'Prazeres D M E'et al.Metabolic viability of Escherichia coli trapped by dielectrophoresis in microfluidics[J].Electrophoresis'2013' 34(4):575-582.

    [7] Lewpiriyawong N'Yang C'Lam Y C.Electrokinetically driven concentration of particles and cells by dielectrophoresis with DC-offset AC electric field[J]. Microfluidics and Nanofluidics'2012'12(5):723-733.

    [8] Wang X E'Huang Y'Eecker E E'et al.A unified theory of dielectrophoresis and travelling wave dielectrophoresis[J].Journal of Physics D:Applied Physics'1994'27(7):1571-1574.

    (Executive editor:Xu Chengting)

    TP211.4 Document code:A Article ID:1005-1120(2015)02-0143-05

    *CorresPonding author:Li Xiangpeng'Associate Professor'E-mail:licool@suda.edu.cn.

    How to cite this article:Huang Haibo'Qian Cheng'Li Xiangpeng'et al.Improvement design of biochip towards high stable bioparticle detection utilizing dielectrophoresis impedance measurement[J].Trans.Nanjing U.Aero.Astro.'2015'32(2):143-147.

    http://dx.doi.org/10.16356/j.1005-1120.2015.02.143

    (Received 8 January 2015;revised 17 January 2015;accepted 31 January 2015)

    猜你喜歡
    黃海波立國(guó)
    毛唯臻 黃海波油畫作品
    大眾文藝(2024年2期)2024-02-18 11:40:54
    今夜月彎彎
    抗美援朝,毛澤東立國(guó)之戰(zhàn)
    親密
    天上來了小客人
    Study on circle detection algorithm based on data dispersion①
    這樣利用“齊次化”答題
    Analysis on the crossing obstacle of wheel-track hybrid mobile robot①
    “男七號(hào)”的奮斗史
    文苑·感悟(2012年2期)2012-03-22 08:09:44
    黃海波智解“友情危機(jī)”
    www日本黄色视频网| 欧美日本亚洲视频在线播放| 日韩欧美在线乱码| 成年女人毛片免费观看观看9| 毛片一级片免费看久久久久| 日本色播在线视频| 亚洲欧美精品自产自拍| 国产激情偷乱视频一区二区| 韩国av在线不卡| 天美传媒精品一区二区| 日本精品一区二区三区蜜桃| 国产精品无大码| 亚洲欧美精品自产自拍| 日本熟妇午夜| 99热精品在线国产| 内地一区二区视频在线| 99riav亚洲国产免费| 国产精品精品国产色婷婷| 色吧在线观看| 亚洲美女黄片视频| 免费观看在线日韩| 欧美人与善性xxx| 久久久精品大字幕| 亚洲av不卡在线观看| 亚洲国产精品成人久久小说 | 成人特级av手机在线观看| 99久久中文字幕三级久久日本| 免费看a级黄色片| 日本黄色视频三级网站网址| 伊人久久精品亚洲午夜| 精品国内亚洲2022精品成人| 免费黄网站久久成人精品| 久久久国产成人免费| 99国产精品一区二区蜜桃av| 97在线视频观看| 五月伊人婷婷丁香| 国产爱豆传媒在线观看| 人人妻人人澡人人爽人人夜夜 | 晚上一个人看的免费电影| 在线免费十八禁| av卡一久久| 黄色视频,在线免费观看| 97超视频在线观看视频| 婷婷色综合大香蕉| 国产高潮美女av| 国产精品亚洲一级av第二区| 特级一级黄色大片| 成人欧美大片| 级片在线观看| 老司机福利观看| 日本撒尿小便嘘嘘汇集6| 在现免费观看毛片| 亚洲国产精品成人综合色| 亚洲无线在线观看| 亚洲18禁久久av| 久久99热这里只有精品18| 色在线成人网| 精品人妻偷拍中文字幕| 欧美区成人在线视频| 99久久九九国产精品国产免费| 中文资源天堂在线| 老熟妇乱子伦视频在线观看| 一级黄色大片毛片| 日韩一本色道免费dvd| 亚洲国产高清在线一区二区三| 特级一级黄色大片| 天堂av国产一区二区熟女人妻| 国产在视频线在精品| 成熟少妇高潮喷水视频| 韩国av在线不卡| 人妻少妇偷人精品九色| 男女那种视频在线观看| 午夜激情欧美在线| 免费观看的影片在线观看| 久久韩国三级中文字幕| 日韩欧美免费精品| 精品久久国产蜜桃| 亚洲av免费在线观看| 久久久成人免费电影| 美女大奶头视频| av中文乱码字幕在线| 一区二区三区高清视频在线| 久久鲁丝午夜福利片| 亚洲欧美成人精品一区二区| 日日撸夜夜添| 国产一区二区在线观看日韩| 亚洲精品日韩在线中文字幕 | 你懂的网址亚洲精品在线观看 | 午夜免费激情av| 嫩草影院入口| 国产精品精品国产色婷婷| 亚洲无线在线观看| 麻豆国产97在线/欧美| 97超视频在线观看视频| 日日撸夜夜添| 欧美日韩精品成人综合77777| 日韩av不卡免费在线播放| 国产高潮美女av| av在线蜜桃| 国产一级毛片七仙女欲春2| 中文亚洲av片在线观看爽| 变态另类成人亚洲欧美熟女| 色综合色国产| 少妇熟女aⅴ在线视频| 日韩国内少妇激情av| 中文资源天堂在线| 精品久久久久久久人妻蜜臀av| 啦啦啦观看免费观看视频高清| 午夜激情欧美在线| 欧美xxxx黑人xx丫x性爽| 久久这里只有精品中国| 美女免费视频网站| 欧美日本亚洲视频在线播放| 最好的美女福利视频网| av在线观看视频网站免费| 亚洲真实伦在线观看| 国产精品福利在线免费观看| 亚洲精品在线观看二区| 国产精品久久久久久亚洲av鲁大| 中文字幕av成人在线电影| 欧美一区二区精品小视频在线| 人妻夜夜爽99麻豆av| 国产女主播在线喷水免费视频网站 | 男女视频在线观看网站免费| 亚洲七黄色美女视频| 亚洲aⅴ乱码一区二区在线播放| 日本免费a在线| 在线观看美女被高潮喷水网站| 搡老妇女老女人老熟妇| 日韩成人av中文字幕在线观看 | 国产亚洲精品av在线| 国产精品人妻久久久久久| 欧美日本视频| 国产精品亚洲美女久久久| 久久鲁丝午夜福利片| 看十八女毛片水多多多| 变态另类成人亚洲欧美熟女| 在线天堂最新版资源| 国产视频一区二区在线看| 久久精品91蜜桃| 国产高潮美女av| 国产精品久久久久久亚洲av鲁大| av中文乱码字幕在线| 久久国产乱子免费精品| www日本黄色视频网| 男女做爰动态图高潮gif福利片| 日韩制服骚丝袜av| 国产精品一及| 免费高清视频大片| 久久久久久大精品| 国产精品女同一区二区软件| 亚洲av一区综合| 女人十人毛片免费观看3o分钟| 嫩草影院入口| 国内精品宾馆在线| 国产美女午夜福利| 美女高潮的动态| 99热这里只有精品一区| 精品99又大又爽又粗少妇毛片| 国产在视频线在精品| 成人综合一区亚洲| 久久精品国产亚洲网站| 国产视频内射| 色av中文字幕| 天堂影院成人在线观看| 亚洲人成网站高清观看| 麻豆一二三区av精品| 国产午夜精品论理片| 国产毛片a区久久久久| 变态另类成人亚洲欧美熟女| 亚洲欧美精品自产自拍| 亚洲精品亚洲一区二区| 亚洲美女黄片视频| 婷婷六月久久综合丁香| 深夜精品福利| 久久久久久大精品| 69人妻影院| 午夜老司机福利剧场| 精品欧美国产一区二区三| 久久精品夜色国产| 国产精品伦人一区二区| 色尼玛亚洲综合影院| 亚洲在线自拍视频| 国产精品人妻久久久久久| 人妻制服诱惑在线中文字幕| 日本成人三级电影网站| 两个人的视频大全免费| 免费看a级黄色片| 草草在线视频免费看| 国产不卡一卡二| 99热只有精品国产| 我要看日韩黄色一级片| 久久韩国三级中文字幕| 在现免费观看毛片| 国产亚洲欧美98| 精品久久久久久成人av| 久久久精品大字幕| 色5月婷婷丁香| 日本成人三级电影网站| 国产乱人视频| 亚洲美女黄片视频| 久久精品国产清高在天天线| 麻豆国产97在线/欧美| 亚洲七黄色美女视频| 国产亚洲精品久久久com| 少妇猛男粗大的猛烈进出视频 | 少妇的逼水好多| 成年版毛片免费区| 国产精品综合久久久久久久免费| 97人妻精品一区二区三区麻豆| 我的女老师完整版在线观看| 丰满乱子伦码专区| 国产精品久久久久久av不卡| 好男人在线观看高清免费视频| 美女高潮的动态| av在线老鸭窝| 久久久久免费精品人妻一区二区| 有码 亚洲区| or卡值多少钱| 亚洲真实伦在线观看| av在线观看视频网站免费| 精华霜和精华液先用哪个| 亚洲一级一片aⅴ在线观看| 淫秽高清视频在线观看| 成人午夜高清在线视频| 1024手机看黄色片| 欧美成人免费av一区二区三区| 精品一区二区三区av网在线观看| 精品福利观看| 亚洲欧美日韩卡通动漫| 在线观看66精品国产| 午夜a级毛片| 91av网一区二区| 精品久久久久久久久亚洲| 国产毛片a区久久久久| 12—13女人毛片做爰片一| 深夜a级毛片| 亚州av有码| 国产精品久久视频播放| 99久国产av精品国产电影| 日韩 亚洲 欧美在线| 亚洲人与动物交配视频| 欧美3d第一页| 久久精品国产亚洲av天美| 小蜜桃在线观看免费完整版高清| 91在线观看av| 在线a可以看的网站| 国产精品一区二区性色av| 亚洲精品日韩av片在线观看| 草草在线视频免费看| 少妇的逼好多水| 黑人高潮一二区| 听说在线观看完整版免费高清| 黄色视频,在线免费观看| 99久久无色码亚洲精品果冻| 在线免费十八禁| 最新在线观看一区二区三区| 国产av一区在线观看免费| 国产高清三级在线| 淫妇啪啪啪对白视频| 久久久欧美国产精品| 99久久九九国产精品国产免费| 日本免费一区二区三区高清不卡| 搡老岳熟女国产| 国产精品,欧美在线| 成人特级av手机在线观看| 一级毛片久久久久久久久女| 亚洲精品久久国产高清桃花| 亚洲成人久久爱视频| 亚洲人成网站在线播| 欧美潮喷喷水| 国产午夜精品论理片| 欧美区成人在线视频| 久久人人精品亚洲av| 国产蜜桃级精品一区二区三区| 国产欧美日韩精品亚洲av| 亚洲五月天丁香| 成年免费大片在线观看| 色尼玛亚洲综合影院| 99国产极品粉嫩在线观看| 久久精品人妻少妇| 日韩制服骚丝袜av| 激情 狠狠 欧美| 最后的刺客免费高清国语| 国产亚洲欧美98| 级片在线观看| 欧美激情久久久久久爽电影| 国产乱人视频| 亚洲一级一片aⅴ在线观看| 成人午夜高清在线视频| 麻豆乱淫一区二区| 久久久欧美国产精品| 色哟哟哟哟哟哟| 精品国产三级普通话版| 中国国产av一级| 99久国产av精品国产电影| 精品午夜福利视频在线观看一区| 啦啦啦观看免费观看视频高清| 老熟妇乱子伦视频在线观看| 日产精品乱码卡一卡2卡三| 色综合亚洲欧美另类图片| 日本免费a在线| 别揉我奶头~嗯~啊~动态视频| 99热这里只有精品一区| 小蜜桃在线观看免费完整版高清| 亚洲国产高清在线一区二区三| 五月伊人婷婷丁香| 成年女人永久免费观看视频| 午夜免费激情av| 校园春色视频在线观看| 久久久欧美国产精品| 亚洲人成网站在线播放欧美日韩| 菩萨蛮人人尽说江南好唐韦庄 | 国产在线男女| 精品一区二区三区视频在线观看免费| 国产精品av视频在线免费观看| 噜噜噜噜噜久久久久久91| 禁无遮挡网站| 亚洲图色成人| 久久久久免费精品人妻一区二区| 国产av在哪里看| 国产一区二区激情短视频| 亚洲国产精品成人久久小说 | 日韩av在线大香蕉| av女优亚洲男人天堂| 免费在线观看成人毛片| 真实男女啪啪啪动态图| 免费无遮挡裸体视频| 2021天堂中文幕一二区在线观| 国产私拍福利视频在线观看| 日韩在线高清观看一区二区三区| 丝袜喷水一区| 国产高清视频在线播放一区| 在线观看美女被高潮喷水网站| 国产在线精品亚洲第一网站| 大型黄色视频在线免费观看| 日日摸夜夜添夜夜爱| 国产又黄又爽又无遮挡在线| 久久久久久九九精品二区国产| 日韩欧美免费精品| 久久精品国产鲁丝片午夜精品| 久久精品人妻少妇| 国产精品久久视频播放| 搡老熟女国产l中国老女人| 91麻豆精品激情在线观看国产| 一区二区三区免费毛片| 成人综合一区亚洲| 亚洲成人中文字幕在线播放| 毛片女人毛片| 18+在线观看网站| 在线免费观看的www视频| 亚洲成a人片在线一区二区| 欧美日韩一区二区视频在线观看视频在线 | 久久午夜福利片| aaaaa片日本免费| 国产精品1区2区在线观看.| 男人舔女人下体高潮全视频| 最近视频中文字幕2019在线8| 尤物成人国产欧美一区二区三区| 亚洲精品日韩在线中文字幕 | 亚洲一级一片aⅴ在线观看| 久久精品国产99精品国产亚洲性色| 日本-黄色视频高清免费观看| 久久久精品94久久精品| 精品日产1卡2卡| 日本成人三级电影网站| 国产精品国产三级国产av玫瑰| 久久精品夜色国产| 99久久九九国产精品国产免费| 亚洲av成人av| 啦啦啦啦在线视频资源| 国产精品久久久久久久电影| 最近视频中文字幕2019在线8| 亚洲天堂国产精品一区在线| 99国产极品粉嫩在线观看| 禁无遮挡网站| 特级一级黄色大片| 一级a爱片免费观看的视频| 乱系列少妇在线播放| 久久久久国产网址| 波多野结衣高清作品| 免费看av在线观看网站| 国产老妇女一区| 少妇人妻精品综合一区二区 | 简卡轻食公司| 国内精品一区二区在线观看| АⅤ资源中文在线天堂| 晚上一个人看的免费电影| 精品人妻偷拍中文字幕| 免费人成视频x8x8入口观看| 天堂av国产一区二区熟女人妻| 日韩制服骚丝袜av| 久久精品夜色国产| 女同久久另类99精品国产91| 深爱激情五月婷婷| 欧美最黄视频在线播放免费| 一a级毛片在线观看| 亚洲国产精品成人久久小说 | 麻豆久久精品国产亚洲av| 色播亚洲综合网| 久久久欧美国产精品| 国产成年人精品一区二区| 亚洲av电影不卡..在线观看| 亚洲av中文av极速乱| 午夜精品在线福利| 又黄又爽又免费观看的视频| 少妇的逼好多水| 中文在线观看免费www的网站| 国产乱人视频| 成人无遮挡网站| 欧美高清性xxxxhd video| 亚洲精品亚洲一区二区| 99久久无色码亚洲精品果冻| 国产精品人妻久久久久久| 国产精品免费一区二区三区在线| 久久久国产成人精品二区| 悠悠久久av| 亚洲国产精品成人综合色| 真人做人爱边吃奶动态| 一区福利在线观看| 三级毛片av免费| 女同久久另类99精品国产91| 天美传媒精品一区二区| 亚洲欧美日韩高清在线视频| 日本 av在线| 欧美色欧美亚洲另类二区| 国产免费一级a男人的天堂| 亚洲精品影视一区二区三区av| 伦精品一区二区三区| 长腿黑丝高跟| 尤物成人国产欧美一区二区三区| 婷婷色综合大香蕉| 校园春色视频在线观看| 亚洲真实伦在线观看| 久久久久九九精品影院| 搞女人的毛片| 有码 亚洲区| 男女那种视频在线观看| 在线观看一区二区三区| 最近2019中文字幕mv第一页| 全区人妻精品视频| 日日摸夜夜添夜夜爱| 欧美+日韩+精品| 日韩强制内射视频| 国产色爽女视频免费观看| 国产不卡一卡二| 99热全是精品| 国产精品综合久久久久久久免费| 欧美xxxx黑人xx丫x性爽| 搞女人的毛片| a级毛片a级免费在线| 亚洲在线观看片| 91麻豆精品激情在线观看国产| 啦啦啦啦在线视频资源| 悠悠久久av| 男插女下体视频免费在线播放| 精品福利观看| 搡老妇女老女人老熟妇| 色5月婷婷丁香| 成年女人永久免费观看视频| 久久久精品大字幕| 丰满的人妻完整版| 内地一区二区视频在线| 97人妻精品一区二区三区麻豆| 国产成人aa在线观看| 我的老师免费观看完整版| 99久国产av精品国产电影| 日本成人三级电影网站| 免费大片18禁| 联通29元200g的流量卡| 狂野欧美激情性xxxx在线观看| 午夜激情福利司机影院| 在线观看免费视频日本深夜| 日本爱情动作片www.在线观看 | 国产三级在线视频| 插阴视频在线观看视频| 国产伦一二天堂av在线观看| 国产黄a三级三级三级人| 国产乱人偷精品视频| 国产真实伦视频高清在线观看| av女优亚洲男人天堂| 欧美日韩综合久久久久久| 久久综合国产亚洲精品| 成人精品一区二区免费| 在线免费观看的www视频| 国产精品永久免费网站| 日韩欧美精品v在线| 麻豆成人午夜福利视频| 一个人看的www免费观看视频| 欧美在线一区亚洲| 国产伦在线观看视频一区| 免费大片18禁| 欧美日韩国产亚洲二区| 黄色视频,在线免费观看| 国产亚洲精品综合一区在线观看| 亚洲国产欧美人成| 欧美潮喷喷水| 久久婷婷人人爽人人干人人爱| 老司机午夜福利在线观看视频| 午夜福利在线在线| 中文字幕精品亚洲无线码一区| 国产精品一区二区性色av| 亚洲五月天丁香| 成人亚洲欧美一区二区av| 国产成人影院久久av| 九九在线视频观看精品| 最近手机中文字幕大全| 99视频精品全部免费 在线| 国产精品久久久久久av不卡| 亚洲av二区三区四区| 卡戴珊不雅视频在线播放| 老熟妇乱子伦视频在线观看| 欧美激情在线99| 国产精品乱码一区二三区的特点| 乱人视频在线观看| 亚洲,欧美,日韩| 综合色av麻豆| 天堂网av新在线| 免费高清视频大片| 亚洲av二区三区四区| 欧美日韩乱码在线| 国产精品乱码一区二三区的特点| 日本爱情动作片www.在线观看 | 国产精品爽爽va在线观看网站| 99久久精品一区二区三区| 欧美性猛交黑人性爽| 少妇的逼水好多| 日本色播在线视频| 欧美色欧美亚洲另类二区| 免费看a级黄色片| 国产亚洲欧美98| 日本色播在线视频| 亚洲av电影不卡..在线观看| 一a级毛片在线观看| 久久精品国产99精品国产亚洲性色| 18禁黄网站禁片免费观看直播| 久久久国产成人精品二区| 国产精品福利在线免费观看| 成人二区视频| 看非洲黑人一级黄片| 亚洲美女搞黄在线观看 | 欧美国产日韩亚洲一区| 搡女人真爽免费视频火全软件 | 99视频精品全部免费 在线| 男插女下体视频免费在线播放| 午夜福利在线观看免费完整高清在 | 亚洲av.av天堂| 国产精品一区二区免费欧美| 国产一区亚洲一区在线观看| 啦啦啦韩国在线观看视频| 欧美性猛交黑人性爽| 亚洲精华国产精华液的使用体验 | 国模一区二区三区四区视频| 国产亚洲精品久久久久久毛片| 亚洲精品国产av成人精品 | 国内精品宾馆在线| 国产高清视频在线播放一区| 51国产日韩欧美| 无遮挡黄片免费观看| 午夜精品国产一区二区电影 | 美女高潮的动态| www日本黄色视频网| 欧美国产日韩亚洲一区| 日日撸夜夜添| 天堂网av新在线| 国产一区二区在线av高清观看| 中文字幕av在线有码专区| 久久久久久久午夜电影| 欧美日韩国产亚洲二区| 欧美激情在线99| 国产亚洲精品久久久久久毛片| 在线免费十八禁| 午夜福利高清视频| 秋霞在线观看毛片| 2021天堂中文幕一二区在线观| 欧美丝袜亚洲另类| 91久久精品电影网| aaaaa片日本免费| 18禁黄网站禁片免费观看直播| 中文字幕免费在线视频6| 久久99热这里只有精品18| 久久人妻av系列| 国产一区二区激情短视频| 中国美白少妇内射xxxbb| 欧美激情在线99| 免费观看在线日韩| 能在线免费观看的黄片| 午夜影院日韩av| 成年av动漫网址| 亚洲av.av天堂| 国产激情偷乱视频一区二区| 我要搜黄色片| 变态另类成人亚洲欧美熟女| 久久久国产成人免费| 亚洲精品在线观看二区| 亚洲av电影不卡..在线观看| 亚洲综合色惰| 日韩一区二区视频免费看| 我要搜黄色片| av天堂中文字幕网| 亚洲国产色片| 日本与韩国留学比较| 精品久久久久久成人av| 在线免费观看的www视频| 亚洲人成网站在线观看播放| 一夜夜www| 欧美日韩综合久久久久久| 能在线免费观看的黄片| 成人三级黄色视频| 国产乱人偷精品视频| 色哟哟·www| 亚洲欧美日韩东京热| 国模一区二区三区四区视频| 99久久久亚洲精品蜜臀av| 美女高潮的动态|