• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of Crack Perturbation Model and Forward Semi-analytical Model of Attached Eddy Current Sensor

    2015-11-21 07:56:27JiaoShengbo焦勝博ChengLi程禮LiXiaowei李曉微LiPeiyuan李培源GaoJunyu高君宇
    關(guān)鍵詞:高君宇

    Jiao Shengbo(焦勝博),Cheng Li(程禮)*,Li Xiaowei(李曉微),Li Peiyuan(李培源),Gao Junyu(高君宇)

    1.Aeronautics and Astronautics Engineering College,Air Eorce Engineering University,Xi′an 710038,P.R.China;

    2.School of Software,XiDian University,Xi′an 710038,P.R.China

    Construction of Crack Perturbation Model and Forward Semi-analytical Model of Attached Eddy Current Sensor

    Jiao Shengbo(焦勝博)1,Cheng Li(程禮)1*,Li Xiaowei(李曉微)2,Li Peiyuan(李培源)1,Gao Junyu(高君宇)1

    1.Aeronautics and Astronautics Engineering College,Air Eorce Engineering University,Xi′an 710038,P.R.China;

    2.School of Software,XiDian University,Xi′an 710038,P.R.China

    Eatigue damage monitoring is critical metallic structure health monitoring of aircraft.The sensor should be high sensitive,easy to be integrated into structure and well adaptable for poor working conditions.Therefore,

    attached eddy current sensor;semi-analytical model;crack perturbation model;crack extension experiment

    0 Introduction

    To detect and avoid structure failure in aircraft beforehand,conventional strategy usually maintains the components according to time schedule instead of considering structure′s situation,which leads to extra labor-cost and maintenance.Condition-based maintenance(CBM)based on structural health monitoring(SHM)has been proposed as a promising method for accurate structure maintenance,instead of traditional schedule maintenance based on various non-destructive technologies(NDT)[1].Aircraft structural damage monitoring combines a variety of advanced theories and methods as well as many different means to obtain the parameters of running state[2].By analyzing the sensor′s signals, we can identify the position and the extent of the damage.Possible consequences such as airplane crash can be determined and predicted.Eventually,final decision is provided for aircraft structural design,calculation and analysis.

    The SHM process involves the observation of a system over time using periodically sampled dynamic response measurements from an array of sensors,the extraction of damage-sensitive features from these measurements,and the statistical analysis of these features to determine the current state of the system′s health[3].A variety of sensors based on different mechanisms and technologies have been explored,such as fiber optic sensor,piezoelectric sensor,comparative vacuum sensor and acoustic emission sensor[4-8].However,there are still some problems in engineeringapplication.Eor instance,intelligent coating,due to the accompanying damage,can be flaked or damaged with a long-time component′s vibration. Eddy current sensor,a new branch,has become a focus of the study gradually,thanks to its flexible plane,high reliability and capability of quantitative measurement.Typical eddy current sensors are meandering winding magnetometer(MWM)[9]and eddy current foil sensor(ETES)[10].

    Referring to the type ofω-λsensor and research of Goldfine and others[11],we have proposed an attached eddy current sensor with multiple layers and coils.By extracting the material′s conductivity as the crack feature,the forward semi-analytical model is built and optimization is carried out.Then crack perturbation model of attached eddy current sensor is constructed,and perturbation voltages of sensing channels under three-dimension structural crack are obtained.Einally,validation and crack extension experiments are conducted to verify the performance of the sensor.

    1 Attached Eddy Current Sensor

    The attached eddy current sensor possesses a series of arrayed coils categorized into excitation coils and induction coils and placed at different substrate layers.The simplified schematic diagram of the sensor is shown in Eig.1,where the size of induction coil is S1*L1(W*L)and that of excitation coil is S2*L2(W*L).

    Eig.1 Schematic diagram of eddy-current sensor

    As the high frequency alternating current flows through the excitation coil,primary magnetic field is produced around the space and eddy current is inducted in the structure.Then the secondary magnetic field is generated by the alternating eddy current field.At last,a stable reflection magnetic field is formed resulted from coupling effects between the primary magnetic field and the secondary one.The process of monitoring is shown in Eig.2,whereλis the distance of adjoining driving coil;Δwindthe thickness of coil;ΔLthe liftoff of distance;g the distance between the driving coil and the adjoining inducing coil;ΔSthe thickness of structure to be tested;and p the width of the driving coil.

    Eig.2 Schematic diagram of monitoring

    2 Construction of Semi-analytical Model

    Eig.3 shows the physical model of structure damage monitoring,whereΔiis the thickness of layer i;+z the positive direction of z axis;and +r the positive direction of r axis.The cross-sectional SUM consists of two homogenous material layers which are characterized by their properties:permeabilityμ,conductivityσ,and thicknessΔ. The planar boundaries separating each layer are all parallel to one another and the layers extends to infinity in the z direction and r direction.The outermost layers(layer 4 and layer 0)of the structure are assumed to have an infinite thickness such that there is no interaction between the system which consists of the coils,SUM,and the surroundings.The system is excited by the winding at interface 4,and these windings are assumed to be infinitely thin in the z direction,such that the currents can be modeled as surface currents which flow in theφ(angle coordinate)direction only.

    Eig.3 Physical model for structural damage monitoring

    In this section modeling process is provided briefly,which is shown in Eig.4.Some of the specific modeling process was detailed in Ref.[10].Table 1 shows the meaning of each parameter in Eig.4.Due to high frequency stimulation(1—10 MHz)and existence of skin effect,the current distribution of coils is unknown,which means that the traditional eddy current theoretical method based on vector potential A or second order vector potential(SOVP)is inapplicable to the modeling of planar circular coils with high frequency stimulation[12-14].

    Table 1 Parameter in Fig.4

    Referenced from weighted residuals method on solving partial differential equations,the linearcurrent density at winding interface is set as unknown function.Discrete point and subdomain is collocated at winding interface,and the trial function is obtained via Elourier-Bessel series. According to the relation between linear current density and vector potential at winding interface deduced from time-harmonic form of diffusion equation,differential equation containing linear current density at discrete points is gained based on Earaday′s law.Applying weighted residuals method to differential equation,linear current densities at discrete points are calculated and trans-impedance of attached eddy current sensor is obtained finally.The construction routine of attached eddy current sensor is illustrated briefly in Eig.4.

    3 Construction of Perturbation Model

    Assume the structural crack damage does not change the electromagnetic parameters of the structure;in fact,under the action of accumulative damages of the monitored structure,the electromagnetic property of the structure,such as the conductivity or magnetic conductivity of ferromagnetic materials will change slightly.However,compared with the influence of the accumulated free charges caused by the crack on the transimpedance output of the sensor,the influence caused by the slight change in the electromagnetic property of these materials can be ignored.

    Since there is air shed in the cracks,the discontinuous boundary conditions at the cracks of the structure will cause discontinuous change of the structural eddy current field on the crack surface and free charges will accumulate on the crack surface.Define an infinitesimal of free charges withρfsquantity on the crack surface,i.e.,the free charge density isρfs,according to the divergence theorem of electric current density.Under harmonic stimulation and considering that the eddy current field in the crack is 0,there is

    Eig.4 Construction routine of semi-analytic model

    where nlis the unit normal vector from the infinitesimal to the conductive areas in the structure;j the electric quantity passing the area contained by the infinitesimal in unit time;σMthe conductivity of the structure;ωthe stimulation frequency of the field source;Esthe electric field on the surface of the infinitesimal.In the perturbation model,it is important to obtain the distribution of free charges density from Eq.(1).By referencing numerical analysis method,divide grids on the surface of three-dimensional crack,and define the free charge density at the central point of the grid as unknown coefficient to be determined.Taking cuboid crack on the surface as an example,the diagram for dividing the surface grid is shown in Eig.5.

    Eig.5 Planar grid mesh of surface notch crack

    In Eig.5,grid division is carried out on the crack surface by multiple gridding rectangular elements,i.e.,divide the surface with large free charge density by fine mesh,and divide the surface with small free charge density by coarse mesh.As is known from the skin effect of eddy,the closer the distance from the structured surface is,the stronger the eddy will be,i.e.,the density of the accumulated free charges will be larger,and the crack surface which is closer to the structured surface will be divided by a refined mesh unit.

    Consider the i th grid cell.The free charge density at the central point of cell i isρi,the size of the grid isΔx×Δy,when the grid cell is small enough,the total amount of free charges in cell iwill beΔx×Δy×ρi,then the perturbation electric field generated by cell i at any point a in the system space is

    where ni,ais the cell vector from the central point of cell i to any point a in the space;rathe distance vector of a point;rithe distance vector of i cell.

    Eor the central point of cell i,according to the free charge boundary conditions defined in Eq.(1)and perturbation model assumption,there is

    In particularly,according to Gauss theorem,the perturbation electric field of the free charges in cell i against its central point is bation electric field of coplanar cell j at the central point of cell i is 0.According to Eq.(2),the perturbation electric field generated by the free charges in non-coplanar grid cell j at the central point of cell i is

    Substitute Eqs.(4,5)into Eq.(3)to obtain

    Build constraint equations for all the central points of the grid cell as Eq.(6)to obtain set of linear equations for the free charge density at the central point of the grid cell

    whereρis the vector of the free charge density at the central point of the grid cell;E0the vector of the initial electric field at the central point of the grid cell;M coefficient matrix.Meanwhile,according to law of conservation of charge,there is

    Since the distribution of initial electric field is known,solving the theory and Eqs.(7,8)according to the set of linear equations can obtain the densities of all the free charges at the central point of the grid cell.

    Perturbation current includes two parts:The perturbation current generated by accumulated free charges in the space of the surround volume of the crack,and the perturbation current caused by the disappearance of the initial eddy current field in the space of internal volume of the crack. Similar to grid division of the three-dimensional crack surface,the diagram of grid division for perturbation current is shown in Eig.6.

    Eig.6 Volume grid mesh of perturbation current

    In Eig.6,multiple grids are adopted to divide the volume grid cell for the structures inside and surrounding the crack.

    According to Earaday′s law of electromagnetic sensing,integral on the sensing winding loop,the expression of the perturbation voltage of the sensing winding can be obtained

    where Ad(r)is the perturbation magnetic vector;G the curvilinear integral path on the sensing winding;r the vector of linear infinitesimal volume.Inside the conductor structure,the perturbation magnetic field caused by perturbation current is the volume integral of the perturbation current inside the infinitesimal volumewhere r′is the vector of infinitesimal volume;the perturbation current.Perturbation currentincludes two parts:The perturbation currentenerated by accumulated free charges in the space of the surround volume of the crack,and the perturbation currentcaused by the disappearance of the initial eddy current field in the space of internal volume of the crack

    So far,the perturbation model has been built.It needs to pay attention to that applying the semi-analytical model in this paper has its limited conditions,i.e.,the sensor perturbation model cannot be applied to calculating the perturbation voltage of the sensors for magnetic structures,otherwise there will be large calculation errors.This is because the surface crack in magnetic structure will cause the discontinuity of magnetic sensing intensity on the crack surface,which will generate perturbing magnetizing current.The perturbation model does not consider the influence of perturbing magnetizing current on the signal of perturbation output voltage of the sensor.

    4 Structure Parameter OPtimization

    In the process of monitoring,the liftoff,the distance between the sensor and the structure,has a marked effect on the optimal working fre-

    where Vcis the voltage of the volume grid.Substitute Eq.(12)into Eq.(9)to obtain the numerical expression of the perturbation voltage of the sensing winding quency of sensor,which determines distribution of the magnetic field and eddy current field.

    Eig.7 shows the effect of liftoff on optimal frequency as the measured material is 2A12-T4 aluminum alloy.

    Eig.7 Change of optimal frequency with liftoff

    In Eig.7,the sensor′s optimal operating frequency decreases as the liftoff grows larger,and goes toward the horizontal limit as the distance is larger than 0.18 mm.

    Considering the sensor′s working condition,i.e.the attachment method,the liftoff distance is generally between 0.005 and 0.2 mm,so the range of the sensor′s optimal excitation current frequency is from 0.2 to 1 M Hz.

    In addition,the thickness of the coil wire also affects the distribution of the current density,as well as the distributions of the magnetic field and eddy current field.The thickness of the sensor′s excitation and induction coil are set up as 0.25,0.5,1,2,and 4 times the benchmark. Eigs.8,9 show the sensitivity change of first induction coil with excitation signal frequency under the condition that the lifetoff distances are 0.05 and 0.15 mm.

    Eig.8 Effect of wire thickness on sensitivity(liftoff:0.05 mm)

    Eig.9 Effect of wire thickness on sensitivity(liftoff:0.15 mm)

    In Eigs.8,9,there is an optimal sensitivity under a certain thickness.The optimal sensitivity becomes larger as the thickness of wire gets smaller.Meanwhile,there was nearly no difference in sensitivity of the sensor between 2 and 4 times of the wire thickness.In other words,the sensitivity of the conductivity will not be reduced with the increase the wire thickness as the thickness is large enough.

    5 SPatial Distributions of Eddy Current Field and Magnetic Field

    According to the semi-analytical model,the distribution in the surrounding medium space of magnetic field and eddy current filed is explored at different excitation frequencies.This leads to a further understanding of the output characteristics of the electromagnetic field.Since the amount of calculation is large,the number of the induction coils in simulation will be reduced to two channels.

    In order to obtain the instantaneous distribution,the analysis is processed from two aspects separately:Real part and imaginary part.That means to analyze the form of field distribution at the points ofωt=0 andωt=π/2 in a harmonic period.(K=sin(ωt+φ),ωt=0,that is corresponding to the imaginary part of the complex parameter;ωt=π/2,that is corresponding to the real part of the complex parameter).The contour map of the eddy current field distribution in case ofωt=0 andωt=π/2 under the excitation frequency 1 MHz is shown,in Eigs.10,11 respectively.The vertical axis depth 0 corresponds to the structure surface of 2A12-T4 aluminum alloy structure.

    Eig.10 Eddy current field distribution in the monitored structure(ωt=0,f=1 M Hz)

    Eig.11 Eddy current field distribution in the monitored structure(ωt=π/2,f=1 MHz)

    Eigs.10,11 show the eddy current field is concentrated beneath the sensor,and there are three vortex wave sources formed by excitation coils in the monitored structure.The three vortex wave sources diffuse and attenuate in the form of waves towards the inner and the edge of the structure.Meanwhile,due to the opposite direction of the excitation current among the excitation coils,there exist the zero points in the eddy current field,which it shown as the boundaries among the wave sources.

    The contour map of magnetic induction strength distribution is shown in Eigs.12—15 as the eddy current sensor is attached to the 2A12-T4 aluminum alloy surface.

    Eig.12 Distribution of space magnetic induction strength(ωt=0,f=1 MHz)

    Eig.13 Distribution of space magnetic induction strength(ωt=π/2,f=1 MHz)

    Eig.14 Distribution of space magnetic induction(ωt= 0,f=10 MHz)

    Eig.15 Distribution of space magnetic induction(ωt= π/2,f=10 M Hz)

    Similarly,there are also three field sources which diffuse and attenuate in the form of waves towards the space.The skin effect in the distribution of coil current density is more obvious at the frequency of 10 M Hz,so the excitation source is concentrated around the two edges of the coil,which means each excitation coil contains two excitation points.There is a big difference of magnetic induction intensity betweenωt=0 andωt= π/2 at the frequency of 10 MHz.These results from the fact that at the frequency of 10 M Hz, the eddy current field intensity is very large,thus the magnetic field has a great effect on the spatial distribution of the excitation source magnetic field.Atωt=0,the excitation source magnetic field is weakened by the magnetic field generated by eddy current,while atωt=π/2,the excitation source magnetic field is amplified.

    6 Validations and Crack Extension ExPeriment

    This section builds experimental platform to carry out crack growth simulation to validate the accuracy of the perturbation model.The contact way between three-dimensional displacement platform as well as the sensor and the test specimens is shown in Eig.16.

    Eig.16 Three-dimensional displacement platform

    Eig.17 Normalized sensing voltage varying displacement of sensor

    In Eig.16,when the crack front enters a certain sensing winding channel,the corresponding sensing voltage in corresponding sensing channel will rise first and then tend to be stable.The inflection points where the sensing voltage curves of the four sensing channels start to rise are marked by arrows in Eig.17,with the spacing between two adjacent inflection points of 1 mm;the de-signed wavelengthλof the sensor is 1 mm.The experimental result validates the monitoring principle of attached eddy current sensor.Meanwhile,Eig.17 also shows that the perturbation function of the crack on each sensing winding lies in the rise of the sensing voltage of each channel,which validates the accuracy of the perturbation model built in this paper.The percentage of the perturbation rise of the sensing channel voltage is

    whereΔV is the perturbation value of the crack on the sensing channel voltage and V0the sensing channel voltage without crack.Taking 2 A12-T4 test specimen as an example,Eig.18 is the comparison curve results between the model and the experiment of the rising percentageδof the voltage perturbation of the four sensing channels caused by the crack under 3 M Hz stimulation frequency.

    Eig.18 Comparison between model and experiment

    Eig.18 shows the stimulation frequencies 3 M Hz,the calculation results and experimental measurement results of perturbation models of 2 A12-T4 aluminum alloy agree relatively well;the calculation errors of the perturbation models of the four sensing channels of the sensor are all within 25%.

    The attached eddy current sensor with four induction channels is manufactured using the technology of flexible printed circuit board(EPCB)[15],as shown in Eig.19.

    To measuring the crack extension quantitatively,experiment on crack extension is carried out using material testing system Landmark 510,as shown in Eig.20.

    Eig.19 Attached eddy current sensor

    Eig.20 Material testing system Landmark 510

    The excitation frequency is set as 1 M Hz,and the temperature is kept at 20℃.The signal is collected until the specimen break down.The signals are shown in Eig.21.

    Eig.21 Signal of four induction channels

    The signals stable in the initial stage indicates that the structure is integrated.As the cyclic load keeps growing,crack initiates and extends.The sensor has monitored the change of the structure and signals increases one by one.At last the specimen breaks down,and the signals keep stable at a high level.

    7 Conclusions

    An attached eddy current sensor characterized by array induction coils,capability of nonde-structive testing and quantitative measuring on crack extension is proposed.

    The semi-analytical model of monitoring is built through extracting material conductivity as the crack feature.

    Based on the perturbation current generated by accumulated free charges in the space of the surround volume of the crack and the perturbation current caused by the disappearance of the initial eddy current field in the space of internal volume of the crack,the perturbation voltage of the sensing winding of the sensor is obtained by Earaday′s law of electromagnetic induction,and semianalytical crack perturbation model of attached eddy current sensor is constructed finally.

    The performance of sensor is verified through calibration test and crack extension experiment.The accuracy reaches 1 mm.

    Acknowledgement

    This work was supported by the National Natural Science Eoundation of China(No.51175509).

    [1] Halbert K,Eitzwater L,Torng T,et al.Air vehicle integration and technology research(Aviatr)[R]. Task Order 0003.USA:Condition-Based Maintenance Plus Structure,Boeing Company,2013.

    [2] Yuan S E.Structural health monitoring and damage control[M].Beijing:National Defense Industry Press,2007.

    [3] Speckmann H,Roesner H.Structural health monitoring:A contribution to the intelligent aircraft structure[C]∥9th European NDT Conference.Berlin,Germany:ECNDT,2006:1-7.

    [4] Hong L G,Gao Z X,Mrad N.Eiber optic sensors for structure health monitoring of air platforms[J]. Sensors,2011,11(4):3687-3705.

    [5] Roach D.Real time crack detection using mountable comparative vacuum monitoring sensors[J].Smart Structures and Systems,2009,5(4):317-328.

    [6] Prevorovsky Z.Nonlinear ultrasonic spectroscopy and acoustic emission in SHM of aircrafts[C]∥18 th World Conference on Nondestructive Testing.Durban,South Africa:[s.n.],2012.

    [7] Liu M B,Gao Q,Hu E.Elaw-detected coating and its application[C]∥International Conference on Health Monitoring of Structure.Nanjing,China:[s. n.],2007.

    [8] Giurgiutir V,Santoni-Bottai G,Lin B,et al.Space application of piezoelectric wafer active sensors for structural health monitoring[J].Journal of Intelligent Material Systems and Structures,2011,22:1359-1370.

    [9] Russell R,Jablonski D,Washabaugh A,et al.Development of meandering winding agnetometer(MWM)eddy current sensors for the health monitoring,odeling and damage detection of high temperature composite materials[C]∥32nd HIGH TEMPLE Workshop.Palm Springs,USA:KSCET,2012.

    [10]Speckmann H.Structure health monitoring[C]∥IMRBPB Meeting.Cologne,Germany:EASA,2007.

    [11]Sheiretov Y.Deep penetration magnetoquasistatic sensors[D].Cambridge,MA,USA:Massachusetts Institute of Technology,2001.

    [12]Dodd C V,Deeds W E,Analytical solutions to eddycurrent probe-coil problems[J].Applied Physics,1968,39:2829-2838.

    [13]Theodoulidis T P,Kriezis E E.Impedance evaluation of rectangular coils for eddy current testing of plannar media[J].NDT&E International,2002,35(6):407-414.

    [14]Eava J O,Ruch M C.Calculation and simulation of impedance diagrams of planar rectangular spiral coils for eddy current testing[J].NDT&E International,2006,39(5):414-424.

    [15]Yoon Jesong Won,Jang Jin-Kyu,Choi Jung-Hyun,et al.Thermo-compression bonding of electrodes between EPCB and RPCB[J].Journal of Materials Science Materials in Electronics,2012,23(1):41-47.

    (Executive editor:Zhang Bei)

    TP212.1;V215.6 Document code:A Article ID:1005-1120(2015)03-0279-10

    *CorresPonding author:Cheng Li,Professor,E-mail:cheng-qiaochu@foxmail.com.

    How to cite this article:Jiao Shengbo,Cheng Li,Li Xiaowei,et al.Construction of crack perturbation model and forward semi-analytical model of attached eddy current sensor[J].Trans.Nanjing U.Aero.Astro.,2015,32(3):279-288.

    http://dx.doi.org/10.16356/j.1005-1120.2015.03.279

    (Received 17 December 2014;revised 8 April 2015;accepted 25 April 2015)

    an attached eddy current sensor with flexible plane is put forward and its characteristics are analyzed.By extracting material′s conductivity as the crack features,forward semi-analytical model is established and parameter optimizations are carried out.Crack perturbation model of attached eddy current sensor is constructed,and perturbation voltages of sensing channels under three-dimension structural crack are obtained.To verify the sensor′s performance,monitoring experiment on crack extension is conducted under condition of 3 M Hz frequency.The validation experimental results show that perturbation model of 2A12-T4 aluminum alloy agrees well with experiment results,and perturbation model errors of four sensing channels are within 25%.The attached eddy current sensor is capable of testing the crack nondestructively and measuring the crack extension quantitatively with the accuracy of 1 mm.

    猜你喜歡
    高君宇
    又想起了高君宇!
    文史月刊(2024年5期)2024-05-31 04:39:16
    情歸陶然亭
    高君宇與石評(píng)梅的圣潔情戀
    黨史文苑(2022年2期)2022-03-27 12:08:01
    我愿用一生的愛來(lái)修補(bǔ)你的愛
    一片紅葉寄相思
    《止學(xué)》篆刻·解讀系列二十一
    記者觀察(2017年12期)2018-05-19 09:36:28
    院友高君宇
    高君宇的愛情觀
    黨史文匯(2014年4期)2014-08-19 22:41:29
    穿透冰雪的美好與芬芳
    女士(2013年5期)2013-04-29 00:44:03
    中共建黨初期理論家高君宇的研究綜述*
    国产精品国产av在线观看| 国产在线一区二区三区精| 欧美另类一区| 欧美一级a爱片免费观看看| 国产精品熟女久久久久浪| 97在线视频观看| 色网站视频免费| 久久久久精品性色| 在线观看三级黄色| 亚洲精品第二区| 日韩av在线免费看完整版不卡| 又爽又黄a免费视频| 热99国产精品久久久久久7| 综合色丁香网| 国产亚洲91精品色在线| 制服丝袜香蕉在线| 国产午夜精品一二区理论片| 99热这里只有是精品在线观看| 亚洲欧美一区二区三区黑人 | 春色校园在线视频观看| 日韩成人av中文字幕在线观看| 一级片'在线观看视频| 亚洲一级一片aⅴ在线观看| 亚洲美女视频黄频| 亚洲真实伦在线观看| 亚洲欧美精品专区久久| 肉色欧美久久久久久久蜜桃 | 日韩精品有码人妻一区| 深夜a级毛片| 日日啪夜夜撸| 欧美日韩在线观看h| 国产女主播在线喷水免费视频网站| 人妻一区二区av| 伊人久久国产一区二区| 中文在线观看免费www的网站| 国产精品蜜桃在线观看| 国产精品一区www在线观看| 日韩欧美精品免费久久| 69人妻影院| 欧美另类一区| 国产亚洲午夜精品一区二区久久 | 亚洲国产精品国产精品| 久久久久网色| 中文乱码字字幕精品一区二区三区| av一本久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 大又大粗又爽又黄少妇毛片口| 亚洲,一卡二卡三卡| 自拍偷自拍亚洲精品老妇| 在线观看一区二区三区激情| 久热久热在线精品观看| 春色校园在线视频观看| 国产成人福利小说| 亚洲av.av天堂| 日本黄大片高清| 成人午夜精彩视频在线观看| 熟妇人妻不卡中文字幕| 超碰av人人做人人爽久久| 黄色日韩在线| 亚洲图色成人| 2021少妇久久久久久久久久久| 免费观看无遮挡的男女| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男女那种视频在线观看| 日韩亚洲欧美综合| 少妇的逼好多水| 成人亚洲精品一区在线观看 | 亚洲欧美一区二区三区黑人 | 国产乱来视频区| 欧美成人a在线观看| 国产免费福利视频在线观看| 欧美97在线视频| 久久久久国产网址| 性插视频无遮挡在线免费观看| 亚洲av国产av综合av卡| 特大巨黑吊av在线直播| 亚洲av免费高清在线观看| 一级毛片 在线播放| 五月开心婷婷网| 男插女下体视频免费在线播放| 成人国产av品久久久| 国产午夜精品久久久久久一区二区三区| 日日啪夜夜撸| 亚洲欧美日韩另类电影网站 | 精品久久久噜噜| 在线免费十八禁| 久久久久久久午夜电影| 丰满人妻一区二区三区视频av| 一级黄片播放器| 久久99蜜桃精品久久| 日日啪夜夜爽| 最后的刺客免费高清国语| 久久综合国产亚洲精品| 日本色播在线视频| 久久久久久久久久成人| 国产淫语在线视频| 亚洲精品日本国产第一区| 欧美精品人与动牲交sv欧美| 成人二区视频| 一级毛片 在线播放| 尾随美女入室| 乱系列少妇在线播放| 欧美少妇被猛烈插入视频| 黄片无遮挡物在线观看| 免费看不卡的av| 黄片无遮挡物在线观看| 另类亚洲欧美激情| 丝瓜视频免费看黄片| 在线观看三级黄色| 国产免费福利视频在线观看| 十八禁网站网址无遮挡 | 免费大片黄手机在线观看| 有码 亚洲区| 国产爱豆传媒在线观看| 亚洲综合精品二区| 亚洲精品国产色婷婷电影| 欧美亚洲 丝袜 人妻 在线| 少妇熟女欧美另类| 又大又黄又爽视频免费| 黄色欧美视频在线观看| 亚洲美女搞黄在线观看| 美女高潮的动态| 久久韩国三级中文字幕| 少妇被粗大猛烈的视频| 亚洲国产日韩一区二区| 成年人午夜在线观看视频| 丝瓜视频免费看黄片| 国产毛片在线视频| 特大巨黑吊av在线直播| 一边亲一边摸免费视频| 亚洲av一区综合| 深夜a级毛片| 一本一本综合久久| 99久久精品一区二区三区| 亚洲综合精品二区| 国产综合精华液| 在线看a的网站| 国产成人午夜福利电影在线观看| 亚洲av不卡在线观看| 青春草亚洲视频在线观看| 日本午夜av视频| av福利片在线观看| 看黄色毛片网站| 免费黄频网站在线观看国产| 国精品久久久久久国模美| 国产女主播在线喷水免费视频网站| 欧美+日韩+精品| 日韩,欧美,国产一区二区三区| 看免费成人av毛片| 亚洲av.av天堂| 精华霜和精华液先用哪个| 国产精品一区二区性色av| 亚洲欧美一区二区三区黑人 | 国产综合懂色| 一二三四中文在线观看免费高清| 国产精品伦人一区二区| 日本三级黄在线观看| 亚洲最大成人中文| 亚洲精品自拍成人| 精品人妻视频免费看| 日韩欧美精品v在线| 中文天堂在线官网| 亚洲三级黄色毛片| av黄色大香蕉| 亚洲不卡免费看| 亚洲三级黄色毛片| av在线老鸭窝| 日本一本二区三区精品| 成年免费大片在线观看| 三级国产精品片| 久久久久精品性色| 日韩 亚洲 欧美在线| 欧美日韩视频高清一区二区三区二| 欧美成人a在线观看| 深爱激情五月婷婷| 在线观看美女被高潮喷水网站| 男女边吃奶边做爰视频| 天天躁日日操中文字幕| 丝袜脚勾引网站| 51国产日韩欧美| 99久久精品国产国产毛片| 18禁裸乳无遮挡免费网站照片| 国产老妇伦熟女老妇高清| 国产成人a∨麻豆精品| 国模一区二区三区四区视频| 91精品伊人久久大香线蕉| 少妇裸体淫交视频免费看高清| 九九久久精品国产亚洲av麻豆| 一边亲一边摸免费视频| 一区二区三区四区激情视频| 美女cb高潮喷水在线观看| 国产高清国产精品国产三级 | 制服丝袜香蕉在线| 日韩av在线免费看完整版不卡| 国产成年人精品一区二区| av国产精品久久久久影院| 精品久久久久久久末码| 久久精品国产亚洲av天美| 亚洲精华国产精华液的使用体验| 国产免费一级a男人的天堂| 黄片无遮挡物在线观看| 精品久久久久久电影网| 黑人高潮一二区| av国产免费在线观看| 男女国产视频网站| 久久精品久久精品一区二区三区| 日韩欧美精品免费久久| 狂野欧美激情性bbbbbb| 亚洲人与动物交配视频| 亚洲欧美日韩另类电影网站 | 成年av动漫网址| 建设人人有责人人尽责人人享有的 | 黄片wwwwww| 2022亚洲国产成人精品| 日本-黄色视频高清免费观看| av福利片在线观看| 久久久久国产网址| 国产欧美亚洲国产| 搞女人的毛片| 国产欧美亚洲国产| 国产欧美亚洲国产| 亚洲经典国产精华液单| 欧美最新免费一区二区三区| 国产色爽女视频免费观看| 久久韩国三级中文字幕| 亚洲精品国产av成人精品| 美女高潮的动态| 下体分泌物呈黄色| 色视频www国产| 中文字幕免费在线视频6| 又爽又黄a免费视频| 久久这里有精品视频免费| 别揉我奶头 嗯啊视频| 嘟嘟电影网在线观看| 久久精品国产亚洲av天美| 丝袜脚勾引网站| 免费看av在线观看网站| 亚洲欧美一区二区三区国产| 最新中文字幕久久久久| 少妇人妻久久综合中文| 日本av手机在线免费观看| 校园人妻丝袜中文字幕| 国产av国产精品国产| 国产老妇伦熟女老妇高清| 色婷婷久久久亚洲欧美| 男人狂女人下面高潮的视频| 日韩一区二区视频免费看| 国产一区有黄有色的免费视频| 久久精品久久久久久久性| 啦啦啦啦在线视频资源| 国产精品蜜桃在线观看| 老师上课跳d突然被开到最大视频| 国产精品久久久久久久久免| 狠狠精品人妻久久久久久综合| 中文字幕免费在线视频6| 热re99久久精品国产66热6| 尤物成人国产欧美一区二区三区| 建设人人有责人人尽责人人享有的 | 国产美女午夜福利| 久久久久网色| 国产精品国产三级国产专区5o| 国产精品一二三区在线看| 亚洲精品第二区| 国产日韩欧美亚洲二区| 成人亚洲欧美一区二区av| 三级经典国产精品| 欧美日韩一区二区视频在线观看视频在线 | 国产乱来视频区| 99久久人妻综合| 可以在线观看毛片的网站| 99re6热这里在线精品视频| 99精国产麻豆久久婷婷| 成年女人看的毛片在线观看| 成人毛片a级毛片在线播放| 黄片无遮挡物在线观看| 亚洲真实伦在线观看| 亚洲欧美日韩东京热| 大又大粗又爽又黄少妇毛片口| 中文字幕人妻熟人妻熟丝袜美| 下体分泌物呈黄色| 亚洲精品日韩在线中文字幕| 色5月婷婷丁香| 又爽又黄无遮挡网站| 最近2019中文字幕mv第一页| av女优亚洲男人天堂| 国产精品久久久久久精品电影小说 | 99久久精品一区二区三区| 成人亚洲精品一区在线观看 | 亚洲天堂国产精品一区在线| av黄色大香蕉| 欧美潮喷喷水| 亚洲欧美成人精品一区二区| .国产精品久久| 22中文网久久字幕| 深夜a级毛片| 久久99热这里只有精品18| 国产精品国产三级国产av玫瑰| 在线观看三级黄色| 成人国产麻豆网| 一级片'在线观看视频| xxx大片免费视频| 亚洲,一卡二卡三卡| 在现免费观看毛片| 免费看日本二区| 中文字幕久久专区| 国产精品不卡视频一区二区| 内射极品少妇av片p| 美女脱内裤让男人舔精品视频| 日韩人妻高清精品专区| 国内少妇人妻偷人精品xxx网站| 久久99精品国语久久久| 亚洲欧美成人综合另类久久久| 又大又黄又爽视频免费| 国产男女内射视频| 午夜免费鲁丝| 伊人久久精品亚洲午夜| 国产综合懂色| 真实男女啪啪啪动态图| 久久久精品免费免费高清| 99re6热这里在线精品视频| 肉色欧美久久久久久久蜜桃 | 午夜激情久久久久久久| 亚洲精品国产成人久久av| 亚洲精品影视一区二区三区av| 国产精品国产三级国产专区5o| 午夜精品国产一区二区电影 | 亚洲精品一区蜜桃| 在线观看一区二区三区激情| 天堂网av新在线| 亚洲国产精品999| 亚洲电影在线观看av| 天天躁夜夜躁狠狠久久av| 日本午夜av视频| 亚洲av免费在线观看| 听说在线观看完整版免费高清| 亚洲,一卡二卡三卡| 成年免费大片在线观看| 老女人水多毛片| 赤兔流量卡办理| 少妇高潮的动态图| 欧美最新免费一区二区三区| 国产av码专区亚洲av| 国产精品偷伦视频观看了| 午夜福利在线在线| 亚洲综合色惰| 少妇的逼好多水| 69人妻影院| 国产黄色视频一区二区在线观看| 又黄又爽又刺激的免费视频.| 午夜福利高清视频| 日本爱情动作片www.在线观看| 熟妇人妻不卡中文字幕| 精品熟女少妇av免费看| 亚洲内射少妇av| 国产成人aa在线观看| 日韩国内少妇激情av| 少妇人妻久久综合中文| 少妇 在线观看| a级一级毛片免费在线观看| 天天躁夜夜躁狠狠久久av| 久久久久久久精品精品| 狠狠精品人妻久久久久久综合| 国产av码专区亚洲av| 91久久精品国产一区二区三区| 美女高潮的动态| 国产精品久久久久久久电影| 国产精品精品国产色婷婷| 最近最新中文字幕大全电影3| 人妻夜夜爽99麻豆av| 欧美性猛交╳xxx乱大交人| 亚洲精品中文字幕在线视频 | 啦啦啦在线观看免费高清www| 日本一二三区视频观看| 另类亚洲欧美激情| 在线观看一区二区三区| 一区二区三区乱码不卡18| 久久久a久久爽久久v久久| 在线观看av片永久免费下载| 超碰av人人做人人爽久久| 久久久久久久亚洲中文字幕| 欧美日韩在线观看h| 免费观看的影片在线观看| 国产精品人妻久久久久久| 久久久久精品久久久久真实原创| 日本一二三区视频观看| 人人妻人人爽人人添夜夜欢视频 | 美女cb高潮喷水在线观看| 精品久久久久久久人妻蜜臀av| 欧美精品一区二区大全| 久久99热这里只频精品6学生| 丝袜喷水一区| 中文欧美无线码| 中文乱码字字幕精品一区二区三区| 久久久久久久久久成人| 精品午夜福利在线看| 91精品国产九色| 亚洲精品aⅴ在线观看| 国产精品久久久久久av不卡| 中文资源天堂在线| 日韩三级伦理在线观看| 如何舔出高潮| 中文字幕av成人在线电影| 精品久久久久久久末码| 国产精品国产av在线观看| 亚洲伊人久久精品综合| 国产精品国产三级国产专区5o| 寂寞人妻少妇视频99o| 亚洲,一卡二卡三卡| 午夜免费男女啪啪视频观看| 国产成人91sexporn| 成人二区视频| 大话2 男鬼变身卡| 天天躁日日操中文字幕| 中文资源天堂在线| 亚洲国产欧美在线一区| 久久久久久久大尺度免费视频| 中文天堂在线官网| 性色avwww在线观看| 国产成人一区二区在线| 亚洲国产欧美在线一区| 欧美成人午夜免费资源| 亚洲精品,欧美精品| 在现免费观看毛片| 人人妻人人澡人人爽人人夜夜| 成人漫画全彩无遮挡| 欧美97在线视频| 在线观看一区二区三区| 国产亚洲一区二区精品| av网站免费在线观看视频| 99久久精品国产国产毛片| 99久久九九国产精品国产免费| 国产精品爽爽va在线观看网站| 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 亚洲精品第二区| 天堂中文最新版在线下载 | 欧美成人午夜免费资源| 亚洲欧美精品专区久久| 亚洲欧美一区二区三区国产| 精品熟女少妇av免费看| 69av精品久久久久久| 免费av观看视频| 啦啦啦在线观看免费高清www| 丝瓜视频免费看黄片| 国产一区二区三区av在线| 亚洲国产精品成人久久小说| 熟女电影av网| 一区二区三区四区激情视频| 人人妻人人看人人澡| 国产精品国产三级专区第一集| 一个人观看的视频www高清免费观看| 久久久久久久久久成人| 国产精品三级大全| 男女那种视频在线观看| 最新中文字幕久久久久| 亚洲精品第二区| 欧美精品人与动牲交sv欧美| 亚洲综合精品二区| 免费大片黄手机在线观看| 搡老乐熟女国产| 亚洲丝袜综合中文字幕| 18禁裸乳无遮挡动漫免费视频 | 免费播放大片免费观看视频在线观看| 国产精品一二三区在线看| 国内少妇人妻偷人精品xxx网站| 久久国内精品自在自线图片| av天堂中文字幕网| 亚洲欧美日韩东京热| 久久久久久久午夜电影| 天堂网av新在线| 免费不卡的大黄色大毛片视频在线观看| 九九爱精品视频在线观看| 免费观看a级毛片全部| 日韩一区二区三区影片| 亚洲精品乱码久久久久久按摩| 亚洲欧美中文字幕日韩二区| 免费观看av网站的网址| 欧美日韩国产mv在线观看视频 | 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| av福利片在线观看| 啦啦啦中文免费视频观看日本| 亚洲性久久影院| 一级毛片久久久久久久久女| 亚洲av中文字字幕乱码综合| 久久人人爽人人爽人人片va| 亚洲人成网站高清观看| 日日撸夜夜添| videos熟女内射| av免费在线看不卡| 精品人妻一区二区三区麻豆| 少妇人妻久久综合中文| 亚洲精品乱码久久久v下载方式| 97人妻精品一区二区三区麻豆| 免费看av在线观看网站| 亚洲自拍偷在线| 久久99热6这里只有精品| 亚洲av国产av综合av卡| 久久久久国产精品人妻一区二区| 狂野欧美白嫩少妇大欣赏| 永久网站在线| 一本久久精品| 永久网站在线| 亚洲av国产av综合av卡| 丰满少妇做爰视频| 一个人看视频在线观看www免费| 丝袜美腿在线中文| 岛国毛片在线播放| 六月丁香七月| 国产高清不卡午夜福利| 亚洲综合精品二区| 国产成人精品福利久久| 一二三四中文在线观看免费高清| 大香蕉久久网| 男男h啪啪无遮挡| 国产黄片美女视频| 欧美日韩国产mv在线观看视频 | 免费少妇av软件| 少妇人妻久久综合中文| 国产色婷婷99| 狂野欧美激情性xxxx在线观看| 欧美老熟妇乱子伦牲交| 天美传媒精品一区二区| 免费av不卡在线播放| 亚洲最大成人手机在线| 亚洲精品日韩在线中文字幕| 一级av片app| 精品久久久久久电影网| 久久精品国产鲁丝片午夜精品| 中国三级夫妇交换| 国产日韩欧美在线精品| 久久久国产一区二区| 国产在线男女| 精品一区在线观看国产| 人妻 亚洲 视频| 少妇的逼好多水| 久久精品国产a三级三级三级| 成人黄色视频免费在线看| 热re99久久精品国产66热6| 免费高清在线观看视频在线观看| 亚洲国产精品成人久久小说| 三级国产精品欧美在线观看| 老司机影院成人| 日本免费在线观看一区| 亚洲四区av| av在线蜜桃| 99久国产av精品国产电影| 亚洲电影在线观看av| 亚洲最大成人手机在线| 亚洲av日韩在线播放| 亚洲国产最新在线播放| 国产有黄有色有爽视频| 日日摸夜夜添夜夜爱| 欧美变态另类bdsm刘玥| 各种免费的搞黄视频| 中文字幕亚洲精品专区| 免费观看a级毛片全部| 婷婷色av中文字幕| 日韩一本色道免费dvd| 乱系列少妇在线播放| 永久网站在线| 毛片一级片免费看久久久久| 国产精品一区二区三区四区免费观看| 黄色怎么调成土黄色| av在线亚洲专区| 亚洲自拍偷在线| 亚洲欧美精品专区久久| 久久久久性生活片| 亚洲精品乱码久久久久久按摩| 51国产日韩欧美| 亚洲精品亚洲一区二区| 久久人人爽人人片av| 中文天堂在线官网| 好男人在线观看高清免费视频| 午夜日本视频在线| 成人亚洲精品av一区二区| 爱豆传媒免费全集在线观看| 日韩电影二区| 亚洲av一区综合| 插逼视频在线观看| 最近2019中文字幕mv第一页| 国产黄频视频在线观看| 久久精品国产亚洲av天美| 高清av免费在线| 看黄色毛片网站| 色视频在线一区二区三区| 三级男女做爰猛烈吃奶摸视频| 日本一二三区视频观看| 寂寞人妻少妇视频99o| 成年免费大片在线观看| www.色视频.com| 人人妻人人看人人澡| 免费观看无遮挡的男女| 制服丝袜香蕉在线| 人妻系列 视频| 国产精品av视频在线免费观看| 成人美女网站在线观看视频| 欧美国产精品一级二级三级 | 少妇裸体淫交视频免费看高清| 成人亚洲欧美一区二区av| 国产黄色视频一区二区在线观看| 亚洲成人中文字幕在线播放| 高清在线视频一区二区三区| 亚洲内射少妇av| 精品少妇黑人巨大在线播放| 亚洲婷婷狠狠爱综合网| av网站免费在线观看视频| 成人鲁丝片一二三区免费| 亚洲av成人精品一二三区| 可以在线观看毛片的网站| 免费观看性生交大片5| 国产精品久久久久久久电影| 国产片特级美女逼逼视频| 成年女人看的毛片在线观看| 久久99热6这里只有精品|