• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control-Oriented Modeling and Simulation on Rigid-Aeroelasticity Coupling for Hypersonic Vehicle

    2015-11-21 07:09:05XiaoLiping肖莉萍ZhangYong張勇LuYuping陸宇平
    關(guān)鍵詞:搜集整理本門張勇

    Xiao Liping(肖莉萍),Zhang Yong(張勇),Lu Yuping(陸宇平)

    1.UAV Research Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.School of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Control-Oriented Modeling and Simulation on Rigid-Aeroelasticity Coupling for Hypersonic Vehicle

    Xiao Liping(肖莉萍)1*,Zhang Yong(張勇)1,Lu Yuping(陸宇平)2

    1.UAV Research Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.School of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Since the subsystems of aerodynamics,propulsion,structure and so on in hypersonic vehicles involve characteristics of nonlinearity,strong coupling and uncertainty,and typical hypersonic vehicles adopt slender-body and wave-rider layout with widely-used lightweight materials,the accuracy of the modeling with a conventional rigid-body assumption is challenged.Therefore,a nonlinear mathematical longitudinal model of a hypersonic vehicle is established with its geometry provided to estimate aerodynamic force and thrust using hypersonic aerodynamics and quasi-one-dimensional flow with heat added and capture vehicle aeroelasticity using a single free-free Bernoulli-Euler beam model.Then the static and dynamic properties of the rigid and rigid-aeroelasticity coupling model are compared via theoretical analysis and numerical simulation under the given flight condition.Einally,a LQR controller for rigid model is designed and the comparable results are obtained to explain the aerolasticity influence on the control effect.The simulation results show that the aeroelasticity mode of slender-body hypersonic vehicles affects short period mode significantly and it cannot be simply neglected.

    hypersonic vehicle;wave-rider;aeroelasticity;modeling;dynamic properties

    0 Introduction

    Hypersonic unmanned vehicle is an unmanned aircraft that travels at high speeds.The term hypersonic refers to speeds faster than five times the speed of sound or Mach 5 at altitudes higher than 20 km.An″air-breathing″hypersonic vehicle takes oxygen from the atmosphere rather than having to carry it in the form of fuel oxidizer during flight.It can increase the effective load capacity in the same state of take-off loads.The airbreathing hypersonic vehicle provides a promising technology for low-cost and time-saving flight both in commercial and military fields[1].

    The vehicles become more complex because of the profound coupling among aerodynamic and propulsive phenomena[2].At the same time,a new generation of hypersonic vehicles commonly uses lightweight flexible material,and its aerodynamic shape is generally elongated body,having a waverider layout.Special structure and aerodynamic layout result in the low natural vibration frequency of hypersonic vehicle structure obviously,where the structural flexibility of the airframe or the aerodynamic surfaces for aircraft attitude control increase greatly[3].The longitudinal dynamics of a classical hypersonic air-breathing vehicle is established with rigid and aeroelasticity coupling based on Lagrange equation[4],called the Bolender and Doman model.An overview of scramjet-powered hypersonic vehicle with aeroelastic-propulsive interactions modeling and control challenges is studied[5-6].And then,the further work for the model simplification is imple-mented for model-based control[7].Typically,a linear parameter-varying(LPV)version of the model is developed for robust control design,and a novel LPV regulator design methodology is developed considering the case of over-actuated[8]. A controller for flexible hypersonic vehicle is synthesized using H∞LPV techniques,where a least squares optimization is performed on the tracking error state[9].Meanwhile,other control methods for flexible hypersonic vehicle are developed.A suitable controller formulation for trajectory tracking of a hypersonic vehicle is derived,which explicitly accommodates nonlinear constraints involving both state and control variables[10].However,no literatures further explore the interaction between rigid and aeroelasticity modes.

    Here a dynamic model of rigid-elastic coupling of hypersonic vehicles is first built.The body surface aerodynamic force of the vehicle is estimated based on oblique shockwave theory and Prandtl-Mayer equation.A quasi-one-dimensional Rayleigh flow scramjet propulsion model with heat increase is used to estimate the engine thrust.In addition,a typical elongated waverider configuration can be approximately considered as a single free-free Bernoulli-Euler beam,where longitudinal vibration of partial differential equations with viscous damping is used to establish the equivalent elastic model of the vehicle.Secondly,the static characteristics of rigid body and rigid-aeroelasticity coupling body are compared in the Matlab simulation environment.The dimensional derivatives of short period mode are analyzed between the rigid and rigid-aeroelastic body,and further the dynamic characteristic of both body is simulated.Einally,according to the rigid model,a LQR controller is designed for the rigid-aeroelastic coupling model.Simulation results show that the aeroelasticity of a hypersonic vehicle of slender waverider configuration has a more significant impact on the short period mode,which cannot be neglected.

    1 Modeling of Hypersonic Vehicle with Rigid-Aeroelasticity Coupling

    1.1 Geometries of typical hypersonic vehicle

    A typical waverider is selected as a hypersonic vehicle configuration,as shown in Eig.1. Scramjet engine is placed on the lower abdomen of the airframe.The lower forebody considered as the external compression section of the inlet could pre-compress the air to improve the compression ability of the incoming flow.The lower surface of aftbody in relation to the external expansion section of the nozzle could increase the propulsive efficiency without generating induced drag[11].

    The geometric parameters in Eig.1 are described as follows.xBozBis the body-axis coordinates.τ1landτ1uare lower forebody turn angle and upper forebody turn angle with respect to xBaxis respectively.τ2is aftbody vertex angle.Lf,Lnand Laare the length of forebody,engine and aftbody respectively.Obviously,the total length of the vehicle is Lv=Lf+Ln+La.hiis inlet height of the scramjet engine.

    Eig.1 Geometries of typical waverider

    1.2 Aerodynamics of hypersonic vehicle

    In order to obtain the required aerodynamic for modeling,oblique shock and Prandtl-Meyer expansion theory could be used to estimate the surface force in the study of hypersonbic vehicle modeling.In different flight conditions,the shock effects on forebody,the engine combustion chamber and the aftbody expansion surface of the hypersonic vehicle are considered.The force on the surface of the vehicle is estimated by studying the flow relationship between the shock and flight state.

    Eor the hypersonic vehicle configuration shown in Eig.1,attack angle isα,and lower forebody turn angle related with xBaxis isτ1l.If flow turn angleδs=α+τ1l≥0°,oblique shock theory is used to estimate the pressure on the surface of forebody P and temperatures

    where Ma∞,P∞,T∞are the Mach number,pressure,and static temperature,respectively;Mas,Ps,Tsthe Mach number,pressure,and static temperature,after the flow through the shock,respectively;γthe heat ratio;andβsthe shock angle.

    Otherwise,if the flow turn angleδs=α+ τ1l<0°,then the expansion wave appears on the forebody surface of the vehicle,and Prandtl-Meyer theory could be used to estimate the pressure on the forebody surface of the vehicle[6,12].Let δ=-δs,airflow parameters(Mas,Ts,Ps)after the expansion wave is

    whereυ(Ma)is the Prandtl-Meyer function,whose value is determined by the heat ratioγand the mach number of the airflow.

    Therefore,the pressure on the lower forebody can be resolved along with the x and z bodyaxis components

    where Lfis the length of forebody shown in Eig.1,(xf,zf)the coordinate that is the aerodynamic center of forebody with regard to the aircraft center of gravity.

    Similarly,the aerodynamic force and moment on the upper surface Fx,u,F(xiàn)z,u,Mu,the aerodynamic force and moment on the lower surface Fx,n,F(xiàn)z,n,Mn,and the aerodynamic force and moment on the control surface Fx,cs,F(xiàn)z,cs,Mcscan be obtained by oblique shock theory and Prandtl-Meyer theory.

    It is noted that when airflow entering the engine,the airflow direction will change from parallel to the forebody to parallel to the engine axis. This is because the flow will get through the new shock layer.Here a single reflect shock is used to model the new shock layer.Using Eqs.(1—4)and the oblique shock theory,the further compressed airflow parameters(Ma1,T1,P1)can be obtained,here,Ma1is the Mach number of the compressed airflow,T1the temperature and P1the pressure.Thus the additional force and moment are[4]

    where hiis the height of engine inlet,(xinlet,zinlet)the coordinate of the flow turning point with respect to the center of gravity.Besides,the flow engine nozzle exhausted will expand and form a shear layer as a result of generating pressure on the aftbody.According to Prandtl-Meyer theoryand shear layer approximate pressure formula[4]

    where(xa,za)is the coordinate of aftbody aerodynamic center relative to the aircraft center of gravity and Pethe pressure of the inner nozzle of the engine.

    According to principle of force synthesis,the aerodynamics effect on the airframe axis x and z of the hypersonic vehicle are

    The lift and drag force expression by coordinate transformation are as follow

    Aerodynamic pitching moment is

    1.3 Thrust of hypersonic vehicle

    A quasi-one-dimensional Rayleigh flow with heat increase is used to estimate the scramjet thrust of hypersonic vehicle,as shown in Eig.2[7].The engine model comprises three parts:a diffuser chamber,a combustion chamber,and an inner nozzle,that is,parts①②③in Eig.2,respectively.The fluid in the diffuser and inner nozzle is assumed to be a one-dimensional entropic flow,and the fluid in the combustion chamber is characterized as a one-dimensional flow with heat increase in the tube with the constant area.In this paper,only the stoichiometric ratioφis considered as the engine input,and diffuser area ratio is fixed value Ad=1.

    Eig.2 Schematic of scramjet engine

    In the diffuser,continuity equations(mass conservation)is applied to calculate the Mach number Ma2,temperature T2,and pressure P2in the diffuser exit

    where Hf=119 789 kJ/kg is the heat of reaction for liquid hydrogen(LH2),ηc=0.9 the combustion efficiency,cp=1 004.832 J/(kg·K)the specific heat of air at constant pressure,fst= 0.029 1 the stoichiometric fuel-to-air ratio for LH2.Once the temperature increment is confirmed,according to classic one-dimensional Rayleigh flow relationship,the Mach number Ma3,temperature T3,and pressure P3of the combuster exit are easily obtained[7].

    1.4 Aeroelasticity modeling of hypersonic vehicle

    The typical hypersonic vehicle is slender waverider configuration,which is approximately equivalent to a single free-free Bernoulli-Euler beam.The bending vibration differential equation of a single free-free Bernoulli-Euler beam is[9]

    where f(x,t)and m(x,t)are used to denote the external force and moment distributed on per unit length beam,respectively.

    The method of variable separation is applied to solve Eq.(32).Introducing principal coordinate transformation,the natural frequency ω(x,t)can be expressed by the natural mode of vibrationΦi(x)

    The method of separate variable is utilized again,and the corresponding deflection angle θi(x,t)of the i th order natural mode of vibration can be expressed asthe force of vibration mode.Here the corresponding f(x,t)and m(x,t)are the aerodynamic force and distribution of aerodynamic moment,respectively.

    The elastic deformation on the tip of nose of the airframe will change the attack angle of the aircraft,and the elastic deformation on the afterbody of the airframe will change the deflection angle of the control surface correspondingly[13].The change in the forebody attack angle can be approximated given by the deflection angle on the end of the craft noseθi(0,t).Considering the first three-order of vibration mode,the corresponding attack angle change isΔα.Similarly,the deflection angle of aftbody control surface θi(xδe,t)approximates to the change of control surface attack angle,and the corresponding change of control surface angle isΔδe.So the attack angle and control surface after elastic deformation change toα=αr-Δαandδe=δe,r-Δδe,where the subscript″r″means a situation of rigid body.

    The assumed modes method(based on a global basis)is used to obtain natural frequen-cies,mode shapes,and finite-dimensional approximants[6,14].It results in a model whereby the rigid body dynamics influence the flexible dynamics through generalized forces.When the associated beam model is assumed to be made of titanium with a dimension of 30.48 m in length,0.244 m in height,and 0.304 8 m in depth,the nominal modal frequencies areωf1=22.2 rad/s,ωf2=48.1 rad/s,ωf3=94.8 rad/s as a consequence.Hence,it ensures that the beam model and the vehicle have the same vibration characteristics.

    1.5 Rigid-elastic dynamics model

    Considering the influence of the earth′s curvature,it is assumed that the thrust direction is along with the engine axis,which is parallel to the airframe axis.Take the fuel stoichiometric ratio of combusterφand elevatorδeas the input,and choose the flight state variable X=[v,α,q,h,θ,η1,˙η1,η2,˙η2,η3,˙η3]T,where velocity v,attack angleα,pitching angular velocity q,height h and pitching angleθare rigid modal;andηi,˙ηi(i=1,2,3)are elastic mode.Lagrangian method is used to deduce the nonlinear equations of longitudinal model of hypersonic vehicle[15]

    2 Simulation of Rigid-Aeroelasticity Coupling for Hypersonic Vehicle

    The aim of this paper is to illustrate the characteristics of the rigid-aeroelasticity coupling model for a general regularity.Eurthermore,the accuracy of aerodynamic force estimated by oblique shockwave theory and Prandtl-Mayer equation has been demonstrated[12].Within the current model,forebody deflections influence the rigid body dynamics via the oblique shock which influences engine inlet conditions,thrust,lift,drag,and moment.Aftbody deflections influence the attack of angle seen by the elevator.As such,flexible modes influence the rigid body dynamics. Hence the model accuracy can meet the needs of the analysis of control-oriented characteristics for the rigid-aeroelasticity coupling model.

    2.1 Selection of geometric parameters

    Select the front edge point as the origin of coordinates,directions of x and z axes are shown in Eig.1.The geometric parameters are:total length Lv=30.48 m,forebody length Lf= 14.33 m,aftbody length La=10.06 m,lower forebody turn angleτ1l=6.2°,upper forebody turn angleτ1u=3°,aftbody turn angleτ2= 14.34°;engine inlet height hi=1 m,diffuse chamber area ratio Ad=1,inner nozzle area ratio An=6.25;control surface effective area Ae= 1.58 m2,position(-25.9,1.1),mass m= 2 000 kg,rotary inertia around axis y Iyy=5× 105kg·m2,gravity center position(-16.8,0),elastic mode dampingζ=0.02,and the aeroelasticity modal frequenciesωf1=22.2 rad/s,ωf2= 48.1 rad/s,ωf3=94.8 rad/s.As the aeroelasticity mode is considered,the mass-normalized mode shapes and derivatives of the vehicle′s transverse vibration are shown in Eig.3.

    2.2 Simulation of hypersonic vehicle static characteristics

    本課程多媒體教學資源構(gòu)建主要目的在于制作合適本門課程的教學動畫、視頻和相關(guān)素材搜集整理和整合,適當延長微課時間,增強知識點間銜接,授課過程中側(cè)重課后及課堂練習的運用。

    In a Matlab environment,we separately trim the rigid body model and the model considering the first three-order aeroelasticity,and the trimstates of the two shown in Tables 1,2.

    Eig.3 Mass-normalized mode shapes of vehicle′s transverse vibration

    Table 1 Trim states in the given flight condition(rigid)

    Table 2 Trim states in the given flight condition(considering aeroelastic)

    Compared Table 1 with Table 2,when the aeroelasticity is considered,the elastic deformation of the airframe will induce changes of the attack angle of balance point and control input.To better elucidate the problem,through simulation and analysis,Eig.4 illustrates the transverse deformation excited by aerodynamic force and moment in the condition of Mach number 8 and height 26 km level flight.

    Eig.4 Transverse deformation of fuselage under the condition:Ma=8,h=26 km level flight

    Erom Eig.4,the transverse deformation of the fuselage caused by the first-order aeroelasticity is almost the same as that caused by the first three-order aeroelasticity.It means the one-order aeroelasticity is most influential on the vehicle.

    2.3 Simulation and analysis of dynamic characteristics

    The effect of aeroelasticity on the short period mode is analyzed as follows.Using the values of trim state obtained in Section 2.2,one can approximately linearize the longitudinal non-linear model of hypersonic vehicle in the given Mach number and flight height with the small perturbation linear equation

    where the state of a model of rigid body is defined as

    And the state of a model of rigid-aeroelasticity coupling is defined.

    Now the short period mode is considered,let v=0,θ=0,h=0.Eurthermore,the problem is simplified,which is analyzed only in consideration of the first-order aeroelasticity.Therefore,we have the short period motion equation of the first-order aeroelasticity coupling mode,written in a polynomial matrix form via Laplace transformation[11]

    The short period characteristic polynomial of the first-order aeroelasticity coupling has the form as follow,which is a new short period and the first-order aeroelasticity mode.

    Similarly,the new polynomial coefficient of the first-order aeroelasticity in Eqs.(43—44)can be otained.The first items in the right side of Eqs.(43-44)are single aeroelasticity mode coefficient.

    The effects of aeroelasticity mode and short period coupling mainly reflect in the rest parts in the right side of Eqs.(41—44).And it is exactly the existence of rigid-aeroelasticity coupling terms

    thus leading to a greater effect on the short period mode of vehicle considering aeroelasticity than that considering rigid body vehicle.

    Eor further elucidating the problem,choose Ma=8,h=26 000 km level flight,and the corresponding coefficient matrixes of rigid body model and rigid-aeroelasticity coupling model are obtained respectively.Then the eigenvalues of simulation are given in Table 3 correspondingly.

    In Table 3,the phugoid modes of both rigid body model and rigid-aeroelasticity coupling model are close to imaginary axis,leading to neutral stability.The height mode is almost unchanged,and the change of short period mode is more significant.Besides,the aeroelasticity mode affects short period mode significantly.

    Table 3 Characteristic roots of rigid and rigid-aeroelasticity coupling model under the given flight condition

    Generally,since aerodynamical moment and aeroelasticity are deeply influenced by center of gravity and mass distribution,the characteristic roots of rigid and rigid-aeroelasticity coupling model are compared by moving the center of gravity.When the center of gravity is moved forward and back wards,the eigenvalues of simulation are listed in Tables 4,5 correspondingly.

    Erom Tables 4,5,it is obvious that the conclusion drew above is universal.

    Table 4 Characteristic roots of rigid and rigid-aeroelasticity coupling model in the given flight condition(with CG moving forward)

    Table 5 Characteristic roots of rigid and rigid-aeroelasticity coupling model in the given flight condition(with CG moving backwards)

    3 LQR Control Compared Simulation of Rigid and Rigid-Aeroelasticity Coupling Hypersonic Vehicle

    Eor the rigid body model,take quadratic performance index

    where

    When solving the algebra Riccati equation

    the positive definite solution P is obtained.

    According to linear quadratic regulator(LQR)theory,the state feedback gain matrix

    Hence,the control law of the non-linear model is described by

    where the superscript″*″represents the input and state of the balance point.Eurthermore,we add the initial disturbance to the balance point,and substitute the control law into the rigid body model.The corresponding state response and input response of the vehicle are shown in Eigs.5,6.

    Eig.5 State responses of rigid model

    Eig.6 Input responses of rigid model

    Substituting the control law of rigid body model into the rigid-aeroelastic coupling model,we gain the state response and input response of vehicle rigid body mode and aeroelastic mode,as shown in Eigs.7—9.

    Erom Eig.5,when the initial disturbance exists,the effect on the designed control law is favorable.Known from Eig.6,the input is within reasonable value during the input response process.Every state and input of the vehicle approach to the nominal value.In Eigs.7—9,when the effect on vehicle aeroelasticity is considered,the control law designed according to rigid body model will not be able to meet the control effect,especially the short period modesα,q.The aeroelastic modes will gradually divergent.Thus,a great challenge for controller design is posed when the vehicle is a slender body due to the rigid-aeroelastic coupling.

    Eig.7 Rigid state responses of rigid-aeroelastic coupling model

    Eig.8 Elexible state responses of rigid-aeroelastic coupling model

    Eig.9 Input responses of rigid-aeroelastic coupling model

    4 Conclusions

    A dynamic model of rigid-aeroelasticity coupling for hypersonic vehicles is established.By theoretical analyses and simulation comparison of the control-oriented characteristics of the rigidaeroelasticity coupling model,one can draw the conclusion that when the vehicle is a slender body due to the rigid-aeroelastic coupling,its short period mode is greatly affected by the aeroelasticity,which is innegligible.

    [1] Liu Yanbin,Lu Yuping.The new modeling method of aerodynamic and dynamic integration facing control study for hypersonic vehicle[J].Chinese Journal of Computational Mechanics,2011,28(1):31-36.(in Chinese)

    [2] Kelkar A G,Vogel J M,Whitmer C E.Design tool for control-centric modeling,analysis,and trade studies for hypersonic vehicles[R].AIAA 2011-2225,2011.

    [3] Kelkar A G,Vogel J M,Inger G.Modeling and analysis framework for early stage trade-off studies for scramjet-powered hypersonic vehicles[R].AIAA-2009-7325,2009.

    [4] Bolender M A,Doman D B.Nonlinear longitudinal dynamics model of an air-breathing hypersonic vehicle[J].Journal of Spacecraft and Rockets,2007,44(2): 374-386.

    [5] Rodriguez A A,Dickeson J J,Cifdaloz O,et al. Modeling and control of scramjet-powered hypersonic vehicles:Challenges,Trends,&Tradeoffs[R]. AIAA 2008-6793,2008.

    [6] Rodriguez A A,Dickeson J J,Sridharan S,et al. Control-relevant modeling,analysis,and design for scramjet-powered hypersonic vehicles[R].AIAA 2009-7287,2009.

    [7] Sigthorsson D O,Serrani A.Development of linear parameter-varying models of hypersonic air-breathing vehicles[R].AIAA 2009-6282,2009.

    [8] Sigthorsson D O,Serrani A,Bolender M A,et al. LPV control design for over-actuated hypersonic vehicles models[R].AIAA 2009-6280,2009.

    [9] Hughes H,Wu Een.H-infinity LPV state feedback control for flexible hypersonic vehicle longitudinal dynamics[R].AIAA 2010-8281,2010.

    [10]Vaddi1 SS,Sengupta P.Controller design for hypersonic vehicles accommodating nonlinear state and control constraints[R].AIAA 2009-6286,2009.

    [11]Newman B,Schmidtt D K.Numerical and literal aeroelastic-vehicle-model reduction for feedback control synthesis[J].Journal of Guidance,1991,14(5): 943-953.

    [12]Liu Yanbin,Zhang Yong,Lu Yuping.Integrated design on aerodynamic,propulsion and control for deformable waverider[J].Journal of Nanjing University of Aeronautics&Astronautics,2011,43(2):252-253.(in Chinese)

    [13]Wang Liang,Chen Huaihai,He Xudong.Modal frequency characteristics of axially moving beam with supersonic/hypersonic speed[J].Transactions of Nanjing University of Aeronautics and Astronautics,2011:28(2):163-168.

    [14]Li Zhaofei,Chai Yi,Li Huafeng.Eault feature extraction method of vibration signals base on multifractal[J].Journal of Data Acquisition and Processing,2013:28(1):34-41.(in Chinese)

    [15]Torrez S,Driscoll J,Bolender M,et al.Effects of improved propulsion modeling on the flight dynamics of hypersonic vehicles[R].AIAA 2008-6386,USA: AIAA,2008.

    (Executive editor:Zhang Tong)

    V271.9 Document code:A Article ID:1005-1120(2015)01-0070-11

    *Corresponding author:Xiao Liping,Associate Researcher,E-mail:xiaolp@nuaa.edu.cn.

    How to cite this article:Xiao Liping,Zhang Yong,Lu Yuping.Control-oriented modeling and simulation on rigid-aeroelasticity coupling for hypersonic vehicle[J].Trans.Nanjing U.Aero.Astro.,2015,32(1):70-80.

    http://dx.doi.org/10.16356/j.1005-1120.2015.01.070

    (Received 11 November 2014;revised 3 January 2015;accepted 12 January 2015)

    猜你喜歡
    搜集整理本門張勇
    Photon blockade in a cavity–atom optomechanical system
    跟曾國藩學修身
    做人與處世(2022年6期)2022-05-26 10:26:35
    開設(shè)全科醫(yī)療中的醫(yī)患關(guān)系及溝通技巧課程的調(diào)查分析
    秋天來菊花開
    啟蒙(3-7歲)(2020年10期)2020-10-10 14:32:16
    張勇
    書香兩岸(2020年3期)2020-06-29 12:33:45
    小巧嘴兒
    啟蒙(3-7歲)(2017年12期)2017-12-19 08:14:05
    對近年來湯顯祖佚作搜集整理的總結(jié)與思考
    戲曲研究(2017年2期)2017-11-13 03:10:42
    月亮光光
    啟蒙(3-7歲)(2017年9期)2017-02-26 02:52:48
    體育學院學生對理論課課程改革的適應(yīng)現(xiàn)狀
    ——以《中學體育教材教法》為例
    Code switching for college students on campus
    免费观看a级毛片全部| 亚洲国产av新网站| 久热这里只有精品99| 亚洲av综合色区一区| 午夜福利影视在线免费观看| 女人精品久久久久毛片| 精品久久久久久电影网| 日本av免费视频播放| 另类亚洲欧美激情| 99热国产这里只有精品6| 日韩制服骚丝袜av| 人人妻人人澡人人看| 视频区图区小说| 精品国产一区二区久久| 日韩精品有码人妻一区| 日日啪夜夜撸| 久久国产精品大桥未久av | 成人18禁高潮啪啪吃奶动态图 | 高清在线视频一区二区三区| 日本与韩国留学比较| 老司机影院毛片| 欧美激情国产日韩精品一区| 久久国产精品男人的天堂亚洲 | 尾随美女入室| 国产又色又爽无遮挡免| 亚洲第一av免费看| 少妇被粗大的猛进出69影院 | 两个人的视频大全免费| 老司机影院毛片| av福利片在线观看| 日韩一本色道免费dvd| 亚洲国产欧美在线一区| 搡老乐熟女国产| 男女国产视频网站| 国产精品国产av在线观看| 自线自在国产av| 狠狠精品人妻久久久久久综合| 一级黄片播放器| 久久久久精品性色| 女性被躁到高潮视频| 欧美 亚洲 国产 日韩一| 一级毛片我不卡| 91精品国产国语对白视频| 最近中文字幕高清免费大全6| 偷拍熟女少妇极品色| 视频中文字幕在线观看| 久久人人爽av亚洲精品天堂| 视频中文字幕在线观看| 一级黄片播放器| 新久久久久国产一级毛片| 成人美女网站在线观看视频| 少妇丰满av| a级一级毛片免费在线观看| 欧美97在线视频| 亚洲精品日本国产第一区| 男女国产视频网站| 亚洲精品国产成人久久av| √禁漫天堂资源中文www| 一边亲一边摸免费视频| 亚洲综合色惰| 一级a做视频免费观看| 国产视频首页在线观看| 亚洲av福利一区| 亚洲国产欧美在线一区| 国产精品免费大片| 日本猛色少妇xxxxx猛交久久| 国产亚洲最大av| 精品少妇内射三级| 能在线免费看毛片的网站| 性色avwww在线观看| 老司机亚洲免费影院| 最近2019中文字幕mv第一页| 午夜精品国产一区二区电影| 精品人妻一区二区三区麻豆| av视频免费观看在线观看| 美女脱内裤让男人舔精品视频| 99久久精品热视频| 少妇裸体淫交视频免费看高清| 亚洲欧美一区二区三区国产| 又黄又爽又刺激的免费视频.| 精品熟女少妇av免费看| 美女主播在线视频| 国产亚洲最大av| 三级国产精品片| 国产淫语在线视频| 插逼视频在线观看| 街头女战士在线观看网站| 2018国产大陆天天弄谢| 国产综合精华液| 超碰97精品在线观看| 99热这里只有是精品50| 国产男女超爽视频在线观看| 国内少妇人妻偷人精品xxx网站| 五月玫瑰六月丁香| 精品少妇内射三级| 涩涩av久久男人的天堂| 人妻制服诱惑在线中文字幕| 国产精品偷伦视频观看了| 午夜激情久久久久久久| 一区二区三区乱码不卡18| 欧美丝袜亚洲另类| 另类亚洲欧美激情| 日本与韩国留学比较| xxx大片免费视频| 男女国产视频网站| 国产91av在线免费观看| 国产精品熟女久久久久浪| 少妇人妻精品综合一区二区| 久久99热6这里只有精品| 狂野欧美激情性bbbbbb| 在线免费观看不下载黄p国产| 妹子高潮喷水视频| 国产91av在线免费观看| 蜜桃在线观看..| www.av在线官网国产| 国产av码专区亚洲av| 中文天堂在线官网| 欧美精品一区二区免费开放| 国产欧美日韩综合在线一区二区 | 婷婷色综合大香蕉| 亚洲美女视频黄频| av一本久久久久| 国产免费一区二区三区四区乱码| 久久久久久久大尺度免费视频| 国产成人午夜福利电影在线观看| 国产永久视频网站| 国产成人91sexporn| 18禁在线播放成人免费| 久热久热在线精品观看| 人妻制服诱惑在线中文字幕| 日本午夜av视频| 亚洲成人手机| 精品99又大又爽又粗少妇毛片| 精品少妇黑人巨大在线播放| 亚洲欧美精品自产自拍| 桃花免费在线播放| av国产久精品久网站免费入址| 久热久热在线精品观看| av天堂中文字幕网| 亚洲欧洲国产日韩| 国产黄片视频在线免费观看| 又爽又黄a免费视频| 大香蕉久久网| 五月伊人婷婷丁香| 国产在视频线精品| 又爽又黄a免费视频| 亚洲经典国产精华液单| 丰满人妻一区二区三区视频av| 你懂的网址亚洲精品在线观看| 伦精品一区二区三区| 亚洲精品日韩在线中文字幕| 精品一区在线观看国产| 免费黄色在线免费观看| 99热这里只有精品一区| 夜夜看夜夜爽夜夜摸| 成人国产av品久久久| 亚洲精品一二三| 伊人亚洲综合成人网| 午夜久久久在线观看| 中文乱码字字幕精品一区二区三区| 精品一区二区三卡| 中文天堂在线官网| 九色成人免费人妻av| 精品少妇久久久久久888优播| 性色av一级| 欧美变态另类bdsm刘玥| 一级,二级,三级黄色视频| 又粗又硬又长又爽又黄的视频| 人妻少妇偷人精品九色| 久久这里有精品视频免费| 国产熟女欧美一区二区| 中国三级夫妇交换| 午夜91福利影院| 亚洲精品一区蜜桃| 国产永久视频网站| 亚洲欧洲精品一区二区精品久久久 | 中国美白少妇内射xxxbb| 国产极品天堂在线| 国产视频首页在线观看| 天堂俺去俺来也www色官网| 大香蕉久久网| 少妇人妻久久综合中文| 免费观看的影片在线观看| 免费看不卡的av| 日本与韩国留学比较| 一级a做视频免费观看| 狂野欧美白嫩少妇大欣赏| 欧美老熟妇乱子伦牲交| 69精品国产乱码久久久| 人人澡人人妻人| 国产成人a∨麻豆精品| 男人舔奶头视频| 伊人亚洲综合成人网| 99热国产这里只有精品6| 亚洲美女视频黄频| 日韩大片免费观看网站| 高清av免费在线| 亚洲欧美日韩卡通动漫| 国产美女午夜福利| 国产在线一区二区三区精| 亚洲欧美成人精品一区二区| 黑丝袜美女国产一区| 免费人妻精品一区二区三区视频| 亚洲av.av天堂| 99九九线精品视频在线观看视频| 麻豆成人午夜福利视频| 亚洲图色成人| 国产精品人妻久久久久久| 美女脱内裤让男人舔精品视频| 如日韩欧美国产精品一区二区三区 | 中文字幕av电影在线播放| 国产精品一区二区性色av| 这个男人来自地球电影免费观看 | 3wmmmm亚洲av在线观看| 亚洲精品久久久久久婷婷小说| 亚洲久久久国产精品| 久久99热6这里只有精品| 熟女人妻精品中文字幕| 麻豆乱淫一区二区| 嘟嘟电影网在线观看| √禁漫天堂资源中文www| 99九九线精品视频在线观看视频| 免费观看性生交大片5| 国产片特级美女逼逼视频| 少妇人妻精品综合一区二区| 午夜福利视频精品| 美女xxoo啪啪120秒动态图| 人人澡人人妻人| 国产精品免费大片| 六月丁香七月| 熟女人妻精品中文字幕| 女的被弄到高潮叫床怎么办| 十八禁高潮呻吟视频 | 欧美一级a爱片免费观看看| 国产色婷婷99| 欧美+日韩+精品| 国内少妇人妻偷人精品xxx网站| 日韩伦理黄色片| 日韩强制内射视频| 中文字幕精品免费在线观看视频 | 国产高清国产精品国产三级| 国产极品天堂在线| 九九在线视频观看精品| 国产男女超爽视频在线观看| 男女边摸边吃奶| 色婷婷av一区二区三区视频| 大码成人一级视频| 午夜福利视频精品| 一区二区三区免费毛片| 在线免费观看不下载黄p国产| 久久久a久久爽久久v久久| 精品酒店卫生间| freevideosex欧美| av天堂中文字幕网| av播播在线观看一区| 各种免费的搞黄视频| 久久综合国产亚洲精品| 亚洲欧美中文字幕日韩二区| 亚洲国产毛片av蜜桃av| 大香蕉久久网| 欧美日韩在线观看h| 九色成人免费人妻av| 国产亚洲精品久久久com| 亚洲不卡免费看| 国产在线视频一区二区| 日韩制服骚丝袜av| 女性被躁到高潮视频| 亚洲无线观看免费| 极品人妻少妇av视频| 色视频www国产| 国产男女超爽视频在线观看| 欧美少妇被猛烈插入视频| 免费黄网站久久成人精品| 日本黄大片高清| 国产日韩一区二区三区精品不卡 | 一级a做视频免费观看| 男人爽女人下面视频在线观看| 一级片'在线观看视频| 69精品国产乱码久久久| 美女主播在线视频| 一边亲一边摸免费视频| 我要看日韩黄色一级片| 国产精品久久久久成人av| 纯流量卡能插随身wifi吗| 99国产精品免费福利视频| 日日啪夜夜撸| a级毛片免费高清观看在线播放| 少妇裸体淫交视频免费看高清| 欧美日韩av久久| 老熟女久久久| 成年人免费黄色播放视频 | 男女无遮挡免费网站观看| 久久女婷五月综合色啪小说| 精品久久久久久久久亚洲| 亚洲av福利一区| 啦啦啦啦在线视频资源| 一级毛片黄色毛片免费观看视频| 中文天堂在线官网| 插阴视频在线观看视频| 国产精品不卡视频一区二区| 天天操日日干夜夜撸| 性色avwww在线观看| 亚洲欧美成人精品一区二区| 七月丁香在线播放| 狠狠精品人妻久久久久久综合| 永久免费av网站大全| 日本av手机在线免费观看| 免费看不卡的av| 少妇人妻久久综合中文| videossex国产| 亚洲av在线观看美女高潮| 国产真实伦视频高清在线观看| 精品酒店卫生间| 99精国产麻豆久久婷婷| 成年美女黄网站色视频大全免费 | 内射极品少妇av片p| 亚洲美女黄色视频免费看| 国产日韩一区二区三区精品不卡 | 亚洲精品aⅴ在线观看| 在线观看国产h片| 亚洲精品第二区| 国产成人午夜福利电影在线观看| 最新的欧美精品一区二区| 亚洲精品国产成人久久av| 97精品久久久久久久久久精品| 国产欧美日韩精品一区二区| 一区在线观看完整版| 国产日韩一区二区三区精品不卡 | 欧美成人午夜免费资源| 亚洲av欧美aⅴ国产| 精品卡一卡二卡四卡免费| 岛国毛片在线播放| 精品一区在线观看国产| 老女人水多毛片| www.色视频.com| 狂野欧美激情性bbbbbb| 国产男女超爽视频在线观看| 热re99久久国产66热| av视频免费观看在线观看| 国产黄频视频在线观看| 国产日韩欧美视频二区| 国产免费福利视频在线观看| videossex国产| 亚洲在久久综合| 有码 亚洲区| 国产日韩欧美在线精品| 中文欧美无线码| 久久99热这里只频精品6学生| 极品教师在线视频| 亚洲性久久影院| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩国产mv在线观看视频| 久久久久久人妻| 三级经典国产精品| 日韩av免费高清视频| 亚洲人与动物交配视频| 97超碰精品成人国产| 亚洲熟女精品中文字幕| 久久国产亚洲av麻豆专区| 国产乱人偷精品视频| 免费观看av网站的网址| 欧美性感艳星| 国产精品伦人一区二区| 大香蕉久久网| 久久久久久久久大av| 国产老妇伦熟女老妇高清| a级一级毛片免费在线观看| 欧美精品一区二区免费开放| 老司机亚洲免费影院| 亚洲欧美精品自产自拍| 18禁在线无遮挡免费观看视频| 日韩成人伦理影院| 亚洲欧洲国产日韩| 亚洲成人一二三区av| 国产女主播在线喷水免费视频网站| 王馨瑶露胸无遮挡在线观看| 国产黄片美女视频| 国产高清有码在线观看视频| 丝袜喷水一区| 亚洲av欧美aⅴ国产| 亚洲情色 制服丝袜| 久久久国产欧美日韩av| 看免费成人av毛片| 97超视频在线观看视频| 99热全是精品| 少妇被粗大的猛进出69影院 | 我的老师免费观看完整版| 男女边吃奶边做爰视频| 久久精品国产亚洲av天美| 高清午夜精品一区二区三区| 一边亲一边摸免费视频| 国产精品一二三区在线看| 大香蕉久久网| 一本色道久久久久久精品综合| 亚洲av免费高清在线观看| 两个人免费观看高清视频 | 另类精品久久| 欧美区成人在线视频| 国产综合精华液| 亚洲无线观看免费| 国产高清国产精品国产三级| a级一级毛片免费在线观看| 男女国产视频网站| 亚洲无线观看免费| 国产综合精华液| 中文资源天堂在线| 精品人妻偷拍中文字幕| 欧美老熟妇乱子伦牲交| 欧美xxⅹ黑人| av一本久久久久| 中文字幕亚洲精品专区| 三级经典国产精品| 一级片'在线观看视频| 国产中年淑女户外野战色| 亚洲av在线观看美女高潮| 99视频精品全部免费 在线| 日本vs欧美在线观看视频 | 大片免费播放器 马上看| 免费少妇av软件| 一区二区av电影网| 国产淫片久久久久久久久| 久久婷婷青草| 观看av在线不卡| 99久久精品国产国产毛片| av线在线观看网站| 久久久午夜欧美精品| 六月丁香七月| 久热这里只有精品99| 日本午夜av视频| 老司机亚洲免费影院| 熟女av电影| 各种免费的搞黄视频| 久久婷婷青草| 国产亚洲91精品色在线| 夜夜骑夜夜射夜夜干| 国产午夜精品一二区理论片| 日本午夜av视频| 婷婷色综合www| 亚洲欧美成人精品一区二区| 欧美日韩精品成人综合77777| 嫩草影院入口| 老女人水多毛片| 亚洲av欧美aⅴ国产| 成人无遮挡网站| 夫妻午夜视频| 久久久久久久国产电影| 亚洲电影在线观看av| 国产一区二区在线观看av| 国语对白做爰xxxⅹ性视频网站| kizo精华| 国产亚洲欧美精品永久| 性色av一级| 亚洲av二区三区四区| 91久久精品国产一区二区三区| 欧美97在线视频| 成人影院久久| 人人妻人人爽人人添夜夜欢视频 | 国产日韩欧美亚洲二区| 亚州av有码| 中文字幕制服av| 亚洲伊人久久精品综合| 国产深夜福利视频在线观看| 亚州av有码| 一个人免费看片子| 2018国产大陆天天弄谢| 精品一品国产午夜福利视频| 欧美性感艳星| .国产精品久久| 美女cb高潮喷水在线观看| 日韩欧美 国产精品| 99热全是精品| 国内揄拍国产精品人妻在线| 国产免费又黄又爽又色| 18禁在线播放成人免费| 亚洲国产精品成人久久小说| 日韩成人伦理影院| 丰满人妻一区二区三区视频av| 简卡轻食公司| 天堂中文最新版在线下载| 黄色怎么调成土黄色| 中文在线观看免费www的网站| 国产精品无大码| 国产淫片久久久久久久久| 成年人免费黄色播放视频 | 美女xxoo啪啪120秒动态图| 亚洲精品一区蜜桃| 99热国产这里只有精品6| 午夜激情福利司机影院| 伦精品一区二区三区| 国产午夜精品一二区理论片| 草草在线视频免费看| 韩国av在线不卡| 亚洲第一区二区三区不卡| 久久韩国三级中文字幕| 亚洲精华国产精华液的使用体验| 一区二区av电影网| 欧美3d第一页| 欧美变态另类bdsm刘玥| 亚洲av.av天堂| 精品人妻一区二区三区麻豆| 国产午夜精品久久久久久一区二区三区| 大香蕉97超碰在线| 五月开心婷婷网| a级毛片免费高清观看在线播放| 六月丁香七月| 久久久久久久久久久丰满| 深夜a级毛片| 日本黄色片子视频| 精品人妻偷拍中文字幕| 精品久久久精品久久久| 99国产精品免费福利视频| 黑人猛操日本美女一级片| 男女无遮挡免费网站观看| 日韩大片免费观看网站| tube8黄色片| 菩萨蛮人人尽说江南好唐韦庄| 妹子高潮喷水视频| 男女边摸边吃奶| 午夜福利视频精品| 欧美激情国产日韩精品一区| 日韩强制内射视频| 一级爰片在线观看| 极品人妻少妇av视频| 久久精品国产鲁丝片午夜精品| 一级,二级,三级黄色视频| 2021少妇久久久久久久久久久| h日本视频在线播放| 日本爱情动作片www.在线观看| 看免费成人av毛片| 国产日韩一区二区三区精品不卡 | 日产精品乱码卡一卡2卡三| av国产久精品久网站免费入址| 日韩一区二区视频免费看| 久久精品久久久久久噜噜老黄| 秋霞在线观看毛片| 亚洲精品aⅴ在线观看| 国内精品宾馆在线| 天堂中文最新版在线下载| 日韩亚洲欧美综合| a级毛片在线看网站| 人妻少妇偷人精品九色| 国产永久视频网站| 亚洲欧美中文字幕日韩二区| 男的添女的下面高潮视频| 免费观看的影片在线观看| 看十八女毛片水多多多| 青青草视频在线视频观看| 国产成人午夜福利电影在线观看| 免费久久久久久久精品成人欧美视频 | 亚洲国产毛片av蜜桃av| 亚洲内射少妇av| 女性生殖器流出的白浆| 欧美 亚洲 国产 日韩一| av在线观看视频网站免费| 久久久久久久大尺度免费视频| 日本vs欧美在线观看视频 | 国产成人精品婷婷| 午夜免费观看性视频| 啦啦啦视频在线资源免费观看| 一级毛片黄色毛片免费观看视频| 午夜福利影视在线免费观看| 日本黄大片高清| 国产乱来视频区| 十分钟在线观看高清视频www | 在线天堂最新版资源| 成年人午夜在线观看视频| 看非洲黑人一级黄片| 久久久久久久亚洲中文字幕| 亚洲av成人精品一二三区| 久久久欧美国产精品| 免费观看性生交大片5| 纵有疾风起免费观看全集完整版| 亚洲精品成人av观看孕妇| av免费观看日本| h视频一区二区三区| 黄色毛片三级朝国网站 | 王馨瑶露胸无遮挡在线观看| 成年美女黄网站色视频大全免费 | 久久韩国三级中文字幕| 夜夜看夜夜爽夜夜摸| 性色av一级| www.色视频.com| 国产成人精品一,二区| 精品少妇久久久久久888优播| 99视频精品全部免费 在线| 啦啦啦啦在线视频资源| 亚洲伊人久久精品综合| 日韩一区二区视频免费看| 热re99久久国产66热| 天天操日日干夜夜撸| 性色av一级| 亚洲精品色激情综合| 亚洲精华国产精华液的使用体验| 国产亚洲欧美精品永久| 国产精品一区二区在线观看99| 简卡轻食公司| 亚洲怡红院男人天堂| 青春草视频在线免费观看| 一级二级三级毛片免费看| 国产免费一级a男人的天堂| 国产视频内射| 亚洲精品日韩av片在线观看| 天堂俺去俺来也www色官网| 日韩一本色道免费dvd| 大香蕉97超碰在线| 2021少妇久久久久久久久久久| 黑人巨大精品欧美一区二区蜜桃 | 国产乱来视频区| 五月伊人婷婷丁香| 国产精品伦人一区二区| 亚洲天堂av无毛| 另类精品久久| 亚洲天堂av无毛| 国产精品伦人一区二区| 街头女战士在线观看网站|