• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control-Oriented Modeling and Simulation on Rigid-Aeroelasticity Coupling for Hypersonic Vehicle

    2015-11-21 07:09:05XiaoLiping肖莉萍ZhangYong張勇LuYuping陸宇平
    關(guān)鍵詞:搜集整理本門張勇

    Xiao Liping(肖莉萍),Zhang Yong(張勇),Lu Yuping(陸宇平)

    1.UAV Research Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.School of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Control-Oriented Modeling and Simulation on Rigid-Aeroelasticity Coupling for Hypersonic Vehicle

    Xiao Liping(肖莉萍)1*,Zhang Yong(張勇)1,Lu Yuping(陸宇平)2

    1.UAV Research Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.School of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Since the subsystems of aerodynamics,propulsion,structure and so on in hypersonic vehicles involve characteristics of nonlinearity,strong coupling and uncertainty,and typical hypersonic vehicles adopt slender-body and wave-rider layout with widely-used lightweight materials,the accuracy of the modeling with a conventional rigid-body assumption is challenged.Therefore,a nonlinear mathematical longitudinal model of a hypersonic vehicle is established with its geometry provided to estimate aerodynamic force and thrust using hypersonic aerodynamics and quasi-one-dimensional flow with heat added and capture vehicle aeroelasticity using a single free-free Bernoulli-Euler beam model.Then the static and dynamic properties of the rigid and rigid-aeroelasticity coupling model are compared via theoretical analysis and numerical simulation under the given flight condition.Einally,a LQR controller for rigid model is designed and the comparable results are obtained to explain the aerolasticity influence on the control effect.The simulation results show that the aeroelasticity mode of slender-body hypersonic vehicles affects short period mode significantly and it cannot be simply neglected.

    hypersonic vehicle;wave-rider;aeroelasticity;modeling;dynamic properties

    0 Introduction

    Hypersonic unmanned vehicle is an unmanned aircraft that travels at high speeds.The term hypersonic refers to speeds faster than five times the speed of sound or Mach 5 at altitudes higher than 20 km.An″air-breathing″hypersonic vehicle takes oxygen from the atmosphere rather than having to carry it in the form of fuel oxidizer during flight.It can increase the effective load capacity in the same state of take-off loads.The airbreathing hypersonic vehicle provides a promising technology for low-cost and time-saving flight both in commercial and military fields[1].

    The vehicles become more complex because of the profound coupling among aerodynamic and propulsive phenomena[2].At the same time,a new generation of hypersonic vehicles commonly uses lightweight flexible material,and its aerodynamic shape is generally elongated body,having a waverider layout.Special structure and aerodynamic layout result in the low natural vibration frequency of hypersonic vehicle structure obviously,where the structural flexibility of the airframe or the aerodynamic surfaces for aircraft attitude control increase greatly[3].The longitudinal dynamics of a classical hypersonic air-breathing vehicle is established with rigid and aeroelasticity coupling based on Lagrange equation[4],called the Bolender and Doman model.An overview of scramjet-powered hypersonic vehicle with aeroelastic-propulsive interactions modeling and control challenges is studied[5-6].And then,the further work for the model simplification is imple-mented for model-based control[7].Typically,a linear parameter-varying(LPV)version of the model is developed for robust control design,and a novel LPV regulator design methodology is developed considering the case of over-actuated[8]. A controller for flexible hypersonic vehicle is synthesized using H∞LPV techniques,where a least squares optimization is performed on the tracking error state[9].Meanwhile,other control methods for flexible hypersonic vehicle are developed.A suitable controller formulation for trajectory tracking of a hypersonic vehicle is derived,which explicitly accommodates nonlinear constraints involving both state and control variables[10].However,no literatures further explore the interaction between rigid and aeroelasticity modes.

    Here a dynamic model of rigid-elastic coupling of hypersonic vehicles is first built.The body surface aerodynamic force of the vehicle is estimated based on oblique shockwave theory and Prandtl-Mayer equation.A quasi-one-dimensional Rayleigh flow scramjet propulsion model with heat increase is used to estimate the engine thrust.In addition,a typical elongated waverider configuration can be approximately considered as a single free-free Bernoulli-Euler beam,where longitudinal vibration of partial differential equations with viscous damping is used to establish the equivalent elastic model of the vehicle.Secondly,the static characteristics of rigid body and rigid-aeroelasticity coupling body are compared in the Matlab simulation environment.The dimensional derivatives of short period mode are analyzed between the rigid and rigid-aeroelastic body,and further the dynamic characteristic of both body is simulated.Einally,according to the rigid model,a LQR controller is designed for the rigid-aeroelastic coupling model.Simulation results show that the aeroelasticity of a hypersonic vehicle of slender waverider configuration has a more significant impact on the short period mode,which cannot be neglected.

    1 Modeling of Hypersonic Vehicle with Rigid-Aeroelasticity Coupling

    1.1 Geometries of typical hypersonic vehicle

    A typical waverider is selected as a hypersonic vehicle configuration,as shown in Eig.1. Scramjet engine is placed on the lower abdomen of the airframe.The lower forebody considered as the external compression section of the inlet could pre-compress the air to improve the compression ability of the incoming flow.The lower surface of aftbody in relation to the external expansion section of the nozzle could increase the propulsive efficiency without generating induced drag[11].

    The geometric parameters in Eig.1 are described as follows.xBozBis the body-axis coordinates.τ1landτ1uare lower forebody turn angle and upper forebody turn angle with respect to xBaxis respectively.τ2is aftbody vertex angle.Lf,Lnand Laare the length of forebody,engine and aftbody respectively.Obviously,the total length of the vehicle is Lv=Lf+Ln+La.hiis inlet height of the scramjet engine.

    Eig.1 Geometries of typical waverider

    1.2 Aerodynamics of hypersonic vehicle

    In order to obtain the required aerodynamic for modeling,oblique shock and Prandtl-Meyer expansion theory could be used to estimate the surface force in the study of hypersonbic vehicle modeling.In different flight conditions,the shock effects on forebody,the engine combustion chamber and the aftbody expansion surface of the hypersonic vehicle are considered.The force on the surface of the vehicle is estimated by studying the flow relationship between the shock and flight state.

    Eor the hypersonic vehicle configuration shown in Eig.1,attack angle isα,and lower forebody turn angle related with xBaxis isτ1l.If flow turn angleδs=α+τ1l≥0°,oblique shock theory is used to estimate the pressure on the surface of forebody P and temperatures

    where Ma∞,P∞,T∞are the Mach number,pressure,and static temperature,respectively;Mas,Ps,Tsthe Mach number,pressure,and static temperature,after the flow through the shock,respectively;γthe heat ratio;andβsthe shock angle.

    Otherwise,if the flow turn angleδs=α+ τ1l<0°,then the expansion wave appears on the forebody surface of the vehicle,and Prandtl-Meyer theory could be used to estimate the pressure on the forebody surface of the vehicle[6,12].Let δ=-δs,airflow parameters(Mas,Ts,Ps)after the expansion wave is

    whereυ(Ma)is the Prandtl-Meyer function,whose value is determined by the heat ratioγand the mach number of the airflow.

    Therefore,the pressure on the lower forebody can be resolved along with the x and z bodyaxis components

    where Lfis the length of forebody shown in Eig.1,(xf,zf)the coordinate that is the aerodynamic center of forebody with regard to the aircraft center of gravity.

    Similarly,the aerodynamic force and moment on the upper surface Fx,u,F(xiàn)z,u,Mu,the aerodynamic force and moment on the lower surface Fx,n,F(xiàn)z,n,Mn,and the aerodynamic force and moment on the control surface Fx,cs,F(xiàn)z,cs,Mcscan be obtained by oblique shock theory and Prandtl-Meyer theory.

    It is noted that when airflow entering the engine,the airflow direction will change from parallel to the forebody to parallel to the engine axis. This is because the flow will get through the new shock layer.Here a single reflect shock is used to model the new shock layer.Using Eqs.(1—4)and the oblique shock theory,the further compressed airflow parameters(Ma1,T1,P1)can be obtained,here,Ma1is the Mach number of the compressed airflow,T1the temperature and P1the pressure.Thus the additional force and moment are[4]

    where hiis the height of engine inlet,(xinlet,zinlet)the coordinate of the flow turning point with respect to the center of gravity.Besides,the flow engine nozzle exhausted will expand and form a shear layer as a result of generating pressure on the aftbody.According to Prandtl-Meyer theoryand shear layer approximate pressure formula[4]

    where(xa,za)is the coordinate of aftbody aerodynamic center relative to the aircraft center of gravity and Pethe pressure of the inner nozzle of the engine.

    According to principle of force synthesis,the aerodynamics effect on the airframe axis x and z of the hypersonic vehicle are

    The lift and drag force expression by coordinate transformation are as follow

    Aerodynamic pitching moment is

    1.3 Thrust of hypersonic vehicle

    A quasi-one-dimensional Rayleigh flow with heat increase is used to estimate the scramjet thrust of hypersonic vehicle,as shown in Eig.2[7].The engine model comprises three parts:a diffuser chamber,a combustion chamber,and an inner nozzle,that is,parts①②③in Eig.2,respectively.The fluid in the diffuser and inner nozzle is assumed to be a one-dimensional entropic flow,and the fluid in the combustion chamber is characterized as a one-dimensional flow with heat increase in the tube with the constant area.In this paper,only the stoichiometric ratioφis considered as the engine input,and diffuser area ratio is fixed value Ad=1.

    Eig.2 Schematic of scramjet engine

    In the diffuser,continuity equations(mass conservation)is applied to calculate the Mach number Ma2,temperature T2,and pressure P2in the diffuser exit

    where Hf=119 789 kJ/kg is the heat of reaction for liquid hydrogen(LH2),ηc=0.9 the combustion efficiency,cp=1 004.832 J/(kg·K)the specific heat of air at constant pressure,fst= 0.029 1 the stoichiometric fuel-to-air ratio for LH2.Once the temperature increment is confirmed,according to classic one-dimensional Rayleigh flow relationship,the Mach number Ma3,temperature T3,and pressure P3of the combuster exit are easily obtained[7].

    1.4 Aeroelasticity modeling of hypersonic vehicle

    The typical hypersonic vehicle is slender waverider configuration,which is approximately equivalent to a single free-free Bernoulli-Euler beam.The bending vibration differential equation of a single free-free Bernoulli-Euler beam is[9]

    where f(x,t)and m(x,t)are used to denote the external force and moment distributed on per unit length beam,respectively.

    The method of variable separation is applied to solve Eq.(32).Introducing principal coordinate transformation,the natural frequency ω(x,t)can be expressed by the natural mode of vibrationΦi(x)

    The method of separate variable is utilized again,and the corresponding deflection angle θi(x,t)of the i th order natural mode of vibration can be expressed asthe force of vibration mode.Here the corresponding f(x,t)and m(x,t)are the aerodynamic force and distribution of aerodynamic moment,respectively.

    The elastic deformation on the tip of nose of the airframe will change the attack angle of the aircraft,and the elastic deformation on the afterbody of the airframe will change the deflection angle of the control surface correspondingly[13].The change in the forebody attack angle can be approximated given by the deflection angle on the end of the craft noseθi(0,t).Considering the first three-order of vibration mode,the corresponding attack angle change isΔα.Similarly,the deflection angle of aftbody control surface θi(xδe,t)approximates to the change of control surface attack angle,and the corresponding change of control surface angle isΔδe.So the attack angle and control surface after elastic deformation change toα=αr-Δαandδe=δe,r-Δδe,where the subscript″r″means a situation of rigid body.

    The assumed modes method(based on a global basis)is used to obtain natural frequen-cies,mode shapes,and finite-dimensional approximants[6,14].It results in a model whereby the rigid body dynamics influence the flexible dynamics through generalized forces.When the associated beam model is assumed to be made of titanium with a dimension of 30.48 m in length,0.244 m in height,and 0.304 8 m in depth,the nominal modal frequencies areωf1=22.2 rad/s,ωf2=48.1 rad/s,ωf3=94.8 rad/s as a consequence.Hence,it ensures that the beam model and the vehicle have the same vibration characteristics.

    1.5 Rigid-elastic dynamics model

    Considering the influence of the earth′s curvature,it is assumed that the thrust direction is along with the engine axis,which is parallel to the airframe axis.Take the fuel stoichiometric ratio of combusterφand elevatorδeas the input,and choose the flight state variable X=[v,α,q,h,θ,η1,˙η1,η2,˙η2,η3,˙η3]T,where velocity v,attack angleα,pitching angular velocity q,height h and pitching angleθare rigid modal;andηi,˙ηi(i=1,2,3)are elastic mode.Lagrangian method is used to deduce the nonlinear equations of longitudinal model of hypersonic vehicle[15]

    2 Simulation of Rigid-Aeroelasticity Coupling for Hypersonic Vehicle

    The aim of this paper is to illustrate the characteristics of the rigid-aeroelasticity coupling model for a general regularity.Eurthermore,the accuracy of aerodynamic force estimated by oblique shockwave theory and Prandtl-Mayer equation has been demonstrated[12].Within the current model,forebody deflections influence the rigid body dynamics via the oblique shock which influences engine inlet conditions,thrust,lift,drag,and moment.Aftbody deflections influence the attack of angle seen by the elevator.As such,flexible modes influence the rigid body dynamics. Hence the model accuracy can meet the needs of the analysis of control-oriented characteristics for the rigid-aeroelasticity coupling model.

    2.1 Selection of geometric parameters

    Select the front edge point as the origin of coordinates,directions of x and z axes are shown in Eig.1.The geometric parameters are:total length Lv=30.48 m,forebody length Lf= 14.33 m,aftbody length La=10.06 m,lower forebody turn angleτ1l=6.2°,upper forebody turn angleτ1u=3°,aftbody turn angleτ2= 14.34°;engine inlet height hi=1 m,diffuse chamber area ratio Ad=1,inner nozzle area ratio An=6.25;control surface effective area Ae= 1.58 m2,position(-25.9,1.1),mass m= 2 000 kg,rotary inertia around axis y Iyy=5× 105kg·m2,gravity center position(-16.8,0),elastic mode dampingζ=0.02,and the aeroelasticity modal frequenciesωf1=22.2 rad/s,ωf2= 48.1 rad/s,ωf3=94.8 rad/s.As the aeroelasticity mode is considered,the mass-normalized mode shapes and derivatives of the vehicle′s transverse vibration are shown in Eig.3.

    2.2 Simulation of hypersonic vehicle static characteristics

    本課程多媒體教學資源構(gòu)建主要目的在于制作合適本門課程的教學動畫、視頻和相關(guān)素材搜集整理和整合,適當延長微課時間,增強知識點間銜接,授課過程中側(cè)重課后及課堂練習的運用。

    In a Matlab environment,we separately trim the rigid body model and the model considering the first three-order aeroelasticity,and the trimstates of the two shown in Tables 1,2.

    Eig.3 Mass-normalized mode shapes of vehicle′s transverse vibration

    Table 1 Trim states in the given flight condition(rigid)

    Table 2 Trim states in the given flight condition(considering aeroelastic)

    Compared Table 1 with Table 2,when the aeroelasticity is considered,the elastic deformation of the airframe will induce changes of the attack angle of balance point and control input.To better elucidate the problem,through simulation and analysis,Eig.4 illustrates the transverse deformation excited by aerodynamic force and moment in the condition of Mach number 8 and height 26 km level flight.

    Eig.4 Transverse deformation of fuselage under the condition:Ma=8,h=26 km level flight

    Erom Eig.4,the transverse deformation of the fuselage caused by the first-order aeroelasticity is almost the same as that caused by the first three-order aeroelasticity.It means the one-order aeroelasticity is most influential on the vehicle.

    2.3 Simulation and analysis of dynamic characteristics

    The effect of aeroelasticity on the short period mode is analyzed as follows.Using the values of trim state obtained in Section 2.2,one can approximately linearize the longitudinal non-linear model of hypersonic vehicle in the given Mach number and flight height with the small perturbation linear equation

    where the state of a model of rigid body is defined as

    And the state of a model of rigid-aeroelasticity coupling is defined.

    Now the short period mode is considered,let v=0,θ=0,h=0.Eurthermore,the problem is simplified,which is analyzed only in consideration of the first-order aeroelasticity.Therefore,we have the short period motion equation of the first-order aeroelasticity coupling mode,written in a polynomial matrix form via Laplace transformation[11]

    The short period characteristic polynomial of the first-order aeroelasticity coupling has the form as follow,which is a new short period and the first-order aeroelasticity mode.

    Similarly,the new polynomial coefficient of the first-order aeroelasticity in Eqs.(43—44)can be otained.The first items in the right side of Eqs.(43-44)are single aeroelasticity mode coefficient.

    The effects of aeroelasticity mode and short period coupling mainly reflect in the rest parts in the right side of Eqs.(41—44).And it is exactly the existence of rigid-aeroelasticity coupling terms

    thus leading to a greater effect on the short period mode of vehicle considering aeroelasticity than that considering rigid body vehicle.

    Eor further elucidating the problem,choose Ma=8,h=26 000 km level flight,and the corresponding coefficient matrixes of rigid body model and rigid-aeroelasticity coupling model are obtained respectively.Then the eigenvalues of simulation are given in Table 3 correspondingly.

    In Table 3,the phugoid modes of both rigid body model and rigid-aeroelasticity coupling model are close to imaginary axis,leading to neutral stability.The height mode is almost unchanged,and the change of short period mode is more significant.Besides,the aeroelasticity mode affects short period mode significantly.

    Table 3 Characteristic roots of rigid and rigid-aeroelasticity coupling model under the given flight condition

    Generally,since aerodynamical moment and aeroelasticity are deeply influenced by center of gravity and mass distribution,the characteristic roots of rigid and rigid-aeroelasticity coupling model are compared by moving the center of gravity.When the center of gravity is moved forward and back wards,the eigenvalues of simulation are listed in Tables 4,5 correspondingly.

    Erom Tables 4,5,it is obvious that the conclusion drew above is universal.

    Table 4 Characteristic roots of rigid and rigid-aeroelasticity coupling model in the given flight condition(with CG moving forward)

    Table 5 Characteristic roots of rigid and rigid-aeroelasticity coupling model in the given flight condition(with CG moving backwards)

    3 LQR Control Compared Simulation of Rigid and Rigid-Aeroelasticity Coupling Hypersonic Vehicle

    Eor the rigid body model,take quadratic performance index

    where

    When solving the algebra Riccati equation

    the positive definite solution P is obtained.

    According to linear quadratic regulator(LQR)theory,the state feedback gain matrix

    Hence,the control law of the non-linear model is described by

    where the superscript″*″represents the input and state of the balance point.Eurthermore,we add the initial disturbance to the balance point,and substitute the control law into the rigid body model.The corresponding state response and input response of the vehicle are shown in Eigs.5,6.

    Eig.5 State responses of rigid model

    Eig.6 Input responses of rigid model

    Substituting the control law of rigid body model into the rigid-aeroelastic coupling model,we gain the state response and input response of vehicle rigid body mode and aeroelastic mode,as shown in Eigs.7—9.

    Erom Eig.5,when the initial disturbance exists,the effect on the designed control law is favorable.Known from Eig.6,the input is within reasonable value during the input response process.Every state and input of the vehicle approach to the nominal value.In Eigs.7—9,when the effect on vehicle aeroelasticity is considered,the control law designed according to rigid body model will not be able to meet the control effect,especially the short period modesα,q.The aeroelastic modes will gradually divergent.Thus,a great challenge for controller design is posed when the vehicle is a slender body due to the rigid-aeroelastic coupling.

    Eig.7 Rigid state responses of rigid-aeroelastic coupling model

    Eig.8 Elexible state responses of rigid-aeroelastic coupling model

    Eig.9 Input responses of rigid-aeroelastic coupling model

    4 Conclusions

    A dynamic model of rigid-aeroelasticity coupling for hypersonic vehicles is established.By theoretical analyses and simulation comparison of the control-oriented characteristics of the rigidaeroelasticity coupling model,one can draw the conclusion that when the vehicle is a slender body due to the rigid-aeroelastic coupling,its short period mode is greatly affected by the aeroelasticity,which is innegligible.

    [1] Liu Yanbin,Lu Yuping.The new modeling method of aerodynamic and dynamic integration facing control study for hypersonic vehicle[J].Chinese Journal of Computational Mechanics,2011,28(1):31-36.(in Chinese)

    [2] Kelkar A G,Vogel J M,Whitmer C E.Design tool for control-centric modeling,analysis,and trade studies for hypersonic vehicles[R].AIAA 2011-2225,2011.

    [3] Kelkar A G,Vogel J M,Inger G.Modeling and analysis framework for early stage trade-off studies for scramjet-powered hypersonic vehicles[R].AIAA-2009-7325,2009.

    [4] Bolender M A,Doman D B.Nonlinear longitudinal dynamics model of an air-breathing hypersonic vehicle[J].Journal of Spacecraft and Rockets,2007,44(2): 374-386.

    [5] Rodriguez A A,Dickeson J J,Cifdaloz O,et al. Modeling and control of scramjet-powered hypersonic vehicles:Challenges,Trends,&Tradeoffs[R]. AIAA 2008-6793,2008.

    [6] Rodriguez A A,Dickeson J J,Sridharan S,et al. Control-relevant modeling,analysis,and design for scramjet-powered hypersonic vehicles[R].AIAA 2009-7287,2009.

    [7] Sigthorsson D O,Serrani A.Development of linear parameter-varying models of hypersonic air-breathing vehicles[R].AIAA 2009-6282,2009.

    [8] Sigthorsson D O,Serrani A,Bolender M A,et al. LPV control design for over-actuated hypersonic vehicles models[R].AIAA 2009-6280,2009.

    [9] Hughes H,Wu Een.H-infinity LPV state feedback control for flexible hypersonic vehicle longitudinal dynamics[R].AIAA 2010-8281,2010.

    [10]Vaddi1 SS,Sengupta P.Controller design for hypersonic vehicles accommodating nonlinear state and control constraints[R].AIAA 2009-6286,2009.

    [11]Newman B,Schmidtt D K.Numerical and literal aeroelastic-vehicle-model reduction for feedback control synthesis[J].Journal of Guidance,1991,14(5): 943-953.

    [12]Liu Yanbin,Zhang Yong,Lu Yuping.Integrated design on aerodynamic,propulsion and control for deformable waverider[J].Journal of Nanjing University of Aeronautics&Astronautics,2011,43(2):252-253.(in Chinese)

    [13]Wang Liang,Chen Huaihai,He Xudong.Modal frequency characteristics of axially moving beam with supersonic/hypersonic speed[J].Transactions of Nanjing University of Aeronautics and Astronautics,2011:28(2):163-168.

    [14]Li Zhaofei,Chai Yi,Li Huafeng.Eault feature extraction method of vibration signals base on multifractal[J].Journal of Data Acquisition and Processing,2013:28(1):34-41.(in Chinese)

    [15]Torrez S,Driscoll J,Bolender M,et al.Effects of improved propulsion modeling on the flight dynamics of hypersonic vehicles[R].AIAA 2008-6386,USA: AIAA,2008.

    (Executive editor:Zhang Tong)

    V271.9 Document code:A Article ID:1005-1120(2015)01-0070-11

    *Corresponding author:Xiao Liping,Associate Researcher,E-mail:xiaolp@nuaa.edu.cn.

    How to cite this article:Xiao Liping,Zhang Yong,Lu Yuping.Control-oriented modeling and simulation on rigid-aeroelasticity coupling for hypersonic vehicle[J].Trans.Nanjing U.Aero.Astro.,2015,32(1):70-80.

    http://dx.doi.org/10.16356/j.1005-1120.2015.01.070

    (Received 11 November 2014;revised 3 January 2015;accepted 12 January 2015)

    猜你喜歡
    搜集整理本門張勇
    Photon blockade in a cavity–atom optomechanical system
    跟曾國藩學修身
    做人與處世(2022年6期)2022-05-26 10:26:35
    開設(shè)全科醫(yī)療中的醫(yī)患關(guān)系及溝通技巧課程的調(diào)查分析
    秋天來菊花開
    啟蒙(3-7歲)(2020年10期)2020-10-10 14:32:16
    張勇
    書香兩岸(2020年3期)2020-06-29 12:33:45
    小巧嘴兒
    啟蒙(3-7歲)(2017年12期)2017-12-19 08:14:05
    對近年來湯顯祖佚作搜集整理的總結(jié)與思考
    戲曲研究(2017年2期)2017-11-13 03:10:42
    月亮光光
    啟蒙(3-7歲)(2017年9期)2017-02-26 02:52:48
    體育學院學生對理論課課程改革的適應(yīng)現(xiàn)狀
    ——以《中學體育教材教法》為例
    Code switching for college students on campus
    e午夜精品久久久久久久| 我要搜黄色片| 男女视频在线观看网站免费| www国产在线视频色| 中文字幕最新亚洲高清| 日韩国内少妇激情av| 亚洲国产高清在线一区二区三| 国产真人三级小视频在线观看| 亚洲精品色激情综合| 亚洲av日韩精品久久久久久密| 狠狠狠狠99中文字幕| 很黄的视频免费| 久久国产精品人妻蜜桃| 国产精品久久久久久久电影 | 欧美av亚洲av综合av国产av| 亚洲成av人片在线播放无| 国产亚洲精品久久久久久毛片| 午夜日韩欧美国产| 色尼玛亚洲综合影院| bbb黄色大片| 一边摸一边抽搐一进一小说| www.www免费av| 1024手机看黄色片| 国产精品1区2区在线观看.| 窝窝影院91人妻| 一区二区三区国产精品乱码| 国产成人精品久久二区二区免费| 国产一级毛片七仙女欲春2| 亚洲中文日韩欧美视频| 一区福利在线观看| 夜夜爽天天搞| av视频在线观看入口| 极品教师在线免费播放| 亚洲精品中文字幕一二三四区| 色播亚洲综合网| 搡老妇女老女人老熟妇| 亚洲五月天丁香| 国模一区二区三区四区视频 | 老熟妇仑乱视频hdxx| 美女高潮喷水抽搐中文字幕| 国产亚洲av嫩草精品影院| 亚洲男人的天堂狠狠| 久久精品亚洲精品国产色婷小说| 啦啦啦免费观看视频1| 黄色视频,在线免费观看| 亚洲人成电影免费在线| 一级毛片高清免费大全| 人人妻人人澡欧美一区二区| 18禁美女被吸乳视频| 国产97色在线日韩免费| 99国产精品一区二区三区| 男女午夜视频在线观看| 性色av乱码一区二区三区2| 国产视频内射| 欧美乱色亚洲激情| 少妇丰满av| 搡老妇女老女人老熟妇| 日韩欧美在线二视频| 亚洲欧美日韩东京热| 日本与韩国留学比较| 亚洲狠狠婷婷综合久久图片| 首页视频小说图片口味搜索| 熟妇人妻久久中文字幕3abv| 男人舔女人下体高潮全视频| 性色avwww在线观看| 熟女少妇亚洲综合色aaa.| 免费在线观看视频国产中文字幕亚洲| 亚洲精品在线观看二区| 两个人视频免费观看高清| 少妇的丰满在线观看| 亚洲一区二区三区不卡视频| 丁香欧美五月| 久久亚洲真实| 最近最新中文字幕大全电影3| 国产精品1区2区在线观看.| 国产精品av视频在线免费观看| 国产高清有码在线观看视频| 精品日产1卡2卡| 老司机深夜福利视频在线观看| 国产三级在线视频| 99国产综合亚洲精品| 日本撒尿小便嘘嘘汇集6| 亚洲中文日韩欧美视频| 亚洲精品在线观看二区| 亚洲精品色激情综合| 国产探花在线观看一区二区| 香蕉丝袜av| 九九热线精品视视频播放| 女生性感内裤真人,穿戴方法视频| 成年女人永久免费观看视频| 国产精品精品国产色婷婷| 俺也久久电影网| 日韩av在线大香蕉| 国产成人影院久久av| 黄频高清免费视频| 俄罗斯特黄特色一大片| 免费看十八禁软件| 在线观看日韩欧美| 欧美黄色淫秽网站| 精品久久久久久成人av| 一个人看的www免费观看视频| 国产主播在线观看一区二区| 毛片女人毛片| 国内精品久久久久精免费| 欧美日韩黄片免| 久久精品影院6| 麻豆成人午夜福利视频| 91在线观看av| 国产一区二区在线观看日韩 | 香蕉丝袜av| 久久草成人影院| 国产精品国产高清国产av| 国产高清激情床上av| 国产成人影院久久av| 怎么达到女性高潮| 搡老岳熟女国产| 一个人观看的视频www高清免费观看 | 国产aⅴ精品一区二区三区波| 亚洲国产高清在线一区二区三| АⅤ资源中文在线天堂| 又爽又黄无遮挡网站| 欧美日韩瑟瑟在线播放| 亚洲精品色激情综合| 在线观看日韩欧美| 又黄又爽又免费观看的视频| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美一区二区综合| 最近最新免费中文字幕在线| 国产野战对白在线观看| 亚洲精品一区av在线观看| 少妇人妻一区二区三区视频| 久久精品影院6| 在线观看午夜福利视频| 色综合欧美亚洲国产小说| 精品久久久久久久人妻蜜臀av| 午夜两性在线视频| 在线观看一区二区三区| 偷拍熟女少妇极品色| 在线观看日韩欧美| 国产在线精品亚洲第一网站| 国产毛片a区久久久久| 好男人电影高清在线观看| 1024香蕉在线观看| 欧美日韩乱码在线| 夜夜看夜夜爽夜夜摸| 国产高清视频在线播放一区| 黄片小视频在线播放| 欧美黑人巨大hd| 性欧美人与动物交配| 精品久久久久久久人妻蜜臀av| 午夜福利高清视频| 亚洲精品色激情综合| 国产亚洲av嫩草精品影院| 一卡2卡三卡四卡精品乱码亚洲| 天堂av国产一区二区熟女人妻| 国产黄片美女视频| av中文乱码字幕在线| 国产精品日韩av在线免费观看| 毛片女人毛片| 欧洲精品卡2卡3卡4卡5卡区| 天堂影院成人在线观看| 亚洲欧美日韩卡通动漫| 香蕉国产在线看| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人一区二区三| 亚洲最大成人中文| 午夜福利在线观看免费完整高清在 | 亚洲成人精品中文字幕电影| 欧美激情在线99| 国产在线精品亚洲第一网站| 日本黄色视频三级网站网址| 叶爱在线成人免费视频播放| 搡老妇女老女人老熟妇| 欧美大码av| 在线观看66精品国产| 色综合亚洲欧美另类图片| 90打野战视频偷拍视频| 久久久久国产一级毛片高清牌| 成人高潮视频无遮挡免费网站| 亚洲av成人不卡在线观看播放网| 51午夜福利影视在线观看| 69av精品久久久久久| 免费观看精品视频网站| 日韩免费av在线播放| 制服丝袜大香蕉在线| 国产视频内射| 国产亚洲精品av在线| 精品国产三级普通话版| 国产毛片a区久久久久| 国产野战对白在线观看| 午夜福利高清视频| 欧美丝袜亚洲另类 | 国产主播在线观看一区二区| 欧美日韩综合久久久久久 | 欧美不卡视频在线免费观看| 天堂av国产一区二区熟女人妻| 身体一侧抽搐| 一区二区三区激情视频| 在线观看66精品国产| 国产亚洲精品综合一区在线观看| 亚洲av成人一区二区三| 久久久成人免费电影| 午夜免费观看网址| 国产av不卡久久| 日本与韩国留学比较| 国内精品美女久久久久久| av天堂在线播放| 免费在线观看影片大全网站| 国产三级中文精品| 黄片小视频在线播放| 成年免费大片在线观看| 亚洲欧美日韩东京热| 波多野结衣高清作品| 亚洲色图 男人天堂 中文字幕| 亚洲欧洲精品一区二区精品久久久| 18禁观看日本| 亚洲精品国产精品久久久不卡| 国产精品久久久人人做人人爽| 又黄又爽又免费观看的视频| 国产视频一区二区在线看| 国产极品精品免费视频能看的| 亚洲国产高清在线一区二区三| 嫩草影院精品99| 欧美日韩中文字幕国产精品一区二区三区| 黑人操中国人逼视频| 99国产综合亚洲精品| 最新中文字幕久久久久 | 色av中文字幕| 免费看十八禁软件| 十八禁人妻一区二区| 国产精品一区二区精品视频观看| 亚洲国产看品久久| 高清毛片免费观看视频网站| 99热精品在线国产| 欧美3d第一页| 这个男人来自地球电影免费观看| 久久天堂一区二区三区四区| 午夜福利高清视频| 亚洲va日本ⅴa欧美va伊人久久| 18禁美女被吸乳视频| 黄片小视频在线播放| 国产一区二区在线观看日韩 | 免费人成视频x8x8入口观看| 婷婷六月久久综合丁香| 亚洲一区二区三区不卡视频| 91在线观看av| 欧美乱码精品一区二区三区| 精品国产乱子伦一区二区三区| 国产高清三级在线| 黄色片一级片一级黄色片| av视频在线观看入口| 黄片小视频在线播放| 在线视频色国产色| 精品电影一区二区在线| 亚洲 欧美 日韩 在线 免费| 亚洲无线观看免费| 丁香六月欧美| 国内精品久久久久精免费| 国产精品电影一区二区三区| 国产精品电影一区二区三区| 亚洲国产精品久久男人天堂| 欧美黄色淫秽网站| 成人鲁丝片一二三区免费| 麻豆国产av国片精品| 国产精华一区二区三区| 久久天堂一区二区三区四区| 亚洲av成人av| 亚洲18禁久久av| АⅤ资源中文在线天堂| 丰满的人妻完整版| 国产黄a三级三级三级人| 欧美日韩乱码在线| 美女cb高潮喷水在线观看 | 成人永久免费在线观看视频| 俺也久久电影网| 热99re8久久精品国产| 午夜福利成人在线免费观看| 黄色丝袜av网址大全| 啦啦啦韩国在线观看视频| 亚洲中文日韩欧美视频| 国产午夜精品论理片| 91九色精品人成在线观看| 好看av亚洲va欧美ⅴa在| 国产精品亚洲美女久久久| 欧美高清成人免费视频www| 亚洲国产欧美网| 网址你懂的国产日韩在线| 国产精品精品国产色婷婷| 香蕉丝袜av| av视频在线观看入口| 亚洲无线在线观看| 18禁黄网站禁片免费观看直播| 黄色成人免费大全| 精品久久久久久久末码| 欧美成狂野欧美在线观看| 女警被强在线播放| 国产亚洲av嫩草精品影院| 国产成人啪精品午夜网站| 国产又黄又爽又无遮挡在线| 99热这里只有是精品50| 亚洲精品456在线播放app | 色哟哟哟哟哟哟| 18禁黄网站禁片免费观看直播| 久久久国产欧美日韩av| 国产野战对白在线观看| 成人三级黄色视频| 久久天堂一区二区三区四区| 久久99热这里只有精品18| 91av网一区二区| avwww免费| 床上黄色一级片| 岛国在线免费视频观看| 老司机午夜福利在线观看视频| 99久久99久久久精品蜜桃| 日本黄大片高清| 亚洲精品在线美女| 身体一侧抽搐| 国产精品电影一区二区三区| 伊人久久大香线蕉亚洲五| 久久久久久大精品| 日韩三级视频一区二区三区| 叶爱在线成人免费视频播放| 久久精品91无色码中文字幕| 午夜福利视频1000在线观看| 久99久视频精品免费| 美女cb高潮喷水在线观看 | 90打野战视频偷拍视频| 国产伦人伦偷精品视频| 中亚洲国语对白在线视频| 男人的好看免费观看在线视频| 午夜精品在线福利| 99久久精品国产亚洲精品| 久久草成人影院| 18美女黄网站色大片免费观看| 午夜福利在线观看吧| 久久性视频一级片| 在线观看免费午夜福利视频| 国产成人欧美在线观看| 成人三级做爰电影| 日韩欧美在线乱码| 亚洲色图av天堂| 国产精品国产高清国产av| 三级国产精品欧美在线观看 | 国产一区二区三区在线臀色熟女| 中文字幕熟女人妻在线| 男人的好看免费观看在线视频| 黄片大片在线免费观看| tocl精华| 久久久国产成人精品二区| 亚洲在线观看片| 欧美日本视频| 男人舔女人的私密视频| 亚洲美女视频黄频| 国产一区二区激情短视频| 亚洲精品中文字幕一二三四区| 真人一进一出gif抽搐免费| 久久人妻av系列| 美女cb高潮喷水在线观看 | 99国产精品一区二区蜜桃av| 男人和女人高潮做爰伦理| 免费在线观看亚洲国产| 麻豆一二三区av精品| 日韩精品中文字幕看吧| 日韩人妻高清精品专区| 久久亚洲精品不卡| 亚洲性夜色夜夜综合| 久久中文字幕一级| 男插女下体视频免费在线播放| 国产成人av教育| 亚洲第一欧美日韩一区二区三区| 久久午夜综合久久蜜桃| 国产激情偷乱视频一区二区| 黄色成人免费大全| 色在线成人网| 免费大片18禁| 真人一进一出gif抽搐免费| 色综合欧美亚洲国产小说| 精品久久久久久久久久免费视频| 小说图片视频综合网站| 99国产极品粉嫩在线观看| 久久婷婷人人爽人人干人人爱| 亚洲狠狠婷婷综合久久图片| 亚洲精品久久国产高清桃花| 三级毛片av免费| 亚洲欧美精品综合久久99| 国产av一区在线观看免费| 日日摸夜夜添夜夜添小说| 精品国产亚洲在线| 久久国产乱子伦精品免费另类| 88av欧美| 国产高清有码在线观看视频| 1024手机看黄色片| 在线免费观看不下载黄p国产 | 九九久久精品国产亚洲av麻豆 | 亚洲国产日韩欧美精品在线观看 | 毛片女人毛片| 99热精品在线国产| 少妇熟女aⅴ在线视频| 精品电影一区二区在线| 在线观看一区二区三区| 69av精品久久久久久| 久久久国产成人免费| 国产av一区在线观看免费| 欧美日韩瑟瑟在线播放| 日本 av在线| 久久中文字幕人妻熟女| 久久久色成人| 美女扒开内裤让男人捅视频| 国产1区2区3区精品| 天天一区二区日本电影三级| av欧美777| 中文字幕熟女人妻在线| 亚洲欧美日韩卡通动漫| 最好的美女福利视频网| 国产精品国产高清国产av| 久久久成人免费电影| 欧美黑人巨大hd| 亚洲国产日韩欧美精品在线观看 | 国产精品国产高清国产av| 婷婷六月久久综合丁香| 亚洲精华国产精华精| 国产精品电影一区二区三区| 女人高潮潮喷娇喘18禁视频| 51午夜福利影视在线观看| 美女免费视频网站| 在线观看美女被高潮喷水网站 | 在线看三级毛片| 老司机深夜福利视频在线观看| 亚洲精品美女久久久久99蜜臀| 久9热在线精品视频| 91九色精品人成在线观看| 色在线成人网| 亚洲人成电影免费在线| 国产精品一区二区免费欧美| 欧美+亚洲+日韩+国产| 少妇裸体淫交视频免费看高清| 久久伊人香网站| 亚洲欧美日韩无卡精品| 十八禁网站免费在线| 午夜精品久久久久久毛片777| 人妻丰满熟妇av一区二区三区| 国内精品美女久久久久久| 国产极品精品免费视频能看的| 亚洲精品美女久久av网站| 亚洲国产欧美网| 村上凉子中文字幕在线| 亚洲av美国av| 午夜福利视频1000在线观看| 在线国产一区二区在线| 日本精品一区二区三区蜜桃| 久99久视频精品免费| 少妇的逼水好多| 男人舔奶头视频| 男女之事视频高清在线观看| 法律面前人人平等表现在哪些方面| 久久精品亚洲精品国产色婷小说| 欧美+亚洲+日韩+国产| 亚洲精品中文字幕一二三四区| 久久这里只有精品19| 亚洲五月婷婷丁香| 性色avwww在线观看| 老司机午夜福利在线观看视频| 中文字幕精品亚洲无线码一区| 国产人伦9x9x在线观看| 国内精品美女久久久久久| www日本黄色视频网| 日韩av在线大香蕉| 99国产精品一区二区三区| 巨乳人妻的诱惑在线观看| a在线观看视频网站| 精品久久久久久久久久免费视频| 国产精品综合久久久久久久免费| 亚洲av熟女| 天堂网av新在线| 又粗又爽又猛毛片免费看| 香蕉丝袜av| 黄色丝袜av网址大全| 亚洲 国产 在线| bbb黄色大片| 日本免费一区二区三区高清不卡| 禁无遮挡网站| 好男人电影高清在线观看| 熟女人妻精品中文字幕| 一级黄色大片毛片| 国产欧美日韩一区二区精品| 1000部很黄的大片| www.www免费av| 国产高潮美女av| 国产真实乱freesex| 91字幕亚洲| 麻豆成人午夜福利视频| 亚洲精品在线观看二区| 高清毛片免费观看视频网站| 国产一区二区三区视频了| 国产主播在线观看一区二区| 级片在线观看| 18禁国产床啪视频网站| 久久精品国产99精品国产亚洲性色| 久久精品aⅴ一区二区三区四区| 色av中文字幕| 亚洲熟妇中文字幕五十中出| 中文字幕久久专区| 日本精品一区二区三区蜜桃| 成人永久免费在线观看视频| 色播亚洲综合网| 无限看片的www在线观看| 亚洲精华国产精华精| 97人妻精品一区二区三区麻豆| 国内久久婷婷六月综合欲色啪| 免费高清视频大片| 免费在线观看视频国产中文字幕亚洲| 男人的好看免费观看在线视频| 午夜福利在线在线| 在线播放国产精品三级| 亚洲中文av在线| 亚洲最大成人中文| 好男人在线观看高清免费视频| 一区二区三区高清视频在线| www国产在线视频色| 久久久久久久久久黄片| 久久精品亚洲精品国产色婷小说| 久久久久九九精品影院| 免费看a级黄色片| 中文字幕最新亚洲高清| 极品教师在线免费播放| 亚洲中文字幕日韩| 日本黄色片子视频| 亚洲av美国av| 熟妇人妻久久中文字幕3abv| 51午夜福利影视在线观看| 国产精品一区二区三区四区免费观看 | 欧美日韩中文字幕国产精品一区二区三区| 精品欧美国产一区二区三| av福利片在线观看| 一夜夜www| 在线观看舔阴道视频| 综合色av麻豆| 久久天躁狠狠躁夜夜2o2o| 麻豆一二三区av精品| 欧美一区二区国产精品久久精品| 亚洲 欧美一区二区三区| 国产精品一区二区三区四区久久| 国产又黄又爽又无遮挡在线| 亚洲av美国av| 中文字幕久久专区| 2021天堂中文幕一二区在线观| 久久久久久大精品| 日日摸夜夜添夜夜添小说| 日韩三级视频一区二区三区| 一夜夜www| 岛国视频午夜一区免费看| av片东京热男人的天堂| 啦啦啦观看免费观看视频高清| 久久99热这里只有精品18| 丰满人妻熟妇乱又伦精品不卡| 久久亚洲精品不卡| 级片在线观看| 国产私拍福利视频在线观看| 天堂影院成人在线观看| 亚洲精品色激情综合| 日日夜夜操网爽| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 国产一区二区三区在线臀色熟女| 国产伦一二天堂av在线观看| 99国产综合亚洲精品| 国产黄片美女视频| x7x7x7水蜜桃| 国产私拍福利视频在线观看| 搞女人的毛片| 久久久色成人| 精品国产三级普通话版| 小蜜桃在线观看免费完整版高清| 国产成人影院久久av| 成人三级黄色视频| 丁香六月欧美| www.www免费av| 亚洲国产精品sss在线观看| 国产探花在线观看一区二区| 天天躁日日操中文字幕| 最好的美女福利视频网| 久久热在线av| 黄频高清免费视频| 日本免费一区二区三区高清不卡| 天堂影院成人在线观看| 国产伦人伦偷精品视频| 午夜福利高清视频| 一本精品99久久精品77| 香蕉丝袜av| 日韩欧美 国产精品| 国产成人啪精品午夜网站| 成在线人永久免费视频| 老汉色∧v一级毛片| svipshipincom国产片| 国产精品九九99| 亚洲专区字幕在线| 免费看美女性在线毛片视频| 精品熟女少妇八av免费久了| 嫩草影视91久久| 免费看日本二区| www日本黄色视频网| 天堂影院成人在线观看| 日韩三级视频一区二区三区| 午夜日韩欧美国产| а√天堂www在线а√下载| 国产精品国产高清国产av| 日韩高清综合在线| 久久久久久九九精品二区国产| 欧美色欧美亚洲另类二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久电影中文字幕| 黄片小视频在线播放| 少妇的逼水好多| 欧美激情在线99| 动漫黄色视频在线观看|