• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    山西市場動物飼料中轉基因成分的檢測

    2016-12-12 05:02:58袁建琴常泓趙江河唐中偉史宗勇王俊東
    生物工程學報 2016年11期
    關鍵詞:太谷定性農(nóng)業(yè)部

    袁建琴,常泓,趙江河,唐中偉,史宗勇,王俊東

    1 山西農(nóng)業(yè)大學 生命科學學院,山西 太谷 030801 2 山西農(nóng)業(yè)大學 動物科技學院,山西 太谷 030801

    山西市場動物飼料中轉基因成分的檢測

    袁建琴1,常泓1,趙江河1,唐中偉1,史宗勇1,王俊東2

    1 山西農(nóng)業(yè)大學 生命科學學院,山西 太谷 030801 2 山西農(nóng)業(yè)大學 動物科技學院,山西 太谷 030801

    袁建琴, 常泓, 趙江河, 等. 山西市場動物飼料中轉基因成分的檢測. 生物工程學報, 2016, 32(11): 1576?1589.

    Yuan JQ, Chang H, Zhao JH, et al. Detection of transgenic components in animal feeds on Shanxi markets. Chin J Biotech, 2016, 32(11): 1576?1589.

    為了評估轉基因玉米和大豆在山西動物飼料市場的占有率和標識情況,采用改良十六烷基三甲基溴化銨法(Hexadecyltrimethy ammonium bromide, CTAB) 提取山西市場抽取的30份雞和豬飼料,通過定性PCR打包篩查,對檢測陽性結果打包飼料拆包并檢測CaMV 35S啟動子、NOS終止子、玉米內標zSSIIb、大豆內標Lectin和CryIA (b)基因。同時檢測玉米和大豆轉化體事件MON810和GTS40-3-2。結果表明,83.3%的飼料含有轉基因成分。所抽取的玉米、大豆、豬飼料和雞飼料轉基因成分陽性率分別為6.67%、100%、93.3%和73.3%。實時熒光定量PCR檢測結果與定性PCR一致。結果提示,雞和豬飼料中轉基因成分在山西市場的占有率較高。

    商業(yè)化雞飼料,商業(yè)化豬飼料,轉基因玉米,轉基因大豆,定性PCR,實時熒光定量PCR,轉化體事件MON810和GTS40-3-2

    Introduction

    By gene modification technique, compositions of plants, animals or microorganisms were altered to gain new characteristics, such as insect resistance, herbicide tolerance, modified nutritional composition or an enhanced shelf life, we call them genetically modified organisms (GMOs)[1-2]. Roundup ReadyTMsoybean (RRS) was firstly produced by the Monsanto Company in Canada in 1996, which was approved for consumption[3-4]. According to the final reports of 2014, the planting of GM crops worldwide had reached 181.5 million hectares and constantly increased 106-fold since that first crop in global area[5-6]. Although GMOs had many advances, consumer had very strong reaction[3]. In China, regulations have come into force, which are the labeling and traceability of GM food. The regulations stipulate the requirement of labeling containing GM material, such as soybean seed, soybean flour, soybean, soybean oil, soybean meal, maize seeds, maize, maize oil and maize flour etc[7]. To comply with the requirements of legislation, usually reliable and practical detection methods is required[1,8-13]. Before either GMO quantification or event identification, the starting point of GMO detection is generally evaluation of the screening method[2,14]. Most of the PCR screening methods usually are to detect either CaMV 35S promoter (the cauliflower mosaic virus) or NOS terminator (the nopaline synthase) or both, because most GM products contain two or one of these sequences[8,15]. ZSSIIb for maize and Lectin for soybean are species-specific PCR testing genes, which arepresent in both GM and non GM maize and soybean. For discrimination between non-approved and approved traits, event-specific PCR methods are used to identify the GMO event (for example GTS40-3-2 and MON810). PAT (Phosphinothricin acetyltransferase) gene mediates tolerance to the herbicide phosphinotricin (glufosinate). A number of soil bacteria naturally possess the PAT gene. Transgenic plants expressing the PAT gene are able to degrade the herbicide agent phospinotricin (glufosinate). BAR gene coding for phosphinothricin acetyltransferase had been isolated from Bacillus amylolique facions. PAT and BAR genes are widely used as selective markers for the transformation of higher plants. CryIA(b) gene is a synthetic gene encoding the 648 amino acids, insecticidal-active truncated product identical to CryIA(b) gene of Bacillus thuringiensis subsp (General Administration of Qality Spervision, Ispection and Quarantine of the People's Republic of China, SN/T 1202-2003).

    Because GMOs have the worldwide high production and fairly uncertain of the current status of the foods, people pay particular attention to them. Soybean and maize were chosen because they were the staple constituents of feed[8,16]. The study objective was to determine the ratio of GM-containing soybean and maize feed obtained from local feed manufacturer and retail shops in Shanxi of China in 2015.

    1 Materials and methods

    1.1 Feed

    Thirty soybean- and maize-containing feeds were purchased from 24 random local retail shops (20 feed manufacturers) in Shanxi of China in May 2015. In the 30 feeds (serial number: 01-30, there were layer feed and pig feed in three periods. Every period there were five different feed manufacturers or brands). In different periods, 5 kinds of feed manufacturers (brand) might be overlapping or different.), 15 layer feeds (including adding concentrate), accounted for about 50.0% of the total feeds, 15 pig feeds accounted for about 50% of the total feeds (Table 1).

    1.2 Qualitative PCR

    1.2.1 Reference materials

    Certified reference samples (CRS) (GTS40-3-2 1% soybean flour, MON810 1% maize flour and flour mixture -Bt176 1%, Bt11 1% and kefeng6 1% positive sample mixture flour), which were provided by the science and technology development center of China’s ministry of agriculture, were used as the positive controls in the study.

    1.2.2 DNA extraction

    For DNA isolation from feed and CRS, an improved version of the cetyltrimethyl ammonium bromide (CTAB) method was used. The collected DNA quantification (concentration and purity) was achieved by measuring the UV absorption at 260 nm and 280 nm using a biophotometer (Eppendorf.AG, Germany) and stored at -20 ℃ until used.

    Table 1 The composition of feed

    1.2.3 PCR primers

    The CaMV 35S promoter and the NOS terminator for amplifying the specific DNA sequences were used for the GMO screening of the products[17]. The amplification of extracted DNA was verified using plant-specific primers targeting the zSSIIb for maize, the Lectin for soybean, specific sequences present in MON 810 event and RRS (GTS40-3-2) for specific GMO detection[18-19]. Primers for amplifying CryIA(b),BAR and PAT genes were used[20-21]. The primer names, orientation, sequences and length synthesized by TAKARA BIOTECHNOLOGY (Dalian, China) in the study were summarized in Table 2.

    Table 2 The primers used in the study

    Table 3 Real-time PCR primer sequences

    1.3 Real-time PCR of feed samples

    1.3.1 Reference materials

    Certified reference material (CRM) (Soya seed powder-GTS40-3-2 Soya (10%), Catalog Number: ERM-BF410GK, IRMM).

    1.3.2 PCR primers

    The names, orientation, sequences and length of the primer and probe (synthesized by TAKARA BIOTECHNOLOGY, Dalian, China) were summarized in Table 3[17,22]. The amplificationswere performed with using Code NO. RR390A from TAKARA BIOTECHNOL (Dalian, China).

    1.3.3 Calculating transformant content

    The experiment observed and analyzed standard curve and amplification curve, calculated transformant content.

    2 Results and discussion

    2.1 Concentration and purity of DNA

    In our study, an appropriate quality and quantity of DNA could be extracted from the feed samples using the improved CTAB method (Fig. 1). The date showed that DNA concentration and purity (A260/A280) extracted by improved CTAB method ranged from 120.9 μg/mL to 778.3 μg/mL and 1.7 to 1.99, respectively. The results showed that improved CTAB method gave sufficient yield of DNA.

    In order to isolate DNA from feeds with different components of GMOs, the improved CTAB were used (Fig. 1). According to the characteristics of the feed production and processing steps in the traditional, the CTAB method was simplified, reagents used commonly in laboratory could be done. Compared to the (high) cost of the kit (40 RMB per time), the cost of the improved CTAB method was 2 RMB per time. Simultaneously, the improved CTAB method could reduce the extraction time of the kit method by at least 50 min. With the improved CTAB method, successful species-specific PCR testing (zSSIIb for maize and Lectin for soybean) and high amplification success rate were achieved with 30 different kinds of feeds extracts just one time, which confirmed that these extracts contained a sufficient amount of amplifiable DNA. In our work, the improved CTAB method was more effective and less time-consuming in comparison with the existing kit methods for isolation of DNA from plant-derived foods and feed.

    Fig. 1 The concentration and purity of DNA extracted from feeds. The graph A and B respectively on behalf of concentration and purity of DNA extracted from feeds; 01-30: 01-30 feed samples.

    2.2 Screening of GMOs by packing feeds

    The 30 feeds mentioned above were packaged as 5 packages (6 samples in each package) for detecting by the CaMV 35S promoter, NOS terminator, CryIA(b), BAR and PAT genes by PCR, all DNA of feeds were run in duplicate. A 195 bp fragment (CaMV 35S promoter) was detected in all 5 packages feeds produced through PCR amplification. Through the process of detecting, feeds of 5 packages gave 180 bp positive amplification signal of NOS gene. Both packed feeds 01-06, 19-24 amplified 146 bp CryIA(b) gene signal. The target fragments of BAR (175 bp) and PAT (191 bp) genes could not be detected in all feeds (Fig. 2).

    2.3 Specific gene detection of GMOs

    According to the results, the positive-packed feeds were subsequently unpacked and detected by CaMV 35S promoter, NOS terminator, CryIA(b), Lectin and zSSbⅡ genes. All DNA of feeds were run in duplicate excepting for zSSbⅡ gene (simple sample).

    2.3.1 CaMV 35S promoter PCR

    30 feed samples were detected by CaMV 35S promoter. 01-23, 25-26 feed samples gave 195 bp positive amplification signal (Fig. 3).

    2.3.2 NOS terminator PCR

    01-30 feed samples were detected by NOS terminator. 180 bp fragment of NOS terminator for 01-18, 20-23 and 25-26 feed samples were produced through PCR amplification (Fig. 4).

    2.3.3 CryIA(b) gene PCR

    01-30 feed samples were detected by CryIA(b) gene. The target fragments of CryIA(b) gene could be detected in 03 and 19 feeds (Fig. 5).

    2.3.4 Lectin gene PCR

    01-30 feed samples were detected by Lectin gene. 01-18, 20-23, 25-26 feeds gave 118 bp positive amplification signal of Lectin gene (Fig. 6).

    2.3.5 ZSSIIb gene PCR

    The 30 feed samples (01-30) were unpacked for detecting by the zSSIIb gene. The target fragments of 88 bp zSSIIb gene could be detected in all feed (Fig. 7).

    2.4 Event-specific qualitative PCR

    According to the results, the positive feeds were unpacked and detected by specific MON810 and GTS40-3-2 events.

    2.4.1 GTS40-3-2 event PCR

    The 24 positive feeds (01-18, 20-23 and 25-26) containing soybean (Lectin gene) were detected for the presence of specific GM GTS40-3-2 event. All these feeds gave 370 bp positive amplification signal of GTS40-3-2 (Fig. 8). DNA of feeds were run in single sample.

    Fig. 2 The electrophoregram of CaMV 35S, NOS, CryIA(b), BAR and PAT genes of packing feeds. The electrophoregram A, B, C, D and E respectively on behalf of detecting CaMV35S, NOS, CryIA(b), BAR and PAT genes; 01-30: 01-30 feed samples; positive control (PC): Bt176 1%, Bt11 1% and kefeng6 1% positive sample mixture flour; negative control (NC): negative sample (maize flour); blank (BL): ultrapure water; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    Fig. 3 The electrophoregram of CaMV 35S promoter. 01-30: 01-30 feed samples; positive control (PC): Bt176 1%, Bt11 1% and kefeng6 1% positive sample mixture flour; negative control (NC): negative sample (maize flour); blank (BL): ultrapure water, respectively; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    Fig. 4 The electrophoregram of NOS terminator. 01-30: 01-30 feed samples; positive control (PC): Bt176 1%, Bt11 1% and kefeng6 1% positive sample mixture flour; negative control (NC): negative sample (maize flour); blank (BL): ultrapure water, respectively; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    Fig. 5 The electrophoregram of CryIA(b) gene. 01-30: 01-30 feed samples; positive control (PC): Bt176 1%, Bt11 1% and kefeng6 1% positive sample mixture flour; negative control (NC): negative sample (maize flour); blank (BL): ultrapure water, respectively; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    Fig. 6 The electrophoregram of Lectin gene of 01-30 feed samples. 01-30: 01-30 feed samples; PC: GTS40-3-2 event flour; NC: negative sample (soybean flour) and BL: ultrapure water, M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    Fig. 7 The electrophoregram of zSSbⅡ gene. 01-30: 01-30 feed samples; positive control (PC): Bt176 1%, Bt11 1% and kefeng6 1% positive sample mixture flour; negative control (NC): negative sample (maize flour); blank (BL): ultrapure water, respectively; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    Fig. 8 The electrophoregram of GTS40-3-2. 1-12 lanes: 01-12 feed samples; 17-28 lanes: 13-18, 20-23, 25-26 feed samples; 13-14, 29-30 lanes: GTS40-3-2 positive sample flour; 15, 31 lanes: negative sample (soybean flour); 16, 32 lanes: ultrapure water; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    2.4.2 MON810 event PCR

    Feeds (03 and 19) were detected by MON810 event. By detecting, 106 bp amplification signal of MON810 was produced for both feeds (Fig. 9). DNA of feeds was run in triple.

    Fig. 9 The electrophoregram of MON810 of 03 and 19 feed samples. 1-3 lanes: 03 feed sample; 4-6 lanes: 19 feed sample; 7-8 lanes: MON810 1% positive sample flour; 9 lane: negative sample (maize flour); 10 lane: ultrapure water; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    2.5 The summary of detecting results of feeds

    In 30 feeds, 25 feeds contained GM ingredients. 01-02, 04-18, 20-23, 25-26 feeds contained CaMV 35S promoter, NOS terminator, GTS40-3-2 event, zSSIIb and Lectin genes. 03 feed contained CaMV 35S promoter, NOS terminator, MON810 event,zSSIIb, Lectin and CryIA(b) genes. 19 feed contained CaMV 35S promoter, MON810 event, zSSIIb and CryIA(b) genes. 24, 27-30 feeds were non GM, only contained zSSIIb (Fig. 10). The overall results of GMO screening of 5 packed feeds were 100% for CaMV 35S promoter, 100% for NOS terminator, 20% for CryIA(b) and 0% for BAR gene and PAT gene. The detecting results of 30 feed samples showed that 83.3% of the feeds were tested positive for GMOs, in which positive rates of maize, soybean, pig and layer feeds were 6.67%, 100%, 93.3% and 73.3%, respectively. In conclusion, commercialized GM feed had a wide positive product scope in Shanxi province of China. The composition and positive rate of feeds were as shown (Fig. 11).

    Fig. 11 The composition and positive rate of 30 feed samples.

    2.6 Real-time PCR of feed samples

    According to the qualitative results, 24 feed samples of containing genes of Lectin and GTS40-3-2 were detected by real-time PCR.

    2.6.1 Lectin gene real-time PCR

    The quantitative results of Lectin gene from identified 24 feeds DNA were presented in Fig. 12 and Fig. 13. The obtained real-time PCR results were according to those requirements since the correlation coefficient (R2) of standard curves was, generally, ≥ 0.98, while PCR efficiencies ranged, on average, from 93.9% to 100.6%, indicating the adequacy of the standard curves for quantification. In Fig.12, standard of Lectin gene had a typical amplification curve. Amplification efficiency was 98.0%, R2of standard curves was 0.984>0.98, slope of standard curve was -3.370>-3.6 and <-3.1, indicating the adequacy of the standard curves for quantification. In Fig. 13, negative control (salmon sperm DNA) and blank control (water) had not typical amplification curve of Lectin gene, the DNA of all feed samples in Lectin gene amplification curve appeared typical amplification curve. In amplification results (generated by the Excel table), Ct values and copy numbers of all feed samples were in Table 4.

    Fig. 12 Lectin gene standard curve.

    Fig. 13 Lectin gene amplification curve.

    Table 4 The Ct value and copy number of Lectin gene from 24 feed samples

    2.6.2 GTS40-3-2 gene real-time PCR

    The quantitative results of special event GTS40-3-2 gene from identified 24 feeds DNA were presented in Fig. 14 and Fig. 15. In Fig. 14, standard of GTS40-3-2 gene had a typical amplification curve. Amplification efficiency was 99.9%, R2of standard curves was 0.988>0.98, slope of standard curve was -3.324>-3.6 and <-3.1, indicating the adequacy of the standard curves for quantification. In Fig. 15, negative control (salmon sperm DNA) and blank control (water) had not typical amplification curve of GTS40-3-2, the DNA of all feed samples in GTS40-3-2 gene amplification curve appeared typical amplification curve. In amplification results (generated by the Excel table), Ct values and copy numbers of all feed samples were in Table 5.

    2.6.3 The content of the special event GTS40-3-2 in the feeds

    The content of the special event GTS40-3-2 in the feeds was calculated according to the following formula:

    nGTS40-3-2was copy number of GTS40-3-2 gene, nLectinwas copy number of Lectin gene. The GTS40-3-2 transformant content of feed samples was in Table 6.

    Fig. 14 GTS40-3-2 gene standard curve.

    Fig. 15 GTS40-3-2 gene amplification curve.

    Table 5 The Ct value and copy number of GTS40-3-2 gene from 24 feed samples

    Table 6 The GTS40-3-2 transformant content of 24 feed samples

    In our study, all 30 feeds were packed (6 feeds of each package) and screened, 5 packages (100%) were determined to be positive for two or three of the novel sequences which indicated the presence of GMOs. The dispersion of these positive packed feeds within soybean and maize were as follows: 25 of the 30 total (83.3%) detected all feeds, 11 of the 15 total (73.3%) detected layer feeds, 14 of the 15 total (93.3%) detected pig feeds were positive (Fig. 11). All 30 feeds contained maize composition, 2 of 30 feeds (6.7%) which were layer feeds were positive of MON810. 30 feeds had 24 feeds containing soybean composition, 24 feeds (10 for chicken feed, 14 for pig feed) containing soybean (100%) tested positive for GTS40-3-2 event, that came mostly from soybean meal of oil residue from imported soybean. Layer feeds had 2 positive feeds of MON810 event, pig feeds had not been detected positively for the composition of MON810 event. The data showed maize sources varied in different feed manufacturers. The ratio of positive feed containing layer feed seemed to be lower than that of the pig feed, which was a different result than was expected. In fact, there were 4 concentrate supplements of layer feeds including DDGS protein feed, dry maize lees protein feed and shoetree maize husk powder and maize feed (raw material-layer), which were also included in the layer feeds. According to the test results, a positive rate of transgenic maize in feed was very low in the market of Shanxi. The results in which we did not detect genetically modified ingredients in these concentrate supplement were also normal. In this study, positive feeds only had one feed (soybean meal) marked as“genetically modified” composition; genetically modified product identification rate was only 3.33%. Furthermore, we also found that on the identified feed products’ packaging logo, the font was very small and hard to recognize.

    Amplification of the maize-specific zSSbⅡsequence in 30 feeds and the soybean-specific Lectin sequence in 24 feeds confirmed that the feeds containing 5 negative feeds and 1 positive feed were negative for Lectin, which indicated that these feeds did not contain soybean DNA. The above mentioned 24 CaMV 35S and/or 23 NOS positive soybean feeds were analyzed for RRS and all of them gave positive amplification signal (GTS40-3-2 event) (Fig. 8). The other 2 positive feed samples containing CryIA(b) were screened for the presence of specific GM maize events. For this purpose, PCR detections of specific sequences of MON 810 event (containing zSSIIb, CaMV 35S, CryIA(b) and MON 810 genes) was performed (Fig. 9). 03 and 19 positive feeds (containing zSSIIb, CaMV 35S, CryIA(b) and MON810) were identified as containing MON810 event. The results of our study showed that 1 feed (19) was negative for the NOS terminator while positive for the CaMV 35S promoter (maize containing feed). In our study, the NOS negative feed was determined to be MON810 maize feed and thus confirmed that the feed was true positive although they did not give any amplification signal with the NOS. In case of maize, it could also be related to the lack of the NOS terminator common inseveral maize events, for example MON810. Similarly, detection of both the CaMV 35S and the NOS sequences in another feed (03) confirmed the GM maize MON810 event (containing CaMV 35S) and GM soybean GTS40-3-2 event (containing NOS) presence.

    By real-time PCR, 24 feed samples of containing genes of Lectin and GTS40-3-2 were detected. The results showed that they contained different content of GTS40-3-2 transformant (0.05%-4.70%, Table 6). The results were consistent with qualitative PCR (Fig. 10).

    In this study, we demonstrated that many layer and pig feeds containing GM GTS40-3-2 event and a small number of layer feeds containing GM MON810 event were sold commercially in Shanxi of China.

    REFERENCES

    [1] Greiner R, Konietzny U. Presence of genetically modified maize and soy in food products sold commercially in Brazil from 2000 to 2005. Food Control, 2008, 19(5): 499-505.

    [2] Arun ??, Y?lmaz F, Murato?lu K. PCR detection of genetically modified maize and soy in mildly and highly processed foods. Food Control, 2013, 32(2): 525-531.

    [3] Ujhelyi G, Vajda B, Béki E, et al. Surveying the RR soy content of commercially available food products in Hungary. Food Control, 2008, 19(10): 967-973.

    [4] Fernandes TJR, Amaral JS, Oliveira MBPP, et al. A survey on genetically modified maize in foods commercialised in Portugal. Food Control, 2014, 35(1): 338-344.

    [5] James C. Global status of commercialized Biotech/GM crops: 2014. ISAAA Brief No. 47. Ithaca, NY: ISAAA, 2014.

    [6] Huang DF. Review of transgenic crop breeding in China. Chin J Biotech, 2015, 31(6): 892-900 (in Chinese).黃大昉. 我國轉基因作物育種發(fā)展回顧與思考.生物工程學報, 2015, 31(6): 892-900.

    [7] Ministry of Agriculture of the People's Republic of China. Chinese Agriculture Department Public Announcement No.10-2002 Agricultural genetically modified organism’s identity management measures [EB/OL]. [2010-07-15]. http://www.moa.gov.cn/ztzl/zjyqwgz/zcfg/201007/t 20100717_1601302.htm.

    [8] Forte VT, Di Pinto A, Martino C, et al. A general multiplex-PCR assay for the general detection of genetically modified soya and maize. Food Control, 2005, 16(6): 535-539.

    [9] Zhu YZ. Study on transgenic detection with PCR and feeding safety of glyphosate-tolerant soybeans [D]. Beijing: China Agricultural University, 2004 (in Chinese).朱元招. 抗草甘膦大豆轉基因PCR檢測及其飼用安全研究 [D]. 北京: 中國農(nóng)業(yè)大學, 2004.

    [10] Zhu YZ, Yin JD, Li DF, et al. Study on metabolism of exogenous DNA from transgenic soybean meal in grower pigs. Acta Vet Zootech Sin, 2005, 36(10): 1083-1086 (in Chinese).朱元招, 尹靖東, 李德發(fā), 等. 生長豬對轉基因豆粕外源DNA的代謝研究. 畜牧獸醫(yī)學報, 2005, 36(10): 1083-1086.

    [11] Zhao ZH, Yang LT, Ai XJ, et al. Analysis of the influence on physiological metabolism and genetic horizontal transformation of rats fed roundup ready soybean meal. J Nanjing Agr Univ, 2006, 29(1): 77-80 (in Chinese).趙志輝, 楊立桃, 艾曉杰, 等. 轉基因抗草苷膦大豆對大鼠生理代謝的影響及外源基因水平轉移研究. 南京農(nóng)業(yè)大學學報, 2006, 29(1): 77-80.

    [12] Tan JZ. The feed safety assessment of glyphosate-tolerant soybean meal in broilers [D]. Beijing: Chinese Academy of Agriculture Sciences, 2011 (in Chinese).譚建莊. 抗草甘膦轉基因豆粕對肉仔雞的飼用安全性評定 [D]. 北京: 中國農(nóng)業(yè)科學院, 2011.

    [13] Lu CB, Zhang W, Liu B, et al. Effects of transgenic soybean feed on proliferation of spleen lymphocyte in male mice. Soybean Sci, 2012, 31(2): 291-294 (in Chinese).蘆春斌, 張偉, 劉標, 等. 抗草甘膦轉基因大豆飼料對雄性小鼠脾淋巴細胞體外增殖的影響. 大豆科學, 2012, 31(2): 291-294.

    [14] Gryson N, Dewettinck K, Messens K. Detection of genetically modified soy in doughs and cookies. Cereal Chem, 2007, 84(2): 109-115.

    [15] Miraglia M, Berdal KG, Brera C, et al. Detection and traceability of genetically modified organisms in the food production chain. Food Chem Toxicol, 2004, 42(7): 1157-1180.

    [16] GMO Compass, GMO Database. Genetically modified food and feed: authorization in the EU[EB/OL]. [2006-06-02]. http://www.gmocompass.org/eng/regulation/regulatory_process/156. european_regulatory_system_genetic_engineering. html.

    [17] Ministry of Agriculture of the People's Republic of China. Chinese Standard Agriculture Department Public Announcement No. 1782-3-2012. Detection of Genetically Modified Plants and Derived Products. Qualitative PCR Method for the Regulatory Elements CaMV 35S Promoter, FMV 35S Promoter, NOS Promoter, NOS Terminator and CaMV 35S Terminator. Beijing: China Agriculture Press, 2012: 1-9 (in Chinese).中華人民共和國農(nóng)業(yè)部. 農(nóng)業(yè)部1782號公告-3-2012 轉基因植物及其產(chǎn)品成分檢測調控元件CaMV 35S啟動子、FMV 35S啟動子、NOS啟動子、NOS終止子和CaMV 35S終止子定性PCR方法. 北京: 中國農(nóng)業(yè)出版社, 2012: 1-9.

    [18] Ministry of Agriculture of the People's Republic of China. Chinese Standard Agriculture Department Public Announcement No. 869-9-2007. Detection of Genetically Modified Plants and Derived Products Qualitative PCR Method for Insect-Resistant Maize MON810 and Its Derivates. Beijing: China Agriculture Press, 2014: 69-74 (in Chinese).中華人民共和國農(nóng)業(yè)部. 農(nóng)業(yè)部869號公告-9-2007 轉基因植物及其產(chǎn)品成分檢測抗蟲玉米MON810及其衍生品種定性PCR方法. 北京: 中國農(nóng)業(yè)出版社, 2014: 69-74.

    [19] Ministry of Agriculture of the People's Republic of China. Chinese Standard Agriculture Department Public Announcement No. 1861-2-2012. Detection of Genetically Modified Plants and Derived Products. Qualitative PCR Method for Herbicide-Tolerant Soybean GTS 40-3-2 and Its Derivates. Beijing: China Agriculture Press, 2013: 1-5 (in Chinese).中華人民共和國農(nóng)業(yè)部. 農(nóng)業(yè)部1861號公告-2-2012轉基因植物及其產(chǎn)品成分檢測耐除草劑大豆GTS 40-3-2及其衍生品種定性PCR方法.北京: 中國農(nóng)業(yè)出版社, 2013: 1-5.

    [20] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Management Committee. SN/T 1201-2003 Protocol of PCR for Detection of Genetically Modified Feed. Beijing: China Standards Press, 2004: 1-8 (in Chinese).中華人民共和國國家質量監(jiān)督檢驗檢疫總局. SN/T 1201-2003 植物性飼料中轉基因成分定性PCR檢測方法. 北京: 中國標準出版社, 2004: 1-8.

    [21] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Management Committee. SN/T 1202-2003 Protocol of the Qualitative Polymerase Chain Reaction for Detecting Genetically Modified Plant Components in Food. Beijing: China Standards Press, 2004: 1-10 (in Chinese).中華人民共和國國家質量監(jiān)督檢驗檢疫總局. SN/T 1202-2003 食品中轉基因植物成分定性PCR檢測方法. 北京: 中國標準出版社, 2004: 1-10.

    [22] General Administration of Quality Supervision, Inspection and Quarantine. GB/T 19495.5-2004 Detection of Genetically Modified Organisms and Derived Products-quantitative Nucleic Acid Based Methods. Beijing: China Standards Press, 2007: 5-9 (in Chinese).國家質量監(jiān)督檢驗檢疫總局. GB/T 19495.5-2004轉基因產(chǎn)品檢測 核酸定量 PCR 檢測方法. 北京: 中國標準出版社, 2007: 5-9.

    (本文責編 陳宏宇)

    March 24, 2016; Accepted: May 3, 2016

    Jundong Wang. Tel: +86-354-6288206; Fax: +86-354-6222942; E-mail: wangjd53@outlook.com

    Detection of transgenic components in animal feeds on Shanxi markets

    Jianqin Yuan1, Hong Chang1, Jianghe Zhao1, Zhongwei Tang1, Zongyong Shi1, and Jundong Wang2
    1 College of Life Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China 2 College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China

    To assess the presence of genetically modified (GM) maize and soybean in a range of commercialized feed in Shanxi province of China in 2015, improved hexadecyltrimethy ammonium bromide (CTAB) method was used to extract DNA. The screening of packed feeds was carried out by qualitative PCR. Then positive feeds were unpacked and detected by the CaMV 35S promoter, NOS terminator, zSSIIb, Lectin and CryIA (b) genes. The identified maize and soybean events were confirmed by event-specific MON810 and GTS40-3-2. Results showed that 83.3% of the feeds was tested positive for GMOs, in which positive rates of maize, soybean, pig and layer feeds were 6.67%, 100%, 93.3% and 73.3%, respectively. The results of real-time PCR were consistent with qualitative PCR. These results indicated that commercialized GM feed had a wide positive product scope in Shanxi province of China. Further studies are necessary to study effects of feeding livestock and poultry with feed containing GM ingredients on animals and their products.

    commercialized layer feed, commercialized pig feed, genetically modified maize, genetically modified soybean, qualitative PCR, real-time PCR, event-specific MON810 and GTS40-3-2

    Supported by: Key Projects in the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period of China (No. 2012BAD12B06-2), Science and Technology Key Program of Shanxi Province (No. 20140311025-3), Natural Science Foundation of Shanxi Province (No. 2013011028-2), Higher School Teaching Reform Project of Shanxi Province (No. J2012026).

    “十二五”國家科技支撐計劃子課題 (No. 2012BAD12B06-2),山西省科技攻關項目 (No. 20140311025-3),山西省自然科學基金 (No. 2013011028-2),山西省高等學校教學改革項目 (No. J2012026) 資助。

    網(wǎng)絡出版時間:2016-06-12 網(wǎng)絡出版地址:http://www.cnki.net/kcms/detail/11.1998.Q.20160612.1648.003.html

    猜你喜歡
    太谷定性農(nóng)業(yè)部
    分裂平衡問題的Levitin-Polyak適定性
    太谷任村鄉(xiāng):小蘿卜做成大產(chǎn)業(yè)
    鑫炳記太谷餅:老字號煥發(fā)新生機
    2020年中國鄉(xiāng)村振興(太谷)論壇成功舉辦
    太谷:挑起總書記惦念的“金扁擔”
    當歸和歐當歸的定性與定量鑒別
    中成藥(2018年12期)2018-12-29 12:25:44
    農(nóng)業(yè)部一號文件關于養(yǎng)豬都說了啥
    農(nóng)業(yè)部副部長余欣榮
    共同認識不明確的“碰瓷”行為的定性
    毆打后追趕致人摔成重傷的行為定性
    国产91av在线免费观看| 国产一区二区在线观看日韩| 久久精品综合一区二区三区| 最近手机中文字幕大全| 精品人妻一区二区三区麻豆| .国产精品久久| 亚洲国产精品sss在线观看| 97在线视频观看| 久久久色成人| 一级爰片在线观看| 在线观看66精品国产| 亚洲国产精品sss在线观看| 成年女人永久免费观看视频| 亚洲av免费高清在线观看| 内地一区二区视频在线| 国产伦一二天堂av在线观看| 蜜臀久久99精品久久宅男| 亚洲内射少妇av| 毛片女人毛片| 乱码一卡2卡4卡精品| 亚洲成色77777| 少妇丰满av| 免费大片18禁| 一卡2卡三卡四卡精品乱码亚洲| av在线亚洲专区| 男女啪啪激烈高潮av片| 亚洲精品国产成人久久av| 国产精品美女特级片免费视频播放器| 看黄色毛片网站| 老司机影院毛片| 天天躁夜夜躁狠狠久久av| 国产av一区在线观看免费| av女优亚洲男人天堂| 69av精品久久久久久| 丝袜美腿在线中文| 非洲黑人性xxxx精品又粗又长| 国产av一区在线观看免费| 亚洲无线观看免费| 亚洲欧美精品自产自拍| 国产爱豆传媒在线观看| 91午夜精品亚洲一区二区三区| 91av网一区二区| 国产成年人精品一区二区| 男女边吃奶边做爰视频| 欧美zozozo另类| 久久国内精品自在自线图片| 午夜激情福利司机影院| 亚洲成人久久爱视频| 久久精品国产99精品国产亚洲性色| 中文字幕久久专区| 三级经典国产精品| 成人亚洲欧美一区二区av| 久久久午夜欧美精品| 国产成人91sexporn| 久久久精品94久久精品| 国产黄片视频在线免费观看| 性插视频无遮挡在线免费观看| 99热全是精品| 一级av片app| 91精品国产九色| 国产成人精品一,二区| 大又大粗又爽又黄少妇毛片口| 小蜜桃在线观看免费完整版高清| 日韩欧美国产在线观看| 天堂av国产一区二区熟女人妻| 黄色一级大片看看| 夜夜看夜夜爽夜夜摸| 欧美又色又爽又黄视频| 最新中文字幕久久久久| 高清av免费在线| 美女xxoo啪啪120秒动态图| 在线免费十八禁| 亚洲在线观看片| 一级黄色大片毛片| 久久精品夜夜夜夜夜久久蜜豆| 男人和女人高潮做爰伦理| 精品久久久久久久久久久久久| 网址你懂的国产日韩在线| 黄片wwwwww| 久久精品久久精品一区二区三区| 成人二区视频| 欧美人与善性xxx| 国产三级在线视频| 我要看日韩黄色一级片| 99久久精品国产国产毛片| av女优亚洲男人天堂| 男人狂女人下面高潮的视频| av专区在线播放| 女人久久www免费人成看片 | 26uuu在线亚洲综合色| 国产精品久久久久久精品电影| 欧美精品国产亚洲| 中文字幕熟女人妻在线| 国产精品精品国产色婷婷| 淫秽高清视频在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲欧美精品综合久久99| 99久久成人亚洲精品观看| 亚洲在线自拍视频| 久久这里有精品视频免费| kizo精华| 九草在线视频观看| 黄色配什么色好看| 欧美三级亚洲精品| 久久久午夜欧美精品| 国产精品一及| 欧美性猛交╳xxx乱大交人| 一个人免费在线观看电影| 1024手机看黄色片| 久久精品国产亚洲av天美| 午夜免费男女啪啪视频观看| 亚洲色图av天堂| 国产熟女欧美一区二区| 国产爱豆传媒在线观看| www日本黄色视频网| 成人国产麻豆网| 国产精品一区二区三区四区久久| 亚洲18禁久久av| 午夜亚洲福利在线播放| 久久精品国产亚洲网站| 最近最新中文字幕大全电影3| 久久久久久久久久成人| 夫妻性生交免费视频一级片| 亚洲国产精品sss在线观看| 黑人高潮一二区| 18禁在线播放成人免费| 能在线免费看毛片的网站| 久久草成人影院| av专区在线播放| 国产精品乱码一区二三区的特点| 中文字幕av成人在线电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 性色avwww在线观看| 九九爱精品视频在线观看| 亚洲成av人片在线播放无| 免费观看在线日韩| 少妇被粗大猛烈的视频| 色综合亚洲欧美另类图片| 亚洲国产欧洲综合997久久,| 国产国拍精品亚洲av在线观看| 久久午夜福利片| 狂野欧美白嫩少妇大欣赏| 天堂影院成人在线观看| 在线播放无遮挡| 九九在线视频观看精品| 国产亚洲5aaaaa淫片| 99热网站在线观看| 能在线免费看毛片的网站| 三级毛片av免费| 十八禁国产超污无遮挡网站| 日本免费在线观看一区| 精品久久久久久久久亚洲| 欧美一区二区亚洲| 午夜老司机福利剧场| 国产单亲对白刺激| 岛国毛片在线播放| 日韩av不卡免费在线播放| 最近最新中文字幕免费大全7| 少妇裸体淫交视频免费看高清| 免费黄色在线免费观看| 尤物成人国产欧美一区二区三区| 人妻制服诱惑在线中文字幕| 日本色播在线视频| 长腿黑丝高跟| 一区二区三区乱码不卡18| 91精品国产九色| 国产午夜精品论理片| 精品国产一区二区三区久久久樱花 | 国产69精品久久久久777片| 国产在线男女| 久久久久久久久久成人| 国产精品1区2区在线观看.| 欧美又色又爽又黄视频| 精品久久久久久电影网 | 可以在线观看毛片的网站| 黄色配什么色好看| 日韩精品青青久久久久久| 日韩制服骚丝袜av| 一级二级三级毛片免费看| 美女cb高潮喷水在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区在线观看99 | 精品少妇黑人巨大在线播放 | 欧美日韩国产亚洲二区| 国产极品精品免费视频能看的| av国产免费在线观看| a级毛片免费高清观看在线播放| 春色校园在线视频观看| 天堂影院成人在线观看| 国产精品乱码一区二三区的特点| 日产精品乱码卡一卡2卡三| 亚洲欧美成人综合另类久久久 | 晚上一个人看的免费电影| 国产伦精品一区二区三区四那| 精品熟女少妇av免费看| 日韩欧美精品v在线| 91久久精品国产一区二区三区| 18禁在线无遮挡免费观看视频| 午夜爱爱视频在线播放| 色尼玛亚洲综合影院| 国产精品99久久久久久久久| 久久久久久九九精品二区国产| 国产高清视频在线观看网站| 久久午夜福利片| 麻豆一二三区av精品| 少妇人妻一区二区三区视频| 日本免费a在线| 国产精品美女特级片免费视频播放器| 秋霞伦理黄片| 日本免费一区二区三区高清不卡| 久久韩国三级中文字幕| 欧美日本视频| 高清av免费在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美精品自产自拍| 国产精品久久久久久av不卡| 尾随美女入室| 精品久久久久久久久av| 中文在线观看免费www的网站| 国产精品国产三级专区第一集| 一级毛片我不卡| 亚洲国产日韩欧美精品在线观看| 亚洲自偷自拍三级| 男人狂女人下面高潮的视频| 亚洲精品日韩在线中文字幕| 国产片特级美女逼逼视频| 天天一区二区日本电影三级| 欧美性猛交黑人性爽| 别揉我奶头 嗯啊视频| 2022亚洲国产成人精品| 国产人妻一区二区三区在| 大香蕉久久网| av在线天堂中文字幕| 丝袜喷水一区| 国产伦精品一区二区三区视频9| 水蜜桃什么品种好| 国产免费福利视频在线观看| 18禁在线无遮挡免费观看视频| 国产精品不卡视频一区二区| 日本猛色少妇xxxxx猛交久久| 别揉我奶头 嗯啊视频| 汤姆久久久久久久影院中文字幕 | 亚洲欧美一区二区三区国产| 欧美三级亚洲精品| 97热精品久久久久久| 国产精品不卡视频一区二区| 麻豆国产97在线/欧美| 一卡2卡三卡四卡精品乱码亚洲| 日韩一本色道免费dvd| 精品久久久久久久末码| 免费看光身美女| 高清av免费在线| 久久久久久久久久久丰满| 国产精品国产三级专区第一集| 久久国内精品自在自线图片| 成人亚洲欧美一区二区av| 超碰av人人做人人爽久久| 精品不卡国产一区二区三区| 97在线视频观看| 高清在线视频一区二区三区 | 欧美xxxx性猛交bbbb| 最近中文字幕2019免费版| 18禁在线播放成人免费| 欧美变态另类bdsm刘玥| 97超视频在线观看视频| 又爽又黄a免费视频| 国产精品无大码| 国产人妻一区二区三区在| 色网站视频免费| 国产精品女同一区二区软件| 97超碰精品成人国产| 免费不卡的大黄色大毛片视频在线观看 | 老司机福利观看| 欧美一区二区精品小视频在线| 性插视频无遮挡在线免费观看| 高清视频免费观看一区二区 | 亚洲人与动物交配视频| 我的老师免费观看完整版| 男女视频在线观看网站免费| 国产毛片a区久久久久| 欧美性猛交黑人性爽| 一级爰片在线观看| 在线免费观看的www视频| 嘟嘟电影网在线观看| 久久久亚洲精品成人影院| 日本一二三区视频观看| 插逼视频在线观看| 亚洲五月天丁香| 麻豆成人av视频| 国产成人福利小说| 免费人成在线观看视频色| 国产成人91sexporn| 亚洲欧美精品综合久久99| 午夜福利在线在线| 中文字幕精品亚洲无线码一区| 久久精品91蜜桃| 久久久久久大精品| 亚洲av不卡在线观看| av在线播放精品| 麻豆乱淫一区二区| 国内精品一区二区在线观看| 亚洲欧洲国产日韩| 久久久久九九精品影院| 久久久久久久亚洲中文字幕| 纵有疾风起免费观看全集完整版 | 久久久亚洲精品成人影院| 日本免费a在线| 亚洲精品一区蜜桃| 寂寞人妻少妇视频99o| 男女国产视频网站| 91精品国产九色| 欧美日韩综合久久久久久| 国产成年人精品一区二区| a级毛色黄片| 夫妻性生交免费视频一级片| 国产成年人精品一区二区| 麻豆av噜噜一区二区三区| 波野结衣二区三区在线| 亚洲熟妇中文字幕五十中出| 日韩欧美国产在线观看| 国产精品,欧美在线| 国产久久久一区二区三区| 日本色播在线视频| 色视频www国产| 午夜日本视频在线| 免费在线观看成人毛片| 午夜福利高清视频| 51国产日韩欧美| 日韩欧美 国产精品| 国产在视频线精品| 天堂中文最新版在线下载 | 色网站视频免费| 狠狠狠狠99中文字幕| 尾随美女入室| 午夜亚洲福利在线播放| 日韩成人伦理影院| 欧美性感艳星| 亚洲无线观看免费| 一个人免费在线观看电影| 国产伦理片在线播放av一区| 在线观看美女被高潮喷水网站| 免费av观看视频| 一边亲一边摸免费视频| 国产淫语在线视频| 欧美一区二区国产精品久久精品| 国产在线男女| 欧美性猛交╳xxx乱大交人| 欧美高清成人免费视频www| 精品久久久久久久久av| 亚洲三级黄色毛片| 国产一区二区亚洲精品在线观看| 中文字幕av在线有码专区| 国产黄a三级三级三级人| 国产色婷婷99| 成年女人永久免费观看视频| 国产又色又爽无遮挡免| av在线天堂中文字幕| 亚洲国产日韩欧美精品在线观看| 少妇裸体淫交视频免费看高清| 91狼人影院| 18禁在线播放成人免费| 国产精品乱码一区二三区的特点| 色播亚洲综合网| 欧美不卡视频在线免费观看| 国产精品久久视频播放| 九九在线视频观看精品| 日本欧美国产在线视频| 日本免费一区二区三区高清不卡| 一级黄片播放器| 在线观看av片永久免费下载| 日韩一区二区三区影片| 日本色播在线视频| 亚洲不卡免费看| 日韩制服骚丝袜av| 国产一区有黄有色的免费视频 | av在线天堂中文字幕| 91狼人影院| 视频中文字幕在线观看| 国产精品乱码一区二三区的特点| av卡一久久| 免费无遮挡裸体视频| 天天躁日日操中文字幕| 免费观看在线日韩| 水蜜桃什么品种好| 欧美日本亚洲视频在线播放| 久久草成人影院| eeuss影院久久| 中文字幕亚洲精品专区| 久久久成人免费电影| videos熟女内射| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一边摸一边抽搐一进一小说| 国产极品精品免费视频能看的| 男人和女人高潮做爰伦理| 国产女主播在线喷水免费视频网站 | 中文字幕精品亚洲无线码一区| 亚洲精品乱码久久久久久按摩| 国产中年淑女户外野战色| 男人舔奶头视频| 国产精品国产三级国产专区5o | 国产综合懂色| 变态另类丝袜制服| 中文资源天堂在线| 岛国在线免费视频观看| 在线观看66精品国产| 亚洲精品国产av成人精品| 亚洲欧美精品自产自拍| 午夜激情欧美在线| 亚洲成人精品中文字幕电影| 国产老妇伦熟女老妇高清| 欧美不卡视频在线免费观看| 国产视频首页在线观看| 又爽又黄a免费视频| 少妇人妻一区二区三区视频| 亚洲综合精品二区| 欧美激情久久久久久爽电影| 舔av片在线| 国产免费又黄又爽又色| 色吧在线观看| 蜜桃久久精品国产亚洲av| 蜜臀久久99精品久久宅男| 水蜜桃什么品种好| 亚洲一码二码三码区别大吗| 国产精品久久久久久av不卡| 免费看光身美女| 午夜久久久在线观看| 国产亚洲精品第一综合不卡 | 一边摸一边做爽爽视频免费| 色网站视频免费| 男女国产视频网站| 国产精品久久久av美女十八| 午夜av观看不卡| 老司机亚洲免费影院| 国产男女超爽视频在线观看| 精品少妇久久久久久888优播| 国产免费又黄又爽又色| 日韩制服骚丝袜av| 香蕉精品网在线| 亚洲av中文av极速乱| 色婷婷久久久亚洲欧美| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品一区三区| 性色av一级| 18在线观看网站| 久热久热在线精品观看| 精品一区二区免费观看| 成年女人在线观看亚洲视频| 欧美性感艳星| 亚洲av电影在线进入| 国产精品久久久久成人av| 边亲边吃奶的免费视频| 丰满饥渴人妻一区二区三| 免费在线观看黄色视频的| 在线观看人妻少妇| √禁漫天堂资源中文www| 免费在线观看完整版高清| 一二三四中文在线观看免费高清| 你懂的网址亚洲精品在线观看| 日韩免费高清中文字幕av| 天天操日日干夜夜撸| 一级黄片播放器| 中文字幕人妻熟女乱码| 丝袜喷水一区| 久久午夜综合久久蜜桃| 成人亚洲精品一区在线观看| 美女国产高潮福利片在线看| 制服诱惑二区| 久久久a久久爽久久v久久| 免费av中文字幕在线| 精品少妇黑人巨大在线播放| 一区二区三区乱码不卡18| 伊人亚洲综合成人网| 亚洲成人一二三区av| 亚洲国产av影院在线观看| 精品国产一区二区三区四区第35| 人人澡人人妻人| 黑丝袜美女国产一区| 亚洲欧美中文字幕日韩二区| 免费观看a级毛片全部| 精品亚洲乱码少妇综合久久| 有码 亚洲区| 人人妻人人爽人人添夜夜欢视频| 咕卡用的链子| 亚洲精品日韩在线中文字幕| 高清毛片免费看| 国产国拍精品亚洲av在线观看| 国产成人一区二区在线| 久久精品国产综合久久久 | 妹子高潮喷水视频| 七月丁香在线播放| 国产午夜精品一二区理论片| 男男h啪啪无遮挡| 成人毛片60女人毛片免费| 免费看av在线观看网站| 18禁裸乳无遮挡动漫免费视频| 国产成人午夜福利电影在线观看| 嫩草影院入口| 久久久亚洲精品成人影院| 女人被躁到高潮嗷嗷叫费观| 国产男人的电影天堂91| 人妻一区二区av| 最后的刺客免费高清国语| 久久久亚洲精品成人影院| 女的被弄到高潮叫床怎么办| 日韩三级伦理在线观看| 欧美+日韩+精品| 一本久久精品| 国产精品偷伦视频观看了| 十八禁高潮呻吟视频| 丰满乱子伦码专区| videosex国产| 最近的中文字幕免费完整| 日韩精品有码人妻一区| 成年女人在线观看亚洲视频| 亚洲欧美日韩卡通动漫| 欧美精品一区二区大全| 亚洲国产欧美日韩在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 欧美人与善性xxx| 国产在视频线精品| 日本与韩国留学比较| 丁香六月天网| 成人漫画全彩无遮挡| 最近中文字幕2019免费版| 一边摸一边做爽爽视频免费| 一区二区日韩欧美中文字幕 | 国产精品国产av在线观看| 午夜福利视频精品| 一级,二级,三级黄色视频| 高清毛片免费看| 国产精品欧美亚洲77777| 看十八女毛片水多多多| 51国产日韩欧美| 草草在线视频免费看| 在线观看免费视频网站a站| 啦啦啦视频在线资源免费观看| 天天操日日干夜夜撸| 在线亚洲精品国产二区图片欧美| 国产激情久久老熟女| 五月开心婷婷网| 日韩 亚洲 欧美在线| 草草在线视频免费看| 国产午夜精品一二区理论片| 久久精品国产综合久久久 | 亚洲伊人色综图| 成人影院久久| 在线天堂最新版资源| 青春草国产在线视频| 亚洲一级一片aⅴ在线观看| 宅男免费午夜| 亚洲欧美清纯卡通| 亚洲天堂av无毛| 精品视频人人做人人爽| 在线观看免费高清a一片| 欧美精品一区二区大全| 日韩制服丝袜自拍偷拍| 久久久久人妻精品一区果冻| 插逼视频在线观看| 亚洲精品中文字幕在线视频| 午夜激情久久久久久久| 日韩熟女老妇一区二区性免费视频| 国产黄色视频一区二区在线观看| 极品人妻少妇av视频| 久久亚洲国产成人精品v| 亚洲精品国产av成人精品| 午夜av观看不卡| 免费人成在线观看视频色| 在线观看免费高清a一片| 视频在线观看一区二区三区| 丁香六月天网| 久久青草综合色| 22中文网久久字幕| 日日啪夜夜爽| 视频中文字幕在线观看| 人成视频在线观看免费观看| 黑人巨大精品欧美一区二区蜜桃 | 亚洲人成77777在线视频| 国产精品国产三级国产专区5o| 国产欧美另类精品又又久久亚洲欧美| 久久久久国产网址| 九色亚洲精品在线播放| 女人精品久久久久毛片| 免费看光身美女| 欧美xxxx性猛交bbbb| 七月丁香在线播放| 不卡视频在线观看欧美| a级毛片黄视频| 又大又黄又爽视频免费| 国产精品人妻久久久久久| 欧美人与性动交α欧美软件 | 亚洲三级黄色毛片| av卡一久久| 国产精品成人在线| 成年女人在线观看亚洲视频| av国产久精品久网站免费入址| 黄片无遮挡物在线观看| 成人综合一区亚洲| 国产免费一区二区三区四区乱码| 欧美精品一区二区免费开放| 国产免费又黄又爽又色| 99久久综合免费| 免费人妻精品一区二区三区视频| 国产色婷婷99| 精品卡一卡二卡四卡免费| 制服诱惑二区| av视频免费观看在线观看| 最后的刺客免费高清国语| 观看av在线不卡| kizo精华| 国产老妇伦熟女老妇高清| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品999| 丝袜脚勾引网站| 日本午夜av视频| 精品亚洲成国产av|