• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The research on aero-engine gas path fault diagnosis by genetic algorithm-BP neural network

    2015-11-03 07:02:01HongchunQUYuanqiangHUANG
    機(jī)床與液壓 2015年3期
    關(guān)鍵詞:氣路遺傳算法故障診斷

    Hong-chun QU, Yuan-qiang HUANG

    (Aeronautical Engineering College of Civil Aviation University of China, Tianjin 300300, China)

    ?

    The research on aero-engine gas path fault diagnosis by genetic algorithm-BP neural network

    Hong-chun QU*, Yuan-qiang HUANG

    (Aeronautical Engineering College of Civil Aviation University of China, Tianjin 300300, China)

    In order to improve the accuracy rate of aero-engine gas-path fault diagnosis based on BP neural network, this research uses the genetic algorithm to optimize the initial weights and thresholds of BP neural network in their solution space, retrains the results by gradient descent algorithm and uses the optimized network to testify the fault samples. The result shows that GA-BP network has a higher precision and converges faster, and its convergence curve is smoother than that of the common BP network. This work can put forward new ideas and methods for aero-engine fault diagnosis and has a certain research value.

    Aero-engine, Gas path fault diagnosis, Genetic algorithm, BP neural network

    1 Introduction

    The fault diagnosis of aero-engine has very important significance for the airlines. If we can identify potential faults rapidly and accurately through analyzing the change of engine monitoring parameters, we can not only effectively avoid in-flight shut down and flight delays caused by the fault of the engine, but also make the maintenance plan better, shorten the troubleshooting time, reduce the maintenance cost, and increase the time on-wing of the engine, so as to improve the overall benefits of the airline. Recently, the common methods used for the aero-engine gas path fault diagnosis are based on the small deviations fault equation linear model, nonlinear steady-state model or artificial intelligence methods[1].

    Neural network has been considered as the most research potential diagnostic tool in artificial intelligence methods. The BP neural network has been widely applied in the field of fault diagnosis, which belongs to the gradient descent algorithm. The network initial connection weights and thresholds generally generate randomly, and the network structure and learning rate are mainly determined by experience. If the initial connection weights are valued improperly, the network can cause oscillation, misconvergence or too long in training time[2-4], giving rise to the fault recognition result being not ideal. Besides, it is complicated in practical diagnosis problems of the aero-engine. All of these make BP network exist many deficiencies in application of the field[1]. Genetic algorithm is a highly efficient parallel global search algorithm, which is developed from biological evolution theory. The algorithm has very good robustness and it succeeded in solving global optimization problems[5-6].

    Genetic algorithm not only can be used to design the neural network well, but also is benefit to obtain the global optimal solution and improve the generalization performance of neural network[2, 7]. Therefore, this article would take use of the genetic algorithm to optimize the initial weights and thresholds of BP neural network, and then retrain the results according to gradient descent algorithm and put the optimized network into the field of fault diagnosis of engine gas path.

    2 The brief introduction of BP neural networks and genetic algorithm

    Back-propagation network referred to as the BP network and is a multi-layer network which generalizes the W-H learning rules and makes weights training for nonlinear differentiable function. In the practical application of the artificial neural network, 80%-90% of network models employ BP network or its modified forms, on behalf of the most essential part of the artificial neural network.

    Fig. 1 The structure of BP network

    The BP network is a multi-layer forward feedback neural network and adjusts its weights by using back propagation learning algorithms. It consists of input layer, output layer, and a number of hidden layers, the data spread from the input layer to the output layer through hidden layers. When training the network weights, the data go along the direction of reducing error, which starts from the output layer then acrosses through the middle layers to correct the network connection weights forward and thresholds layer by layer. This process will be circled which begins from the former results until meets the network’s stable error [4, 8].

    A classic three-layer BP network is shown in Fig.1. (p1,p2, …,pn) represents the n-dimensional fault eigenvalue input. The number of the hidden layer neurons is s1; the transfer function isF1j(j=1,2,…,s1); the threshold isb1j. The number of the output layer neurons is s2; the transfer function isF1k(k=1,2,…,s2); the threshold isb2k.w1jirepresents the weight between the j-th hidden neuron and the i-th input neuron;w2kjrepresents the weight between the k-th output neuron and the j-th hidden neuron. The output values of the hidden layery1jand of the output layery2kcan be calculated by formula (1) and formula (2).

    (1)

    (2)

    The target of each output neuron istk, so the total output error E can be calculated by formula (3).

    (3)

    Utilizing the gradient descent algorithm and error back propagation to adjust the weights of output layer, the amount of change Δw2kjcan be shown as formula (4), whereδis the network learning rate.

    (4)

    Similarly, the variable quantity of each layer’s weights and thresholds could be deduced, as shown in formula (5).

    (5)

    The weights and thresholds can be adjusted in this way until the output results meet the convergence condition.

    Genetic algorithm is an advanced random method in global search, and which can simulate the selection of bio natural evolution, the process of mutation and natural selection through the computer programming. This kind of method employs the coding space instead of questioning space, and utilizes coding population as its evolutionary basis; the fitness function is its access judgment which can evaluate the selection of gene by the operation of individual gene bit string inside of the population. Thanks to the production of many initial points and the start of researching which is guided by the fitness function, the research owns extensive area and efficient operation. This result helps realize the automatic obtainment and accumulation of valuable information existed in research space and approaches to the best solution of the target function efficiently and adaptively [10-12].

    3 The theory of BP neural networks based on genetic algorithms

    3.1 Basic theory

    The basic thinking of optimizing the net work through Genetic Algorithm takes advantages of its global quick researching feature and does quick research according to the relations between input training samples and output targets. This process would find and optimize the BP network structural parameters to meet the acquirement of fitness function and improve not only the convergence speed but also the convergence accuracy of BP network. The calculating process is shown in Fig.2.

    Fig. 2 The training process of BP network basis on genetic algorithm

    3.2 Algorithm steps

    The calculation steps of genetic algorithm to optimize BP neural network are as follows.

    其中P表示整個(gè)成像區(qū)域的點(diǎn)目標(biāo)數(shù),Q表示散射區(qū)域的散射點(diǎn)數(shù).結(jié)合式(12)對a通道信號相位補(bǔ)償后與b通道相消得

    Step 1: building up structure of the network: according to the actual problem to determine BP neural network layers, the number of neurons in each layer and transfer functions.

    Step 2: the input training samples and testing samples data are normalized to eliminate the effects of different dimension between the different parameters.

    Step 3: coding: The initial weights and thresholds of BP network are encoded by order based on binary code method, and connect them together to form a chromosome, namely an individual. The value of weights and thresholds ranges from -1 to 1.

    Step 4: the generation of initial population: individual gene code is generated randomly, and the initial populationis composed.

    Step 5: decoding: decode the gene bit string of every individual in initial population, and calculate the outputs of networky2kwith training samples.

    Step 6: calculating the fitness value of individuals: the fitness value size is the evaluation standard for genetic algorithm to evaluate the individual quality, and the individual with a higher fitness value has a greater probability to inherit by the next generation [5], where the reciprocal of the mean square error (MSE) is used as the fitness function. The calculation formula is shown as formula (6), so if the network output error is smaller, the fitness value is greater.

    (6)

    Step 7: the genetic operation: to generate a higher fitness group including selection, crossover and mutation operation [5].

    Crossover: according to the crossover probabilitypc, choicepc*Psizeindividuals randomly from the new group and make chromosomes one-point crossover randomly.

    Mutation: the individuals of new group make basic bit mutation operation with the set of mutation probabilitypm, to realize the small probability turning of the genetic code, namely 0 to 1 or 1 to 0.

    Step 8: the judgment of termination condition: if the maximum genetic algebra reaches or the mean square error (MSE) meets the requirements, the evolution is terminated.

    Step 9: the weights and thresholds are decoded by the best individual serve as the initial weights and thresholds of BP network, and make the second training. If they reach the required performance, the learning process end.

    Step 10: input test sample data and check the network diagnosis results.

    4 Fault diagnosis applications

    Take the deviation of the EGT(exhaust gas temperature), FF(fuel flow), N1(low pressure rotor speed) and N2(high pressure rotor speed) by four typical faults of PW4164 (100 inch) engine as fault sample data and compile fault identification target vectors shown in table.1. These four faults are difficult to distinguish in practice because the characteristic parameter data are similar and susceptible to noise.

    Table 1 The characteristic parameters data of four typical faults

    TYPEOFFAILUREΔEGT/℃ΔFF/Δ%ΔN1/Δ%ΔN2/Δ%FAULTIDENTIFICATIONTARGETVECTOR1.HPCMODULEPERFORMANCELOSS60.80010002.LPCMODULEPERFORMANCELOSS50.80.40.301003.+2%FLOW8-thSTAGEBLEED61.70.10.700104.-0.02ΔEPRERROR52.40.60.30001

    Compile the MATLAB program to build the three-layer BP neural network by using genetic algorithm, namely GA-BP network; design four input layer neuron, five hidden layer neuron, transfer function by adopting tansig function [4], and four output layer neuron and transfer function by applying purelin [4] function. Set learning rate as 0.1 and network training target MSE≦10-5.

    The parameters of genetic algorithm are set as follow, evolution generation is 50, population is 20, and crossover rate is 0.7. Use the method of one-point crossover and set mutation rate as 0.1. Use the reciprocal of the mean square error as the fitness function. Use forty groups of characteristic parameter data from four typical faults as the training data for GA-BP network, and another ten groups of data from table 2 to testify the GA-BP network, which were historical data recorded by the engine monitoring department of airline.

    Table 2 The data of fault samples

    NO.ΔEGT/℃ΔFF/Δ%ΔN1/Δ%ΔN2/Δ%TYPEOFFAILURE15.870.820.12-0.1124.770.790.40.3235.761.780.10.7345.162.290.620.3456.130.81-0.020.05165.130.770.390.29275.871.640.10.7385.092.40.580.31496.230.770.04-0.031105.230.780.390.292

    The comparisons of fitness value between initial population and the population after evolution fifty generations by genetic algorithm optimization are indicated in Fig. 3(a). It’s obvious that the fitness value of individual have significantly improved and more stabilized. The fitness value of the best individual in population increases rapidly with the evolution and after evolution twelve generation, it is not only closing to the best fitness value, but also each generation is gradually stabilized, as shown in Fig. 3(b).

    Fig. 3 The comparisons of fitness value between initial population and the population after evolution fifty generations by genetic algorithm optimization

    Diagnosis results of GA-BP network are showen in Table 3. Comparing to the diagnostic output results of common BP network under the same network structure, both methods correctly detecte all the faults and the results are consistent with the actual monitoring situation, and the output precision of GA-BP network is better than that of common BP network. The comparisons of diagnosis results’ error value of those two kinds of method are indicated in Fig. 4(a). And the comparison of convergence curve in Fig. 4(b) shows that GA-BP network outputs are in smaller error, higher precision, converge faster and better. The BP network optimized by genetic algorithm is only trained 5 times to meet performance goals, while the common BP network needs to be trained 37 times to achieve the same performance targets. The process of the common BP network training is likely to fall into local optimum, and the performance convergence curve may not be smooth.

    Table 3 Network outcomes comparison

    NO.TARGETVECTORCOMMONBPNETWORKOUTPUTGA-BPNETWORKOUTPUT110001.0130.0212-0.0222-0.00610.92210.00040.0008-0.0002201000.11810.9887-0.11620.00590.00060.9977-0.0050.002330010-0.05270.00670.99820.0498-0.00270.00161.00480.000840001-0.1340.03930.13080.9739-0.00090.0008-0.00011.0001510001.0130.0212-0.0222-0.00610.94920.00050.00110.000260100-0.07761.05610.069-0.03210.0010.9994-0.00050.0006700100.1173-0.0280.8890.0138-0.00020.0021.0001-0.001480001-0.0656-0.01640.0721.0055-0.0003-0.0002-0.00091.0004910000.95550.04260.0402-0.02640.9755-0.00040.00450.0003100100-0.2811.08840.2637-0.0411010.00020

    Fig. 4 Comparison of two methods

    5 Conclusions

    This paper combines genetic algorithm and BP neural network, which forms an individual firstly from initial weights and thresholds coding of the BP neural network. Then optimizes its best solution in its range by using genetic algorithm, and finally reinvests the network with optimized weights and thresholds. This method can not only make full use of the better global searching ability and convergence speed of the genetic algorithm, but also overcome the shortcomings brought by the BP algorithm as the initial weights and thresholds are selected random. The fault diagnosis example of application on aero-engine indicates that the GA-BP network is better than common BP network in the network output precision, convergence speed and smoothness. This result provides a new idea and method for the study on the field of fault diagnosis of aero-engine, and is benefit to solve many problems in practical engineering such as when fault diagnosis result is not ideal and the network convergence speed is slow.

    Acknowledgements

    This paper is supported by The 4th Boeing Technical Challenge Fund (201410059).

    [1]Qu Hongchun. Study on civil turbofan engine health intelligent monitoring technologies[D]. Tianjin: Tianjin University, 2010.

    [2]Liu Yongjian. Research on Modified Neural Network for Fault Diagnosis and Performance Prediction of Aeroengine[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.

    [3]Cui Zhiquan. Civil Aeroengine Gas Path Parameter Deviation Mining Method with Application[D]. Harbin: Harbin Institute of Technology, 2013.

    [4]Zhang Defeng. MATLAB Neural Network Design[M].Beijing: China Machine Press, 2012.

    [5]Lei Yingjie, Zhang Shanwen, Li Xuwu. MATLAB Genetic algorithm toolbox and application[M].Xi’an: Xi’an University of Electronic Science and Technology Press, 2005.

    [6]CHEN Guo, HAO Tengfei, CHENG Xiaoyong, et al. Sensitivity analysis of fault diagnosis of aero-engine rolling bearing based on vibration signal measured on casing[J]. Journal of Aerospace Power, 2014, 29(12):2874-2884.

    [7]HE Chen, ZHANG Xiaodong, Patton R J. Robust fault diagnosis for aero-engine compressor sensor based on LMI and discrete model[J]. Journal of Aerospace Power, 2014, 29(4):965-972.

    [8]Chen Ming. MATLAB Examples of neural network theory and refined analysis[M]. Beijing: Tsinghua University Press, 2013.

    [9]HUANG Yuanqiang, QU Hongchun, ZHAO Yuechao. Research on aero-engine performance ranking by principa components analysis[J]. Aviation maintenance and engineering, 2015, 1: 75-77.

    [10]Chen Guo. Rough Set-Genetic Algorithm-Neural Network Compositive Classifier and Its Application in Rotor Faults Diagnosis[J]. Chinese Mechanical Engineering, 2008, 19(1):85-89.

    [11]Meng Dong, Fan Zhongjun, Wang Jiazhen. An Improvement to the BP Neural Network Algorithm Based on the Chaos Genetic Algorithm[J]. Mathematical Theory and Applications, 2014, 34(1):102-110.

    [12]Yang Mei, Qing Xiaoxia, Wang Bo. Optimization of Neural Network Based on Improved Genetic Algorithm[J]. Computer Simulation, 2009, 26(5): 198-201.

    [13]Yan Taishan. Research on Neural Network Training Algorithm Based on Genetic Algorithm[J]. Journal of Hunan Institute of Science and Technology(Natural Sciences),2007,20(1): 31-34.

    基于遺傳-BP神經(jīng)網(wǎng)絡(luò)的航空發(fā)動(dòng)機(jī)氣路故障診斷研究

    瞿紅春*,黃遠(yuǎn)強(qiáng)

    中國民航大學(xué) 航空工程學(xué)院,天津300300

    為提高BP神經(jīng)網(wǎng)絡(luò)診斷發(fā)動(dòng)機(jī)氣路故障的準(zhǔn)確率,利用遺傳算法對BP神經(jīng)網(wǎng)絡(luò)的初始連接權(quán)值和閥值在解空間內(nèi)進(jìn)化尋優(yōu),再將優(yōu)化結(jié)果賦給網(wǎng)絡(luò)以梯度下降算法進(jìn)行二次訓(xùn)練,再對待檢故障樣本進(jìn)行診斷。結(jié)果表明:GA-BP網(wǎng)絡(luò)在輸出精度、收斂速度及收斂曲線平滑性上明顯優(yōu)于普通BP網(wǎng)絡(luò),為航空發(fā)動(dòng)機(jī)故障診斷領(lǐng)域的研究提出了新的思路和方法,具有一定研究價(jià)值。

    航空發(fā)動(dòng)機(jī);氣路故障診斷; 遺傳算法; BP神經(jīng)網(wǎng)絡(luò)

    15 December 2014; revised 15 March 2015;

    Qu Hong-chun, Professor.

    E-mail: qhc@eyou.com

    10.3969/j.issn.1001-3881.2015.18.006 Document code: A

    V235

    accepted 19 May 2015

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail: jdygcyw@126.com

    猜你喜歡
    氣路遺傳算法故障診斷
    雙向LSTM模型在航空發(fā)動(dòng)機(jī)氣路故障診斷的應(yīng)用
    航天控制(2020年5期)2020-03-29 02:10:34
    一種高壓氣路接觸件密封結(jié)構(gòu)改進(jìn)設(shè)計(jì)
    基于自適應(yīng)遺傳算法的CSAMT一維反演
    一種基于遺傳算法的聚類分析方法在DNA序列比較中的應(yīng)用
    基于遺傳算法和LS-SVM的財(cái)務(wù)危機(jī)預(yù)測
    因果圖定性分析法及其在故障診斷中的應(yīng)用
    基于改進(jìn)的遺傳算法的模糊聚類算法
    某型渦軸發(fā)動(dòng)機(jī)氣路故障數(shù)值仿真
    基于LCD和排列熵的滾動(dòng)軸承故障診斷
    基于WPD-HHT的滾動(dòng)軸承故障診斷
    亚洲欧美日韩无卡精品| 精品熟女少妇八av免费久了| 丰满人妻熟妇乱又伦精品不卡| 香蕉久久夜色| 久久国产乱子伦精品免费另类| 亚洲男人天堂网一区| 亚洲七黄色美女视频| x7x7x7水蜜桃| 欧美乱码精品一区二区三区| 村上凉子中文字幕在线| 日韩欧美免费精品| 国产精品亚洲av一区麻豆| 男男h啪啪无遮挡| 身体一侧抽搐| 国产午夜精品久久久久久| 午夜福利在线观看吧| 色av中文字幕| av免费在线观看网站| 美女免费视频网站| cao死你这个sao货| 欧美另类亚洲清纯唯美| 在线观看66精品国产| 久久狼人影院| 中亚洲国语对白在线视频| 成人亚洲精品av一区二区| av电影中文网址| 久久精品人妻少妇| 亚洲性夜色夜夜综合| 人人妻人人澡人人看| 精品第一国产精品| 欧美亚洲日本最大视频资源| 美女高潮到喷水免费观看| 两性夫妻黄色片| 一本精品99久久精品77| 国语自产精品视频在线第100页| 18禁黄网站禁片免费观看直播| 成在线人永久免费视频| 成年女人毛片免费观看观看9| 欧美日本视频| 国产真人三级小视频在线观看| 国产精品爽爽va在线观看网站 | 一本综合久久免费| 神马国产精品三级电影在线观看 | 日本一区二区免费在线视频| 亚洲av片天天在线观看| 最好的美女福利视频网| 亚洲精品中文字幕一二三四区| 亚洲欧美激情综合另类| 日韩国内少妇激情av| 日韩成人在线观看一区二区三区| 亚洲一码二码三码区别大吗| 国产激情久久老熟女| 香蕉久久夜色| 美女午夜性视频免费| 日本a在线网址| 女人被狂操c到高潮| 国产亚洲精品av在线| 欧美又色又爽又黄视频| 18禁美女被吸乳视频| 欧美黄色淫秽网站| 美女国产高潮福利片在线看| 午夜影院日韩av| 亚洲性夜色夜夜综合| 两人在一起打扑克的视频| 亚洲国产欧美网| 97碰自拍视频| 听说在线观看完整版免费高清| 热99re8久久精品国产| 亚洲av中文字字幕乱码综合 | 成人国语在线视频| 亚洲av五月六月丁香网| 黄片小视频在线播放| 18禁裸乳无遮挡免费网站照片 | 国产一区在线观看成人免费| 国产高清有码在线观看视频 | 男女那种视频在线观看| 大型黄色视频在线免费观看| 国产精品av久久久久免费| 97超级碰碰碰精品色视频在线观看| 91在线观看av| 亚洲精品久久成人aⅴ小说| 最近最新免费中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 日韩精品青青久久久久久| 久久久精品欧美日韩精品| 久久久久久亚洲精品国产蜜桃av| 欧美不卡视频在线免费观看 | 视频在线观看一区二区三区| 啦啦啦韩国在线观看视频| 少妇粗大呻吟视频| 欧美激情高清一区二区三区| 欧美国产日韩亚洲一区| 成人特级黄色片久久久久久久| 丰满人妻一区二区三区视频av| 亚洲av免费高清在线观看| 成人综合一区亚洲| 深夜a级毛片| 日日干狠狠操夜夜爽| 高清毛片免费看| 国产视频一区二区在线看| 97超视频在线观看视频| 最近的中文字幕免费完整| 亚洲人成网站在线观看播放| 日韩中字成人| 一本一本综合久久| 国产成人一区二区在线| 久久精品夜夜夜夜夜久久蜜豆| 亚洲五月天丁香| 老女人水多毛片| 国产成人精品久久久久久| 国产一区二区在线av高清观看| 狂野欧美白嫩少妇大欣赏| 亚洲无线观看免费| 日本 av在线| 久久午夜福利片| 老师上课跳d突然被开到最大视频| 国产成人精品久久久久久| 亚洲国产欧美人成| 国产91av在线免费观看| av在线蜜桃| 成年女人永久免费观看视频| 欧美极品一区二区三区四区| 国产精品1区2区在线观看.| av免费在线看不卡| 欧美色欧美亚洲另类二区| 国产免费男女视频| 久久精品国产清高在天天线| 久久精品夜色国产| 国产探花极品一区二区| 日韩欧美三级三区| 麻豆av噜噜一区二区三区| 久久鲁丝午夜福利片| 99久久精品热视频| 国产中年淑女户外野战色| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品国产三级国产av玫瑰| 精品一区二区三区视频在线| 搡老熟女国产l中国老女人| 精品人妻视频免费看| 一区二区三区四区激情视频 | 成人亚洲欧美一区二区av| 国产高清视频在线观看网站| 免费看av在线观看网站| 寂寞人妻少妇视频99o| 久久久精品94久久精品| 九九爱精品视频在线观看| 你懂的网址亚洲精品在线观看 | 在线观看免费视频日本深夜| 97超视频在线观看视频| 国产成人影院久久av| 尤物成人国产欧美一区二区三区| 婷婷精品国产亚洲av在线| 一夜夜www| 日韩欧美国产在线观看| 国产午夜精品久久久久久一区二区三区 | or卡值多少钱| 国产av一区在线观看免费| 精品一区二区三区人妻视频| 亚洲av第一区精品v没综合| 亚洲不卡免费看| 悠悠久久av| 俄罗斯特黄特色一大片| 久久人妻av系列| 日韩人妻高清精品专区| 97热精品久久久久久| 99久久精品一区二区三区| 亚洲美女黄片视频| 中国美女看黄片| 国产欧美日韩精品一区二区| 午夜a级毛片| 欧美色视频一区免费| 国产精品亚洲美女久久久| 久久亚洲精品不卡| 麻豆国产av国片精品| av在线亚洲专区| 国产蜜桃级精品一区二区三区| 精品一区二区三区视频在线| 国产老妇女一区| 国产成年人精品一区二区| 非洲黑人性xxxx精品又粗又长| 亚洲av五月六月丁香网| 最近视频中文字幕2019在线8| 中文字幕免费在线视频6| 久久精品91蜜桃| 听说在线观看完整版免费高清| 久久精品国产亚洲av天美| 人妻夜夜爽99麻豆av| 国产精品女同一区二区软件| 亚洲第一电影网av| 欧美日本亚洲视频在线播放| 国产成人a∨麻豆精品| 欧美一级a爱片免费观看看| 日本与韩国留学比较| 嫩草影院入口| 国产成人一区二区在线| 麻豆国产97在线/欧美| 一级av片app| 高清午夜精品一区二区三区 | 免费在线观看成人毛片| 黄色配什么色好看| 激情 狠狠 欧美| 亚洲国产精品久久男人天堂| 村上凉子中文字幕在线| 能在线免费观看的黄片| 变态另类成人亚洲欧美熟女| 搡老妇女老女人老熟妇| 中文字幕av在线有码专区| 婷婷六月久久综合丁香| 欧美丝袜亚洲另类| 熟女电影av网| 我要搜黄色片| 赤兔流量卡办理| 看非洲黑人一级黄片| 在现免费观看毛片| 亚洲av二区三区四区| 有码 亚洲区| 蜜桃久久精品国产亚洲av| 22中文网久久字幕| 男人的好看免费观看在线视频| 18+在线观看网站| 日日撸夜夜添| 久久久国产成人精品二区| 午夜福利在线观看免费完整高清在 | 欧美zozozo另类| 99精品在免费线老司机午夜| 免费av毛片视频| 三级毛片av免费| 婷婷精品国产亚洲av| 国产一区二区三区在线臀色熟女| 国产大屁股一区二区在线视频| 蜜臀久久99精品久久宅男| 一边摸一边抽搐一进一小说| 亚洲国产精品合色在线| 床上黄色一级片| 亚洲美女搞黄在线观看 | 女的被弄到高潮叫床怎么办| 人人妻,人人澡人人爽秒播| 亚洲精品久久国产高清桃花| 黄色配什么色好看| 成人漫画全彩无遮挡| 国产综合懂色| 一区福利在线观看| 国产日本99.免费观看| 中文亚洲av片在线观看爽| 亚洲av一区综合| 国产色婷婷99| 国产私拍福利视频在线观看| 国产精品伦人一区二区| 日本五十路高清| 日本一二三区视频观看| 成年版毛片免费区| 欧美性猛交黑人性爽| 老女人水多毛片| 亚洲精品日韩av片在线观看| 久久久久性生活片| 国产爱豆传媒在线观看| 国产亚洲精品久久久com| 黄色配什么色好看| 日韩成人av中文字幕在线观看 | 嫩草影院新地址| a级一级毛片免费在线观看| 精品一区二区免费观看| 成人亚洲精品av一区二区| 中文字幕av成人在线电影| 日韩欧美精品免费久久| 国语自产精品视频在线第100页| 亚洲性夜色夜夜综合| 午夜精品一区二区三区免费看| 少妇丰满av| 麻豆乱淫一区二区| 97碰自拍视频| 久久久国产成人免费| .国产精品久久| 偷拍熟女少妇极品色| 99精品在免费线老司机午夜| 精品午夜福利在线看| 色av中文字幕| av国产免费在线观看| 秋霞在线观看毛片| 嫩草影视91久久| 春色校园在线视频观看| av福利片在线观看| 一夜夜www| 中文字幕av在线有码专区| 国产精品人妻久久久影院| 中出人妻视频一区二区| 国产精品福利在线免费观看| 在线免费观看不下载黄p国产| av.在线天堂| 99国产精品一区二区蜜桃av| 精品少妇黑人巨大在线播放 | 国产精品人妻久久久影院| 亚洲国产精品久久男人天堂| 国内揄拍国产精品人妻在线| 中出人妻视频一区二区| 久久国产乱子免费精品| 亚洲一区高清亚洲精品| 村上凉子中文字幕在线| 国产日本99.免费观看| 日韩欧美 国产精品| 18禁裸乳无遮挡免费网站照片| 日韩精品中文字幕看吧| av在线播放精品| 日韩成人伦理影院| 嫩草影院精品99| 国产欧美日韩精品一区二区| 亚洲精品粉嫩美女一区| 成人综合一区亚洲| 国产国拍精品亚洲av在线观看| 精品久久久久久久久久久久久| 久久国产乱子免费精品| 中出人妻视频一区二区| av国产免费在线观看| a级毛色黄片| 在线观看av片永久免费下载| 国产人妻一区二区三区在| 亚洲人成网站在线播放欧美日韩| 最后的刺客免费高清国语| 黄色配什么色好看| 两个人视频免费观看高清| 亚洲无线观看免费| 超碰av人人做人人爽久久| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 精品久久久噜噜| 免费电影在线观看免费观看| 国产 一区 欧美 日韩| 九九久久精品国产亚洲av麻豆| 蜜桃亚洲精品一区二区三区| 五月伊人婷婷丁香| 精品99又大又爽又粗少妇毛片| 国产午夜精品久久久久久一区二区三区 | 日韩大尺度精品在线看网址| 精品午夜福利在线看| 国产大屁股一区二区在线视频| 九九久久精品国产亚洲av麻豆| 亚洲av电影不卡..在线观看| 成人国产麻豆网| 国产精品久久久久久久久免| 精华霜和精华液先用哪个| 桃色一区二区三区在线观看| 亚洲av中文av极速乱| 亚洲人与动物交配视频| 亚洲av中文av极速乱| 最近2019中文字幕mv第一页| 亚洲av中文av极速乱| 国产麻豆成人av免费视频| 91久久精品电影网| 午夜福利在线观看免费完整高清在 | 国产 一区精品| 美女内射精品一级片tv| 看片在线看免费视频| 最新中文字幕久久久久| 国产黄色视频一区二区在线观看 | 国产视频内射| 欧美日韩一区二区视频在线观看视频在线 | 麻豆国产97在线/欧美| 国产色婷婷99| 国产一区二区亚洲精品在线观看| 午夜免费男女啪啪视频观看 | 看免费成人av毛片| 久久韩国三级中文字幕| 人人妻人人澡人人爽人人夜夜 | 特级一级黄色大片| 乱人视频在线观看| 免费看光身美女| 亚洲七黄色美女视频| 亚洲最大成人中文| 亚洲五月天丁香| 免费av不卡在线播放| videossex国产| 99视频精品全部免费 在线| 18禁裸乳无遮挡免费网站照片| 九九在线视频观看精品| 午夜精品在线福利| 成人毛片a级毛片在线播放| 日韩亚洲欧美综合| 又粗又爽又猛毛片免费看| 国产美女午夜福利| 午夜影院日韩av| 国产精品一二三区在线看| 2021天堂中文幕一二区在线观| aaaaa片日本免费| 国产男靠女视频免费网站| 在线看三级毛片| 亚洲真实伦在线观看| 免费在线观看成人毛片| 97人妻精品一区二区三区麻豆| 国产单亲对白刺激| 成人三级黄色视频| 高清毛片免费看| 亚洲综合色惰| 国内精品久久久久精免费| 国产av不卡久久| 免费一级毛片在线播放高清视频| 露出奶头的视频| 97超碰精品成人国产| 最近视频中文字幕2019在线8| 91狼人影院| 我要搜黄色片| 网址你懂的国产日韩在线| 一个人观看的视频www高清免费观看| 婷婷亚洲欧美| 男人的好看免费观看在线视频| 国产一级毛片七仙女欲春2| av女优亚洲男人天堂| 亚洲激情五月婷婷啪啪| 亚洲精品456在线播放app| 18禁黄网站禁片免费观看直播| 一卡2卡三卡四卡精品乱码亚洲| 草草在线视频免费看| 一本精品99久久精品77| 变态另类丝袜制服| 中国美白少妇内射xxxbb| 欧美日韩乱码在线| av天堂中文字幕网| 国内精品宾馆在线| 国产乱人视频| 久久草成人影院| 亚洲欧美成人综合另类久久久 | 午夜精品国产一区二区电影 | 综合色av麻豆| 亚洲欧美日韩东京热| 欧美成人a在线观看| 欧美区成人在线视频| 日本欧美国产在线视频| 久久精品人妻少妇| 中出人妻视频一区二区| 久久久久久久久大av| 国产色婷婷99| 99九九线精品视频在线观看视频| 亚洲av五月六月丁香网| 毛片女人毛片| av天堂在线播放| 性欧美人与动物交配| www日本黄色视频网| 亚洲第一电影网av| 国产成人福利小说| 欧美绝顶高潮抽搐喷水| 中国美女看黄片| 国产精品一区二区性色av| 在线免费观看不下载黄p国产| 国产一区二区三区av在线 | 国产老妇女一区| 久久久国产成人免费| 蜜臀久久99精品久久宅男| 晚上一个人看的免费电影| 搡女人真爽免费视频火全软件 | 露出奶头的视频| 麻豆av噜噜一区二区三区| 久久热精品热| 日本一二三区视频观看| av福利片在线观看| 卡戴珊不雅视频在线播放| 91狼人影院| 国产精品爽爽va在线观看网站| 精品久久久噜噜| 一进一出好大好爽视频| 蜜桃亚洲精品一区二区三区| 国产一级毛片七仙女欲春2| 99riav亚洲国产免费| 精品福利观看| av视频在线观看入口| 内射极品少妇av片p| 激情 狠狠 欧美| 午夜视频国产福利| 精品久久久久久久久av| 亚洲av成人精品一区久久| 亚洲av.av天堂| 精品久久久久久久久久久久久| 国产伦精品一区二区三区视频9| 午夜精品国产一区二区电影 | 乱码一卡2卡4卡精品| 久久久成人免费电影| 内地一区二区视频在线| www日本黄色视频网| 老司机福利观看| 亚洲一级一片aⅴ在线观看| 成人精品一区二区免费| 69av精品久久久久久| 在线天堂最新版资源| 国产麻豆成人av免费视频| 亚洲精品成人久久久久久| 观看免费一级毛片| 亚洲无线在线观看| 国产白丝娇喘喷水9色精品| 在线观看午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 一区二区三区免费毛片| 热99在线观看视频| 亚洲精品乱码久久久v下载方式| 美女免费视频网站| 一级av片app| 美女大奶头视频| 亚洲成a人片在线一区二区| 两个人的视频大全免费| 欧美成人一区二区免费高清观看| 看十八女毛片水多多多| 一区二区三区四区激情视频 | 国产老妇女一区| 成人无遮挡网站| 九九在线视频观看精品| 99riav亚洲国产免费| 熟女电影av网| 久久九九热精品免费| 色哟哟哟哟哟哟| 欧美色视频一区免费| 成人毛片a级毛片在线播放| 简卡轻食公司| 国产高清视频在线播放一区| 久99久视频精品免费| 一进一出抽搐gif免费好疼| 乱系列少妇在线播放| 中文字幕av成人在线电影| 久久精品夜色国产| 神马国产精品三级电影在线观看| 秋霞在线观看毛片| av中文乱码字幕在线| 久久草成人影院| 国产精品一及| 日韩在线高清观看一区二区三区| 成人无遮挡网站| 欧美又色又爽又黄视频| 99久久成人亚洲精品观看| 日韩欧美三级三区| 欧美最黄视频在线播放免费| 亚洲熟妇熟女久久| 日韩大尺度精品在线看网址| 国产精品三级大全| 久久久久久久久中文| 中文字幕熟女人妻在线| 国产精品野战在线观看| 91久久精品国产一区二区三区| 91在线观看av| 在线观看美女被高潮喷水网站| 亚洲最大成人中文| 色播亚洲综合网| 在线观看66精品国产| 高清毛片免费观看视频网站| 在线天堂最新版资源| 国产片特级美女逼逼视频| 久久热精品热| 国产精品,欧美在线| 国产精品伦人一区二区| 男人舔女人下体高潮全视频| 午夜福利成人在线免费观看| 欧美bdsm另类| 国产v大片淫在线免费观看| 悠悠久久av| 精品人妻熟女av久视频| 人人妻,人人澡人人爽秒播| 美女高潮的动态| 热99在线观看视频| 久久久久久久亚洲中文字幕| 欧美一区二区国产精品久久精品| 国产精品亚洲美女久久久| 国产精品女同一区二区软件| 国产又黄又爽又无遮挡在线| 五月玫瑰六月丁香| 久久亚洲国产成人精品v| 91久久精品国产一区二区成人| 成人亚洲欧美一区二区av| 别揉我奶头~嗯~啊~动态视频| 久久欧美精品欧美久久欧美| 一级av片app| 美女黄网站色视频| 一本精品99久久精品77| 精品久久国产蜜桃| 人人妻人人看人人澡| 日韩成人av中文字幕在线观看 | 久久亚洲精品不卡| 午夜福利视频1000在线观看| av在线亚洲专区| 国产精品女同一区二区软件| 国产成人一区二区在线| 久久久精品94久久精品| 亚洲天堂国产精品一区在线| 久久久久久久久大av| 99热这里只有是精品50| 欧美精品国产亚洲| 日日摸夜夜添夜夜添av毛片| 69av精品久久久久久| 久久精品91蜜桃| 1024手机看黄色片| 亚洲激情五月婷婷啪啪| 亚洲精品456在线播放app| 我的女老师完整版在线观看| 欧美潮喷喷水| 久久久久久大精品| 久久久久久久久久成人| 国产成人a∨麻豆精品| 亚洲电影在线观看av| 别揉我奶头~嗯~啊~动态视频| av中文乱码字幕在线| 亚洲人成网站在线播| 国产精品人妻久久久影院| 在线国产一区二区在线| 一区二区三区四区激情视频 | 麻豆久久精品国产亚洲av| 热99re8久久精品国产| 黄片wwwwww| 久久人妻av系列| 久久久精品欧美日韩精品| 国产精品国产高清国产av| 久久九九热精品免费| av在线观看视频网站免费| 别揉我奶头 嗯啊视频| 国产国拍精品亚洲av在线观看| 久久久久免费精品人妻一区二区| 色播亚洲综合网| 免费在线观看影片大全网站| 亚洲成a人片在线一区二区| 久久这里只有精品中国| 99热精品在线国产| 日本爱情动作片www.在线观看 |