• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and simulation of the hardware in the loop simulation platform for vehicle ACC system

    2015-11-03 07:02:00DaoningFENGZhaoduLIUGuochengMABaofengWANG
    機床與液壓 2015年3期
    關(guān)鍵詞:節(jié)氣門工程學院開度

    Dao-ning FENG, Zhao-du LIU, Guo-cheng MA, Bao-feng WANG

    (1School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)(2Guangxi Technological College of Machinery and Electricity, Nanning 530007, China)

    ?

    Design and simulation of the hardware in the loop simulation platform for vehicle ACC system

    Dao-ning FENG1,2*, Zhao-du LIU1, Guo-cheng MA1, Bao-feng WANG1

    (1School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)(2Guangxi Technological College of Machinery and Electricity, Nanning 530007, China)

    To improve the simulation accuracy for adaptive cruise control (ACC) system, the hardware in the loop simulation (HILS) platform with real actuators of ACC is developed in this paper. The HILS platform consists of simulation model parts running in the simulation instrument and hardware parts including the electronic throttle and active braking system. In the simulation model, radar simulator, controller of ACC and vehicle mode are developedin order to generate the traffic information, the control command of ACC system and calculate the motion of vehicle. By using the desired control values transmitted from the ACC’s controller, the hardware parts could realize throttle openness and braking pressure tracking control. The simulation experiments of ACC are carried out based on this HILS platform, and the simulation results confirm that the HILS platform could work in a proper way and could be used as a simulation platform to develop the controller of ACC.

    Hardware in the loop simulation, Adaptive cruise control, Vehicle model, Throttle openness control, Braking pressure control

    1 Introduction

    Feature with speed tracking ability to the preceding vehicle, adaptive cruise control (ACC) system has become a prevailing part of comfort and safety control for modern vehicles toreduce the work load of driver and decrease the possibility of rear-head accident [1-2]. With the relative speed and distance information from the car radar, ACC vehicle could cruise at a preset speed when there is no preceding vehicle or to tracking the preceding vehicle’s speed with a safety distance when the preceding vehicle travels slower than the host vehicle’s preset speed [3-4].

    Simulation experiments,which are often applied in the first steps to develop the ACC’s controller as simulator, could mimic the traffic environment and host vehicle with low cost meanwhile avoiding the risk of vehicle collision in real traffic. Generally, researchers use only mathematical models which are calculated by a computer to evaluate the performance of the ACC’s controller [5-7]. Although this method is simple and practical, the validity of experiment depends highly on the accuracy of mathematical models. In addition, simulation would get lower reliability when the key ACC actuators are difficulty to get their accurate models due to some non-linear or hysteresis characteristics. In order to solve the issue of model accuracy, some researchers use the whole vehicle on a dynamometer with audio-visual system to simulate the road environment [8-10], unfortunately it is not economic way to develop the ACC’s controller. Therefore, the hardware in the loop simulation (HILS) platform, which merely uses the hardware actuators and its sensors to improve the simulation accuracy, is a better solution for the simulation of the ACC’s controller.

    In this paper, a HILS platform is designed which consists of simulation model parts and hardware parts. After elaborate the function and configuration of each module, we conduct simulation experiments of the ACC’s control. The simulation results indicate that the HILS platform could operate properly and is capable to be used in the evaluation for further improved ACC’s controllers.

    2 Configuration of HILS platform

    The configuration of the HILS platform is illustrated in Fig.1.

    Fig.1 Block diagram of the HILS platform

    The simulation model parts, which run in the dSAPE simulation instrument with the adjustable parameters, consist of radar simulator, ACC’s controller and vehicle model. Hardware uses spare parts of the controlled vehicle, including the electronic throttle system, active braking system together with their sensors and embedded controllers. Through this way, the accuracy of the simulation could be ensured. Meanwhile, driver’s action could be introduced into the simulation process to take account the driver’s reaction in the simulation experiments.

    Serial communication is used to deliver the information such as desired throttle openness αdand desired braking pressure pdfrom the simulation model parts to the hardware part. Conversely, A/D convectors and I/O ports in the dSAPE instrument are used to get the signal of the actual throttle opennessαa, actual braking pressure pa, angle of steer wheel δ and other information from the hardware parts to the simulation model parts [11-12].

    3 Design of simulation models

    Two aspects need to be considered when the simulation modelis established, one is the model should be accurate enough to simulate the real vehicle,the other is these models should not be too complicated in terms of computation efficiencyof real time simulation.

    3.1 Radar simulator

    Radar simulator aims to generate the relative distance dr, relative velocity vrand the azimuth θ of the road vehicles and obstacles in the radar detectable area as the real radar works. Thus, traffic vehicle information we set in the simulation model needs to be transformed to the radar signal by using Eqs.(1)-(3).

    Where, t is the simulation time, s; dxand dyare the initial relative distance inxand y direction to the host vehicle, m; vxistheinitialvelocityoftargetvehicleinxdirection,m/s;vyisthevelocityoftargetvehicleinydirection,m/s;vxhandvyhisthexandydirectionvelocityofhostvehicle,m/s;axisthexdirectionaccelerationoftargetvehicle,m·s-2;subscriptiindicatestheroadvehicle/obstaclenumber.Theroadvehicles’positionandvelocitycouldbecontrolledthroughdisplayinginterface(section2.4)atanytimeofthesimulationprocess.Besides,bandwidthnoiseisaddedtotheoutputsignalofradarsimulatortosimulatethenoisecausedbyvehiclevibrationduringtheperiodoftheuseforrealradar.

    3.2 ACC’s controller

    TheACC’scontrollerisdesignedwithahierarchicalstructurewhichconsistsoftargetselector,safetydistancemodel,adesiredaccelerationsolverandanactuatorswitcherasshowninFig.1.

    Targetselectoraimsattrackingtheprecedingvehicle’smotionfromtheradarsignal.First,thevalidareawillbecalculatedtodecidethesearchingareaforprecedingvehicleby

    (4)

    Where,dminanddmaxaretheboundaries,m.Thus,onlythevehiclesinthehostvehicle’slanewouldbesearchedfor.Next,byusingthepredictedrelativedistanceandspeedcalculatedbyradarinformationofpreviouscontrolperiod,thevalidityofthetargetvehicleswouldbechecked.Thevalidityincreasesiftheradarinformationofcurrentcontrolperiodisinaccordancewiththepredictedones,orthevaliditydecreases.Inordertokeepthetargetvehicle’sinformationcontinuouslyandavoidtheaccidentalfailurefordetection,onlythetargetwhosevalidityishigherthanthecriterionwillbeacceptedasavalidatetarget.Afterthat,thevalidatetargetwhichhastheshortestlongitudinaldistancetohostvehiclewouldbeselectedastheprecedingvehicle.

    Constanttimeheadisusedinsafetydistancemodelasitcouldeffectivelyrepresentthedriver’sdesiredsafetydistanceincarfollowingmaneuverinrealtraffic.Desiredsafetydistancecouldbeevaluatedasfollows:

    (5)

    Where,ddisthedesiredsafetydistance,m;τisthetimeconstant,s;visprecedingvehiclespeedinacarfollowingscenarioorhostvehiclespeedwhentheprecedingvehicledoesnotexist,m·s-1;d0istheminimumclearance,m.

    Thedesiredaccelerationsolverusesthedistanceerrorandvelocityerrortocalculatethedesiredacceleration

    (6)

    (7)

    Where,Δdisthedistanceerror,m;Δvisvelocityerror,km·h-1.Consideringthehumandriver’sbehaviorinusingthetwoerrorsasinputtodeterminehostvehicle’sactioninacarfollowingmaneuver,wedesignedafuzzycontrollerfordesiredaccelerationadsolving.Inputandoutputmembershipfunctions,fuzzyrulesandtheoutputsurfaceareshowninFig.2,Tabel1andFig.3,respectively.

    Fig.2 Membership functions of the input and output values

    Sinceair drag could change dramatically with the host vehicle velocity vh, actuator switcher uses both adand vhto decide whether to use electronic throttle or active braking as actuator. To avoid frequent switch from two actuators around the switch boundary, a transition zone is designedwhere no actuator will be selected to work. The switching logic is illustrated in Fig.4, with actuator mode 0 stands for throttle, 1 for transition and 2 for braking. After that, actuator switcher would output αdor pdto the hardware actuators.

    Table 1 Fuzzy rules of the desired acceleration solver

    ΔvΔdNBNMNSZOPSPMPBNBNVBNVBNVBNBNMNSNSNMNVBNBNMNSNSZOZONSNBNMNSZOZOZOZOZONMNSZOZOZOPSPSPSNSZOZOZOPSPMPBPMNSZOZOPSPMPBPBPBNSZOZOPSPBPBPB

    Fig.3 Output surface of the fuzzy controller

    Fig.4 Switching logic for actuators

    3.3 Vehicle model

    Consider the requirements for ACC’s simulationscenarios, a 7 DOF vehicle model is built with the independent variables are longitudinal vehicle speed Vx, lateral vehicle speed Vy, yaw rate ψ, and the rolling speed of the four wheels ωfl,ωfr, ωrl, ωrr.Assumethevehicledriversonaflatroadandignoretherollingresistance,wecouldobtainthefollowingvehicledynamicequationsaccordingtoFig.5.

    (8)

    (9)

    Where, m is the mass of vehicle, kg; δ is the steering angle of front wheels, rad; Fwis the air drag, N; Izis the vehicle rotational inertia ofzaxis, kg·m2; Iwis the rotational inertia of the wheel and its accessories, kg·m2; a and b are the horizontal distance from the mass center to the front and rear wheel axis respectively, m; c is the wheel base, m; reis the effective rolling radius, m. F is the road force in corresponding direction of the wheels [13], N; Tais driving torque obtained from throttle openness and engine speed, N·m; Tbis the braking torque obtained from braking pressure of each wheel. Subscription fl, fr, rl, rr denote front left, front right, rear left, rear right wheel, and x, y denote x, y direction.

    Fig.5 Vehicle dynamics model

    Since Magic tire combined slip model would both consider longitudinal and lateral slip to generate tire fore, it would get better accuracyfor ACC’s simulation on a curvature road. Magic tire model could be represent by

    (13)

    (14)

    Where, fx, fyare non-lineal functions; vx, vyare the velocity of wheel in itsxandydirection, m·s-1; Fzis the vertical load of the wheel, N; μ is the friction coefficient of the road. Furthermore, according to Fig.5, vxx, vy, Fzcould beevaluated as follows:

    (15)

    (16)

    (17)

    (18)

    (19)

    (20)

    Where,l is the wheel base, m; hgis the height of the mass center, m.By using Eqs.(8)-(20), the vehicle’s motion could be determined by the numerical calculation in simulation model.

    3.4 Displaying interfaces

    Displaying interfaces could directly monitoring the control signals and change the simulation parameters, thus 3 displaying interfaces are designed to achieve different displaying functions as illustrated in Fig.6.

    Road traffic displaying interface displays the entire road vehicles’ relative position to host vehicle, meanwhile these vehicles’ motion could be controlled by using the input box of the displaying interface. Information typically could be obtained from the dashboard of real vehicle including the vehicle speed, engine speed and the control status are shown in the host vehicle displaying interface. All other key variables like dd, dr, Δd, vh, vr, Δv are displayed and saved in the experimental displaying interface.

    4 Control of hardware actuators

    As illustrated in Fig.1, we use embedded controller togenerate the control signals to manage actual throttle openness and active braking pressure to track with their desired values. For electronic throttle control, as a torque motor is used for throttle’s action, a feed forward and PID feedback controller is designed for the trackingof throttle openness. For active braking pressure’s control, we used a modified PID controller to improve control results in our previous work[14-16]. The control results of throttle openness and braking pressure are shown in Fig.7 and Fig.8 with desired values are step, ramp and sine signal, respectively.

    Fig.6 Displaying interfaces

    5 Simulations results

    Based on the HILS platform, simulation experiments of 3 typical ACC maneuver are conducted to check the functionality of simulator. The simulation results are shown in Fig.9, where these diagrams are the actual distance between the two vehicles and the safety distance, host vehicle velocity and target vehicle velocity, actual and desired throttle openness, actual and desired braking pressure from top to bottom respectively in each figure.

    Fig.7 Control results of different desired throttle openness

    Fig.8 Control results of different desired braking pressure

    Fig.9 Simulation results of the HILS

    In the first scenario, the cruise speed of host vehicle is set to 70 km/h while the preceding vehicle travels at a constant velocity of 60 km/h in the same lane of the host vehicle with an initial distance of 50 m between them. Initially, as the actual distance is greaterthan the safety distance, host vehicle will cruise at the speed of 70 km/h. At about 30 s, preceding vehicle is identified due to the smaller relative distance, and the motion of host vehicle is controlled through throttle action to track the safety distance and the velocity of preceding vehicle. At 100 s, the target vehicle begins to accelerate and drive away, thus the host vehicle come back to the state of cruising at 70 km/h.

    The speed of preceding vehicle is changed in a sine form from 50 km/h to 80 km/h in host vehicle’s lane in the second scenario. In this case, the rapid and accurate response of the hardware actuators becomes crucial for the host vehicle to tack the dynamic safety distance and the speed of preceding vehicle. From Fig.9 (b), one could conclude the host vehicle tracks preceding vehicle’s motion in a good way and the control errors do not diverge.

    The sudden cut-in maneuver of adjacent lane vehicle is simulated in scenario 3. The target vehicle cutinto host vehicle’s lane at the speed of 70 km/h with a relative distance of 10 m while the host vehicle cruises at 80 km/h. Since the actual distance is far less than the safety distance, active braking is applied to exert greatdeceleration. After obtainingthe safety distance, the host vehicle switch to the cruise mode and eventually tracks with the safety distance and the speed of preceding vehicle.

    6 Conclusions

    Based on the above results, one could conclude that the HILS platform could function properly with an effective communication between the model parts and the hardware parts. High accuracy could be achieved in the throttle openness and braking pressure tracking control. Meanwhile, the controller designed in section 2.2 could realize satisfied control results in different traffic scenarios for ACC system. Furthermore, performance evaluation could be obtained for other improved or original ACC controller by using this HILS platform. Through the change of corresponding controller andthe vehicle model in the software, this platform could also be used in the HILS simulation for other active safety control algorithm.

    Acknowledgements

    This paper is supported by General equipment department “Five-Year” advanced research projects of China(40401040302)

    [1]Xiao Lingyun, Gao Feng. A comprehensive review of the development of adaptive cruise control systems[J]. Vehicle system dynamics, 2010, 48(10):1167-1192.

    [2]Zhou J, Peng H. Range policy of adaptive cruise control vehicle for improved flow stability and string stability[J]. IEEE transactions on intelligent transportation systems, 2005, 6(2):229-237.

    [3]Seungwuk M, Wanki C, Kyongsu Y. Intelligent vehicle safety control strategy in various driving situations[J]. Vehicle system dynamics, 2010, 48(1):537-554.

    [4]Seungwuk M,Hyoungjin K, Kyongsu Y. Multi vehicle target selection for adaptive cruise control[J]. Vehicle system dynamics, 2010, 48(11):1325-1343.

    [5]Liu Hong, Gong Lilong. Study on adaptive cruise control spacing policy and stability analysis[C]// 2011 international conference on electric information and control engineering, April 15th-17th, 2011, Wuhan, 2011:5364-5367.

    [6]Asadi B, Vahidi A. Predictive cruise control: utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[J]. IEEE transactions on control systems technology, 2011,19(3):707-714.

    [7]Zhai Yao, Li Lingxi, Widmann G R, et al. Design of switching strategy for adaptive cruise control under string stability constraints[C]// American Control Conference, June 29th-July 1st, 2011, San Francisco, CA, 2011:3344-3349.

    [8]Verburg D J, Vanderknaap A C M, Ploeg J. VEHIL developing and testing intelligent vehicles[C]// IEEE intelligent vehicles symposium, 2002, Versailles, 2002:537-544.

    [9]Jihua Huang, Tan H S. A low-order DGPS-based vehicle positioning system under urbanenvironment[J]. IEEE/ASME transactions on mechatronics, 2006, 11(5): 567-575.

    [10]Kyongsu Y, Donghoon H. A vehicle stop and go control strategy based on human drivers driving characteristics[J]. Journal of mechanical science and technology, 2005, 19(4): 993-1000.

    [11]Feng Daoning, Liu Zhaodu, Pei Xiaofei, et al. Precise electric throttle openness control for vehicle ACC system[J]. Journal of Beijing Institute of Technology, 2011, 31(5):528-532.

    [12]Obradovic D, Lenz H, Schupfner M. Fusion of map and sensor data in a modern car navigation system[J]. Journal of VLSI signal processing systems for signal image and video technology, 2006, 45(1-2): 111-122.

    [13]Feng Daoning, Ye Yang, Zhang Biao,et al. Research and application of body deceleration in ABS road condition identification technique[J]. Journal of Kunming University ofScience and Technology, 2010, (6):56-60.

    [14]Pei Xiaofei, Liu Zhaodu, Qi Zhiguo, et al.Development of in-vehicle expterimental platform for ABS/ASR/ACC integrated system[J].Journal of Wuhan University of Technology,2011, 35(6):500-504.

    [15]Ma Guocheng, Liu Zhaodu, Pei Xiaofei, et al. Design of the pressure regulation algorithm for active braking in vehicle ACC system[J]. Journal of Beijing Institute of Technology, 2011, 20(4):20-27.

    [16]Zhang Dezhao, WANG Jianqiang, et al.Switching strategy for adaptive cruise control Modes for continuous acceleration[J]. Journal of Tsinghua University(Science and Technology),2010,50(8):1277-1281.

    汽車自適應(yīng)巡航控制系統(tǒng)硬件在環(huán)仿真平臺的設(shè)計與仿真試驗

    馮道寧1,2*,劉昭度1,馬國成1,王寶峰1

    1.北京理工大學 機械與車輛工程學院,北京100081 2.廣西機電職業(yè)技術(shù)學院 電氣工程學院,南寧530007

    為了提高自適應(yīng)巡航控制(ACC)系統(tǒng)的仿真精度,利用實車ACC系統(tǒng)的執(zhí)行機構(gòu)建立了硬件在環(huán)仿真(HILS)平臺。HILS平臺由仿真模型和硬件部分組成。仿真模型將運行在dSPACE仿真系統(tǒng)中,包括為了產(chǎn)生雷達模擬信號、ACC控制指令及計算車輛運行狀態(tài)的雷達模擬器、ACC控制器和車輛模型。硬件部分主要包括電子節(jié)氣門系統(tǒng)、主動制動系統(tǒng)及其附屬的傳感器及控制器等。通過串口通信接收來自ACC控制器的指令,HILS平臺的硬件可以完成節(jié)氣門開度和制動壓力跟隨控制。利用HILS平臺進行了不同工況下的ACC仿真試驗,仿真結(jié)果表明:HILS平臺工作狀況良好,并可以用于ACC控制器的開發(fā)。

    硬件在環(huán)仿真;自適應(yīng)巡航控制;車輛模型;節(jié)氣門開度控制;制動壓力控制

    1 September 2014; Revised 22 December 2014;accepted 6 March 2015

    Dao-ning FENG, Associate professor,

    Ph.D., Candidate, E-mail: fdn1978@126.com

    10.3969/j.issn.1001-3881.2015.18.001 Document code: A

    U467.1

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail: jdygcyw@126.com

    猜你喜歡
    節(jié)氣門工程學院開度
    福建工程學院
    福建工程學院
    掘進機用截止閥開度對管路流動性能的影響
    增大某車型車門開度的設(shè)計方法
    北京汽車(2021年2期)2021-05-07 03:56:26
    燃燒器二次風擋板開度對爐內(nèi)燃燒特性的影響
    電站輔機(2021年4期)2021-03-29 01:16:52
    福建工程學院
    2008款東風標致206車發(fā)動機加速不良
    2017款福特福瑞斯車節(jié)氣門匹配方法
    福建工程學院
    我們?yōu)槭裁床桓仪逑垂?jié)氣門?
    久久99热6这里只有精品| 97人妻精品一区二区三区麻豆| 久久国产乱子免费精品| 欧美区成人在线视频| 嫩草影院入口| 三级经典国产精品| 一级二级三级毛片免费看| 99re6热这里在线精品视频| 五月天丁香电影| 欧美zozozo另类| 亚洲va在线va天堂va国产| 丰满少妇做爰视频| 春色校园在线视频观看| 69av精品久久久久久| 一级片'在线观看视频| 欧美最新免费一区二区三区| 成人综合一区亚洲| 日韩一区二区视频免费看| 国产老妇伦熟女老妇高清| 亚洲av免费高清在线观看| 内地一区二区视频在线| 黄色日韩在线| 中文乱码字字幕精品一区二区三区| 男插女下体视频免费在线播放| 美女xxoo啪啪120秒动态图| 亚洲国产精品专区欧美| 久久精品国产亚洲av涩爱| 一本久久精品| 有码 亚洲区| 男女国产视频网站| 午夜福利网站1000一区二区三区| 91久久精品电影网| 亚洲精品国产成人久久av| 亚洲成人久久爱视频| 国产成人精品一,二区| 欧美区成人在线视频| eeuss影院久久| 一级毛片电影观看| 欧美另类一区| 欧美性猛交╳xxx乱大交人| 国产黄片美女视频| 亚洲美女搞黄在线观看| 日韩免费高清中文字幕av| 国产精品爽爽va在线观看网站| 麻豆成人午夜福利视频| 在线亚洲精品国产二区图片欧美 | 国内精品宾馆在线| 18+在线观看网站| 日本黄色片子视频| 国内精品宾馆在线| 国产高清三级在线| 亚洲电影在线观看av| 七月丁香在线播放| 国产淫片久久久久久久久| 日韩视频在线欧美| 国产精品一区二区在线观看99| 国产免费福利视频在线观看| 中文天堂在线官网| 99久久人妻综合| 亚洲精品国产成人久久av| 亚洲av成人精品一二三区| 国产成人免费观看mmmm| 91久久精品国产一区二区三区| 最新中文字幕久久久久| 久久久成人免费电影| 午夜福利视频精品| 99热这里只有是精品50| 男女边摸边吃奶| 国产一区二区亚洲精品在线观看| 国产成人aa在线观看| 美女视频免费永久观看网站| 日韩亚洲欧美综合| 午夜亚洲福利在线播放| 丰满乱子伦码专区| 各种免费的搞黄视频| 亚洲怡红院男人天堂| 日韩av不卡免费在线播放| 免费看a级黄色片| 中国国产av一级| 国产69精品久久久久777片| 国产日韩欧美在线精品| 国产伦在线观看视频一区| 久久精品熟女亚洲av麻豆精品| 91久久精品国产一区二区成人| 亚洲国产精品专区欧美| 国产免费福利视频在线观看| 99久久九九国产精品国产免费| 久久久久精品久久久久真实原创| 婷婷色综合www| 中文字幕人妻熟人妻熟丝袜美| 赤兔流量卡办理| 国产又色又爽无遮挡免| 久久久精品免费免费高清| 欧美日本视频| 免费在线观看成人毛片| 亚洲精品456在线播放app| 欧美日韩精品成人综合77777| 不卡视频在线观看欧美| 亚洲最大成人中文| 国产精品一二三区在线看| 一级爰片在线观看| 亚洲一区二区三区欧美精品 | 69av精品久久久久久| 国内精品宾馆在线| 欧美日韩亚洲高清精品| 夜夜爽夜夜爽视频| 伦精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| 成人二区视频| 99热这里只有是精品50| 在线播放无遮挡| 日日摸夜夜添夜夜添av毛片| 肉色欧美久久久久久久蜜桃 | 国产精品99久久99久久久不卡 | 免费看不卡的av| 国产乱人偷精品视频| 色视频www国产| 亚洲欧美一区二区三区国产| 亚洲综合精品二区| 青春草国产在线视频| 亚洲av成人精品一区久久| 人妻夜夜爽99麻豆av| 日本猛色少妇xxxxx猛交久久| 国产黄色视频一区二区在线观看| 国产一区二区三区综合在线观看 | 久久久成人免费电影| av在线观看视频网站免费| 婷婷色麻豆天堂久久| 两个人的视频大全免费| 亚洲自拍偷在线| 国产黄片视频在线免费观看| 男女那种视频在线观看| 汤姆久久久久久久影院中文字幕| 嫩草影院入口| 日韩欧美一区视频在线观看 | 老师上课跳d突然被开到最大视频| 少妇高潮的动态图| 两个人的视频大全免费| 亚洲欧美日韩东京热| 狠狠精品人妻久久久久久综合| 99热这里只有精品一区| 精品人妻一区二区三区麻豆| 国产淫语在线视频| 午夜爱爱视频在线播放| 尤物成人国产欧美一区二区三区| 永久免费av网站大全| 有码 亚洲区| 禁无遮挡网站| 亚洲va在线va天堂va国产| 六月丁香七月| 综合色av麻豆| 午夜福利视频精品| 三级国产精品片| 高清在线视频一区二区三区| 岛国毛片在线播放| 人妻夜夜爽99麻豆av| 久久精品久久久久久噜噜老黄| 国国产精品蜜臀av免费| 97热精品久久久久久| 国产黄色视频一区二区在线观看| 中文字幕免费在线视频6| 亚洲久久久久久中文字幕| 黄色配什么色好看| 国产黄a三级三级三级人| 国产精品国产三级国产专区5o| 日韩国内少妇激情av| 国产精品久久久久久精品电影| av女优亚洲男人天堂| 中国美白少妇内射xxxbb| 黄片wwwwww| 天天躁日日操中文字幕| 亚洲在线观看片| 全区人妻精品视频| 亚洲精品日韩av片在线观看| 精品人妻视频免费看| 一区二区三区精品91| 亚洲精品国产色婷婷电影| 久久韩国三级中文字幕| 久久久色成人| 干丝袜人妻中文字幕| 国产欧美日韩精品一区二区| 另类亚洲欧美激情| 全区人妻精品视频| 欧美少妇被猛烈插入视频| 久久久久久久大尺度免费视频| 插逼视频在线观看| 亚洲精品国产色婷婷电影| 女人被狂操c到高潮| 日韩,欧美,国产一区二区三区| 欧美精品人与动牲交sv欧美| 国产高潮美女av| 国产精品久久久久久久电影| 自拍偷自拍亚洲精品老妇| 又大又黄又爽视频免费| 搡老乐熟女国产| videossex国产| 免费看日本二区| 久久久久久久久久人人人人人人| 亚洲一级一片aⅴ在线观看| 韩国av在线不卡| 亚洲最大成人中文| 久久久久精品久久久久真实原创| 欧美性感艳星| 亚洲四区av| 欧美激情在线99| 三级国产精品片| 中文在线观看免费www的网站| 久久精品国产亚洲av涩爱| 日韩av在线免费看完整版不卡| 天堂中文最新版在线下载 | 最近手机中文字幕大全| 亚洲av中文字字幕乱码综合| 日韩av在线免费看完整版不卡| 国产淫片久久久久久久久| 亚洲国产欧美在线一区| 王馨瑶露胸无遮挡在线观看| 日本黄色片子视频| 国产乱人偷精品视频| 国产欧美亚洲国产| 亚洲激情五月婷婷啪啪| 啦啦啦在线观看免费高清www| 国产免费一区二区三区四区乱码| 国产一级毛片在线| 亚洲成色77777| 亚洲精品国产成人久久av| 丝瓜视频免费看黄片| 成人毛片a级毛片在线播放| 91久久精品国产一区二区三区| 国产中年淑女户外野战色| 欧美潮喷喷水| 国产高潮美女av| 日本与韩国留学比较| 国产成人福利小说| 一级二级三级毛片免费看| 18禁在线无遮挡免费观看视频| 亚洲欧美一区二区三区国产| 国产 一区 欧美 日韩| 免费看a级黄色片| 大香蕉97超碰在线| 久久这里有精品视频免费| freevideosex欧美| 亚州av有码| 校园人妻丝袜中文字幕| 亚洲av一区综合| 国产人妻一区二区三区在| 亚洲美女搞黄在线观看| 大陆偷拍与自拍| 国内揄拍国产精品人妻在线| 噜噜噜噜噜久久久久久91| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 成人特级av手机在线观看| 精品人妻一区二区三区麻豆| 午夜日本视频在线| 18禁在线播放成人免费| 亚洲成人一二三区av| 麻豆成人av视频| 麻豆久久精品国产亚洲av| 婷婷色麻豆天堂久久| 中国三级夫妇交换| 在线观看免费高清a一片| 99热这里只有是精品在线观看| 老女人水多毛片| 久久精品人妻少妇| 美女cb高潮喷水在线观看| 伊人久久国产一区二区| 亚洲欧美日韩东京热| 久久久久精品久久久久真实原创| 亚洲色图综合在线观看| 乱系列少妇在线播放| 亚洲久久久久久中文字幕| 91狼人影院| 日本与韩国留学比较| 青青草视频在线视频观看| 少妇人妻精品综合一区二区| 国产成人精品一,二区| 国产黄频视频在线观看| 免费黄色在线免费观看| 91久久精品电影网| 久久国内精品自在自线图片| 免费av不卡在线播放| 综合色av麻豆| 亚洲精品中文字幕在线视频 | 街头女战士在线观看网站| 噜噜噜噜噜久久久久久91| 亚洲人与动物交配视频| 91精品一卡2卡3卡4卡| 永久网站在线| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区四区激情视频| 蜜桃亚洲精品一区二区三区| 可以在线观看毛片的网站| 亚洲一区二区三区欧美精品 | 午夜福利在线观看免费完整高清在| 亚洲av一区综合| 国产精品麻豆人妻色哟哟久久| 日韩av在线免费看完整版不卡| 欧美性感艳星| 狠狠精品人妻久久久久久综合| 日本熟妇午夜| 中文欧美无线码| 国产亚洲91精品色在线| 一个人观看的视频www高清免费观看| 亚洲最大成人手机在线| 99热这里只有精品一区| 日韩在线高清观看一区二区三区| 黄片wwwwww| 国产人妻一区二区三区在| 岛国毛片在线播放| 亚州av有码| 欧美xxxx性猛交bbbb| 日韩在线高清观看一区二区三区| 亚洲激情五月婷婷啪啪| 亚洲精品色激情综合| 国产成人免费无遮挡视频| 香蕉精品网在线| 国产欧美亚洲国产| 蜜臀久久99精品久久宅男| 91久久精品国产一区二区成人| 亚洲精华国产精华液的使用体验| 各种免费的搞黄视频| 久久人人爽人人片av| 久久久久国产网址| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av二区三区四区| 黄色配什么色好看| 成年女人看的毛片在线观看| 亚洲激情五月婷婷啪啪| 亚洲av成人精品一二三区| 舔av片在线| 国产亚洲精品久久久com| 久久精品夜色国产| 亚洲不卡免费看| 91精品一卡2卡3卡4卡| 99re6热这里在线精品视频| 免费av观看视频| 国产伦理片在线播放av一区| 成人欧美大片| 中文字幕人妻熟人妻熟丝袜美| 可以在线观看毛片的网站| 亚洲色图av天堂| 天天躁夜夜躁狠狠久久av| 日韩欧美精品v在线| 日韩制服骚丝袜av| 王馨瑶露胸无遮挡在线观看| 美女被艹到高潮喷水动态| 久久99精品国语久久久| 婷婷色综合www| 日韩一区二区视频免费看| 久久国产乱子免费精品| 久久午夜福利片| 国产日韩欧美在线精品| 国产精品久久久久久久电影| 中文字幕av成人在线电影| 久久久精品欧美日韩精品| 久久精品综合一区二区三区| 热99国产精品久久久久久7| 免费人成在线观看视频色| 久久99精品国语久久久| 王馨瑶露胸无遮挡在线观看| a级一级毛片免费在线观看| 亚洲精品,欧美精品| 超碰av人人做人人爽久久| 亚洲精品成人av观看孕妇| 亚洲人成网站在线观看播放| 汤姆久久久久久久影院中文字幕| 听说在线观看完整版免费高清| 欧美成人精品欧美一级黄| 黄色日韩在线| 国产黄a三级三级三级人| 久久精品久久精品一区二区三区| 一级爰片在线观看| eeuss影院久久| 性色av一级| 久久久亚洲精品成人影院| 亚洲精品影视一区二区三区av| 国产在线男女| 国产一区二区三区av在线| 一二三四中文在线观看免费高清| 日韩亚洲欧美综合| 精品人妻一区二区三区麻豆| 色网站视频免费| 久久99精品国语久久久| 亚洲欧美日韩卡通动漫| 亚洲天堂国产精品一区在线| 只有这里有精品99| 99久久精品国产国产毛片| 日本免费在线观看一区| 午夜福利视频1000在线观看| 亚洲av日韩在线播放| 97热精品久久久久久| 日日摸夜夜添夜夜添av毛片| 97热精品久久久久久| 水蜜桃什么品种好| 国产精品国产av在线观看| 亚洲综合色惰| 五月天丁香电影| 人妻一区二区av| 一级毛片 在线播放| 国产精品蜜桃在线观看| 亚洲av日韩在线播放| 麻豆国产97在线/欧美| 欧美3d第一页| 91午夜精品亚洲一区二区三区| 欧美日韩国产mv在线观看视频 | 国产精品久久久久久精品古装| 在线播放无遮挡| 男的添女的下面高潮视频| 日本猛色少妇xxxxx猛交久久| 免费看av在线观看网站| 全区人妻精品视频| 久久99热这里只频精品6学生| 伊人久久国产一区二区| 亚洲真实伦在线观看| 亚洲av免费高清在线观看| 国内精品美女久久久久久| 丝袜脚勾引网站| 日韩人妻高清精品专区| 亚洲av免费高清在线观看| 成人亚洲精品一区在线观看 | 午夜福利视频精品| 99精国产麻豆久久婷婷| 国产淫片久久久久久久久| 日韩人妻高清精品专区| 女人被狂操c到高潮| 少妇丰满av| 在线亚洲精品国产二区图片欧美 | 男人爽女人下面视频在线观看| 九草在线视频观看| 在线观看美女被高潮喷水网站| 精品少妇黑人巨大在线播放| 18禁在线无遮挡免费观看视频| 一级毛片黄色毛片免费观看视频| 日韩亚洲欧美综合| 蜜臀久久99精品久久宅男| 一级av片app| 少妇人妻 视频| 国产大屁股一区二区在线视频| 国产精品久久久久久精品电影| 直男gayav资源| 成人国产麻豆网| 成年免费大片在线观看| 亚洲av欧美aⅴ国产| 欧美xxxx黑人xx丫x性爽| 欧美一级a爱片免费观看看| 午夜精品一区二区三区免费看| 日韩国内少妇激情av| 国产亚洲91精品色在线| 欧美极品一区二区三区四区| 亚洲精品自拍成人| 国产成人免费无遮挡视频| 免费av观看视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品无大码| 亚洲av欧美aⅴ国产| 97热精品久久久久久| 伊人久久精品亚洲午夜| 五月玫瑰六月丁香| 亚洲av福利一区| 国产欧美日韩一区二区三区在线 | 亚洲经典国产精华液单| 69人妻影院| 精品视频人人做人人爽| 日日撸夜夜添| 在线亚洲精品国产二区图片欧美 | 亚洲国产av新网站| 狂野欧美激情性bbbbbb| 成人亚洲精品一区在线观看 | 高清av免费在线| 老女人水多毛片| 少妇人妻 视频| 日韩 亚洲 欧美在线| 日本-黄色视频高清免费观看| 欧美成人a在线观看| 亚洲成色77777| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 毛片女人毛片| 国产精品成人在线| 国产日韩欧美亚洲二区| 精品一区在线观看国产| 亚洲色图av天堂| 国产老妇伦熟女老妇高清| 久久99精品国语久久久| 尤物成人国产欧美一区二区三区| 久久久精品94久久精品| 色综合色国产| 男人爽女人下面视频在线观看| 一区二区三区精品91| 直男gayav资源| 色哟哟·www| 内射极品少妇av片p| 国语对白做爰xxxⅹ性视频网站| 身体一侧抽搐| 简卡轻食公司| 国产永久视频网站| 精品久久久精品久久久| 亚洲成色77777| 一区二区三区四区激情视频| 免费看光身美女| 少妇裸体淫交视频免费看高清| 久久精品熟女亚洲av麻豆精品| 国产精品一及| 性色av一级| 久久久午夜欧美精品| 国产亚洲精品久久久com| 日本免费在线观看一区| 一区二区三区乱码不卡18| 夫妻性生交免费视频一级片| 视频中文字幕在线观看| 最近最新中文字幕大全电影3| 日日撸夜夜添| 日韩欧美一区视频在线观看 | 大码成人一级视频| 尾随美女入室| 最近手机中文字幕大全| 国产精品成人在线| av在线老鸭窝| 色视频在线一区二区三区| 精品酒店卫生间| 国产成人a∨麻豆精品| 国产黄片美女视频| 日本av手机在线免费观看| 亚洲在久久综合| 九色成人免费人妻av| 国产成人精品一,二区| 精华霜和精华液先用哪个| 建设人人有责人人尽责人人享有的 | 人人妻人人爽人人添夜夜欢视频 | 亚洲精品国产av蜜桃| 国产一区亚洲一区在线观看| 内射极品少妇av片p| 日本欧美国产在线视频| 亚洲成人中文字幕在线播放| 国产色婷婷99| 亚洲欧美日韩卡通动漫| 国产永久视频网站| 日本三级黄在线观看| av一本久久久久| 国产高清不卡午夜福利| 国产亚洲精品久久久com| 国产乱人视频| 国产精品一二三区在线看| 久久99精品国语久久久| 啦啦啦啦在线视频资源| 亚洲精品乱码久久久久久按摩| 久久人人爽人人片av| av免费观看日本| 尤物成人国产欧美一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久久久久丰满| 欧美日韩在线观看h| 人妻系列 视频| 欧美精品人与动牲交sv欧美| 欧美xxxx性猛交bbbb| 日本黄大片高清| 人妻少妇偷人精品九色| av在线蜜桃| 亚洲va在线va天堂va国产| 制服丝袜香蕉在线| 丝袜脚勾引网站| 91aial.com中文字幕在线观看| 在线观看一区二区三区激情| av在线播放精品| 精品人妻偷拍中文字幕| 尤物成人国产欧美一区二区三区| 18禁在线播放成人免费| 亚洲欧美精品自产自拍| 午夜精品国产一区二区电影 | 亚洲综合精品二区| 日韩av在线免费看完整版不卡| 男人狂女人下面高潮的视频| 黄片wwwwww| 观看免费一级毛片| 久久久久久国产a免费观看| 欧美变态另类bdsm刘玥| 久久久久久国产a免费观看| 大又大粗又爽又黄少妇毛片口| 中文精品一卡2卡3卡4更新| 亚洲av成人精品一区久久| 久久精品久久久久久噜噜老黄| 欧美 日韩 精品 国产| 亚洲怡红院男人天堂| 黄色欧美视频在线观看| 噜噜噜噜噜久久久久久91| 九草在线视频观看| 国产成人a∨麻豆精品| 成人亚洲欧美一区二区av| 日本欧美国产在线视频| 亚洲av国产av综合av卡| 嘟嘟电影网在线观看| 夫妻午夜视频| 一级毛片黄色毛片免费观看视频| 如何舔出高潮| 亚洲精品国产成人久久av| 一个人看的www免费观看视频| 99热这里只有是精品在线观看| 国产男人的电影天堂91| 久久女婷五月综合色啪小说 | 午夜福利在线观看免费完整高清在| 水蜜桃什么品种好| 少妇丰满av| 男女无遮挡免费网站观看| av一本久久久久| 伊人久久精品亚洲午夜| 18禁在线无遮挡免费观看视频| 边亲边吃奶的免费视频| 成年人午夜在线观看视频| 国产高潮美女av| 韩国av在线不卡| 神马国产精品三级电影在线观看| 51国产日韩欧美| 精品人妻视频免费看| 国产久久久一区二区三区| 国产精品人妻久久久影院|