• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    銀納米晶對鉺鐿共摻的TeO2-WO3-La2O3微晶玻璃發(fā)光性能的影響

    2018-07-04 06:15:30陳淑文張文俊
    無機化學學報 2018年7期
    關鍵詞:微晶學報

    陳淑文 林 健 張文俊

    (同濟大學材料科學與工程學院,教育部先進土木工程材料重點實驗室,上海 201800)

    0 Introduction

    Tellurite glasses have many advantages such as wide range of transparency,large optical nonlinearity,refractive index and density,high solubility of rareearth (RE)ions,as well as low phonon energy compared to other oxide glasses[1].These characteristics make RE doped tellurite glasses promising candidates for the optical fiber amplifier,laser and new band optical communication[2].Er3+-doped tellurite glass has generated considerableinterest duetotheirfavorable emissions of blue,red,green and near-infrared light[3].Yb3+is known as a resourceful dopant can enhance the luminescence emissions of Er3+due to its large absorption cross-section.What′s more,the resonance energy transfer between Yb3+and Er3+can significantly improve the pumping efficiency of Er3+,and improve the upconversion (UC)properties of glasses[4].However,the luminous intensity of RE doped tellurite glasses is still weaker than some luminescent crystals[5].

    Over the last few years,glass-ceramics have attracted great interest because of their prospective applications as promising hosts for RE ions.The formation of micro-crystals in the glass can greatly change the coupled environment around RE ions,and reduce the covalence of crystal field as well as the vibration energy of lattice[6].Gao et al.[7]obtain NaYF4∶Tb3+,Yb3+,Li+crystallites in silicate oxide system.RE ions are gathering around the micro-crystals,which increases the probability of the energy transfer between RE ions,and improves the luminous performance of the glasses.In addition,the simple process of preparation and synthesis makes RE ions doped glassceramics become important UC luminescence materials.Ansari et al.[8]report the synthesis of YbF3/ErF3-codoped lithium tungsten tellurite oxyfluoride glass-ceramicscontain LiYbErF4nanocrystals.An intense visible emission originated from Er3+can be observed due to the cooperative UC processed 980 nm excitation.

    The localized surface plasmon resonance (LSPR)can increase the local field on the RE ions which near the metal nanoparticles and transferring energy to the RE ions,When the incident light wavelength or photoluminescence (PL)wavelength of the glass is close to the localized surface plasmon resonance wavelength,due to the local field enhancement(LFE)and energy transfer (ET)from Ag to RE ions,the luminescence intensity of glasses can be enhanced[9].Therefore,inorganic glasses doped with silver nanocrystals(Ag NPs)have received considerable attention[10]due to their unique optical properties[11].Amjad et al.[12]report significant luminescence enhancement of Er3+ions as well as raman intensity of Ag NPs embedded zinctellurite glasses.The radiative transition of Er3+ions and Ag NPs induce the electric dipoles,leading to the enhancement of PL[2-13].Ma et al.[14]successfully introduce Ag NPs into SiO2-Al2O3-CaF2system and obtain the glass-ceramics containing CaF2crystallites with significant enhanced luminous intensity.To our best knowledge,the study oftellurite glass-ceramics containing Ag NPs is rare.

    In this paper,we report the optical properties of Er3+/Yb3+co-doped tellurite glass-ceramics containing Ag NPs.The effect of different introducing ways of Ag NPs on the UC luminescence properties of Er3+/Yb3+co-doped tellurite glass-ceramics were systematically investigated.Ourstudy furtherdemonstrates the luminescent intensity of the sample co-doped with AgCl and AgNO3has the better UC luminescence properties than the sample which was single doped with AgCl or AgNO3.Tellurite glass-ceramics doped with RE ions and Ag NPs are promising candidates for the development of lasers and optical amplifiers for PL based devices.

    1 Experimental

    1.1 Material preparation

    Tellurite glasses with compositions 69TeO2-23WO3-8La2O3(TWL)containing fixed concentration of Er3+(0.5% (n/n),Yb3+(1.0% (n/n),AgCl(0~2.0% (w/w))and AgNO3(0~3.0% (w/w)were prepared by conventional melt-quenching method,melting anhydrous mixtures of TeO2(99.99%),La2O3(99.99%),Er2O3(99.99%),Yb2O3(99.99%),WO3(99.99%),AgCl (99.9%)and AgNO3(99.9%).A gold crucible containing the glass constituents was placed in an electric furnace at(790±10)℃ for 15 min and the melt was poured onto a preheated stainless steel plates.Subsequently,the samples were annealed at 380℃for 2 h to remove the thermal and mechanical strains completely.The samples were then cooled down to the room temperature.69TeO2-23WO3-8La2O3-0.5%Er2O3-1.0%Yb2O3(TWL-ErYb base glass)and 69TeO2-23WO3-8La2O3-0.5%Er2O3-1.0%Yb2O3-1.0%AgCl (TWL-ErYb-1AgCl)glasses were heat treated at different heat treatment conditions and other samples were heat treated at appropriate heat treatment condition(at 390 ℃ for 15 min)to form glass ceramics.The samples heat treated at different temperatures (T)and times (t)are denoted as T-t.Finally,all the samples were cut and polished for the structural and optical measurements.

    1.2 Characterizations

    Differential thermal analysis (DTA)measurement(NETZSCH STA 449C)was carried out by heating about 0.02 g of glass powder in alumina crucible at the heating rate of 10 K·min-1from 200 to 800℃.The used atmosphere in DTA was N2,and the gas flow was set as 40 mL·min-1.The DTA results of samples were referenced to that of alumina powder.Phase identification of the samples was performed by X-ray diffraction (XRD)analysis with Cu Kα (λ=0.154 06 nm,35 kV,30 mA)radiation (D8 Advance,Bruker Inc.,Germany)at room temperature in the 2θ range of 10°~70°with a step size of 0.02°and a step scanning time of 1 s.The UV-NIR absorption spectra of glasses were recorded by a UV-4100 UV/VIS/NIR spectrophotometer in the range of 400~1 100 nm.The fluorescence spectrometer (Model Omni-λ300 Zolix),together with aphotomultiplierdetector (PMTH-SI-CR131)were used to measure the luminescence spectra under 980 nm diode laser within the range of 500~700 nm.Laser power is 194 mW and focusing methodology is lens focusing.Standard sample was used to compare the intensity between different spectra.Luminescence decay times in the microsecond time scale was measured on an Edinburgh FLSP920 spectrophotometer.All spectroscopic measurements were performed at room temperature.The characterizations of nanocrystal or microcrystal in glasses were carried out by a Transmission electron microscopy (TEM)(JEM-2100)with an accelerating voltage of 200 kV.The samples were grinded into fine powders in an agate mortar.Subsequently,the powders were dissolved in ethanol and then dispersed by supersonic before the solution was dropped on the copper grid.

    2 Results and discussion

    2.1 Effect of micro-crystallization on luminescence of the TWL-ErYb glasses

    Comparing to the base glass,appropriate microcrystallization can improve the strength and thermal stability of glass.For example,oxyfluoride glassceramics doped with RE ions show higher chemical and mechanical stability and lower phonon energy than fluoride glasses[7].

    The transparent TWL-ErYb glass-ceramics were prepared by appropriate heat treating.The absorption spectra of TWL-ErYb glasses before and after heat treatment at 390℃for 15 min are presented in Fig.1.After heat treatment,the absorption edge shows no obvious shift.The spectra exhibit a number of distinct absorption bands around 974,800,654,544,522 and 499 nm,which can be well assigned as the electronic transitions of Er3+from its ground4I15/2state to the4I11/2,4I9/2,4F9/2,4S3/2,2H11/2and4F7/2excited states,the absorption bands around 974 nm also include the electronic transitions of Yb3+from its ground2F7/2state to the2F5/2besides[15].This result clearly shows that Er3+ions exists in the glass.In order to further check whether microcrystals were formed,the samples were characterized by TEM,instead of the XRD which is found to be hard to detective small amount of nanometer size micro-crystals in the glass.

    Fig.1 Absorption spectra of TWL-ErYb glasses before and after heat treatment(390 ℃-15 min)

    Fig.2 shows representative HR-TEM images of TWL-ErYb base glass after heat treatment at 390℃for 15 min.There were many micro-crystals precipitated in the glass,and the size of micro-crystals varies from 40 to 150 nm.The measurement results of crystalline inter-planar space are 0.357 14 and 0.329 8 nm,corresponding to the (311)plane of Er2WO6(PDF No.38-0102)andLa2(WO4)3(PDF No.19-0669).For this reason,it can be inferred that Er3+ions have been incorporated into micro-crystals,which hasbeen demonstrated to improve the efficiency of the UC luminescence to a certain extent[16].

    Fig.2 HR-TEM images of TWL-ErYb base glass with heat treatment(390 ℃-15 min)and (b,c)are the enlarged view of(a)

    Fig.3 shows the UC emission spectra of TWLErYb base glasseswith differentheattreatment temperatures under the excitation of 980 nm.Three UC emission bands that located at 538,557 and 674 nm can be clearly observed,which can be assigned to2H11/2→4I15/2,4S3/2→4I15/2and4F9/2→4I15/2transitions of Er3+ions,respectively[17].With the increase of heat treatment temperature,luminous intensity of each band gradually enhanced.As shown in Fig.1,after heat treatment,the transmittance of glass declined,to the contrary,the intensity of RE absorption peaks accordingly increased and the non-radiative-relaxation influences which caused by RE ions co-doping can be eliminated due to the lower phonon energy of glass ceramics[18].

    Fig.3 Up-conversion emission spectra of TWL-ErYb base glasses for different heat treatment temperatures with the same treatment time of 15 min

    What′s more,comparing to the red emission (674 nm),the enhancement of the green emission (557 nm)is more obvious (Fig.3).However,the enhancement ofluminescencecaused bymicro-crystalsisnot significant because of the incomplete structure of micro-crystals. Even when the heat treatment temperature was raised to 410℃,due to the overgrowth of micro-crystals,the luminous intensity of the glass was decreased.In order to investigate the luminescence mechanism of RE ions in glasses,the power dependence of UC emission intensity for TWLErYb base glasses without and with heat treatment at 390℃for 15 min were studied,as shown in the inset of Fig.3.The slope (n)for 557 nm wavelength of the sample without heat treatment was 1.84,and the sample with heat treatment at 390℃for 15 min was 1.71.The result confirms that the green emission (557 nm)originates from the two-photon process absorption of Er3+ions,and micro-crystallization has little effect on the UC mechanism of Er3+and Yb3+ions[19].

    2.2 Effect of AgCl on luminescence of the TWLErYb glasses

    Introducing Ag NPs into RE ions doped glasses can effectively alter the free space spectral properties of RE ions and enhance the yield of their weak optical transitions[20-21].It is common to introduce AgCl as source of silver in glasses.The introduction of AgCl can reduce the glass transition temperature (Tg)of glass and open the network structure of the glass well,leading to the precipitation of Ag NPs easily despite of the small solubility of AgCl in glass[22].

    In order to study the effect of Ag NPs on the micro-crystallization process,XRD patterns of TWLErYb and TWL-ErYb-1AgCl glasses with different heat treatment conditions (Fig.4(a~c)and DTA curves of TWL-ErYb and TWL-ErYb-1AgCl glasses (Fig.4(d))at the heating rate of 10 K·min-1from 200 to 800 ℃were measured.Tgand the first crystallization temperature (Tc1),the second crystallization temperature (Tc2)and the third crystallization temperature (Tc3)are pointed by the arrow in the Fig.4(d).When the glasses were been heat treated at 420℃for 24 h,TWL-ErYb base glass was still transparent and TWL-ErYb-1AgCl glass became purple.There is no obvious crystallization peak on the XRD patterns,which may be caused by the small content of microcrystal and Ag NPs.When the glasses were been heat treated at 500℃for 24 h and 640℃for 24 h,the glasses were all opaque.The crystalline peaks oflanthanum tellurium oxides compounds were observed in Fig.4(b,c).In addition,crystallization peaks of TWL-ErYb-1AgCl glasses are more obvious than TWL-ErYb base glass.Therefore,the Ag NPs are expected to be the nucleation agent and promote the precipitation of microcrystals.In general,this kind of glass is very stable and Ag NPs will not destroy the structure of the glass at a moderate heat treatment temperature.

    The absorption spectra ofTWL-ErYb-1AgCl glasses with different heat treatment conditions are shown in Fig.5.After introducing Ag NPs into the glass,the absorption peak positions didn′t change.However,with the growth of Ag NPs caused by the increase of heat treatment temperature,the transmittance of TWL-ErYb glass with Ag NPs decreased.When the heat treatment temperature was raised to 460℃,in addition to the intrinsic absorption peaks of RE ions,the LSPR peak of Ag NPs was detected at the range of 500~650 nm[23].The emergence of the LSPR peak means that the content of Ag NPs increased significantly in the glass.

    Fig.6(a)presents the HR-TEM image of TWLErYb-1AgCl glass with heat treatment at 390℃for 15 min.The shapes of Ag NPs are mainly spherical and ellipsoidal.Moreover,the size of Ag NPs is about 4~6 nm,while the size of micro-crystals is about 6~8 nm.The lattice fringes can be clearly observed in an enlarge image Fig.6(b).The interplanar spacing of NPs is 0.238 1 nm,corresponding to the (111)plane of silver crystal (PDF No.65-8424).These results prove the precipitation of Ag NPs in TWL-ErYb-1AgCl glass.It is important to note that,in the Fig.6(c),we can find the precipitation of La2WO6micro-crystals around the Ag NPs.However,the number of Ag NPs is overall dominant.

    Fig.4 XRD patterns of TWL-ErYb and TWL-ErYb-1AgCl glasses with different heat treatment conditions of(a)420 ℃-24 h,(b)500 ℃-24 h and (c)640 ℃-24 h;(d)DTA curve of TWL-ErYb and TWL-ErYb-1AgCl glasses

    Fig.5 Absorption spectra of TWL-ErYb-1AgCl with different heat treatment

    Fig.6 TEM images of the sample TWL-ErYb-1AgCl heat treated at 390℃for 15 min

    AgNPsareformedfrom AgClorAgNO3throughout the melting procedure and grown during the annealing.The reduction of the Ag NPs can be discussed by the reduction potentials (E0)of redox system elements,as[24]:

    Following reduction processes are likely to ensue:

    where ΔE0is the total potential of reduction process.The equation (5~7)are all feasible reactions (with ΔE0>0).Therefore,these reactions guarantee the presence of Ag NPs in the system in addition to the absorption spectra results and TEM images.

    The luminescence spectra of TWL-ErYb-1AgCl glasses with different heat treatment conditions were studied,the results are shown in Fig.7.After heat treatment,all of the samples obtained the stronger emissions.The sample with heat treatment at 390℃for 15 min acquired the best luminescence property.In this heat treatment condition,Ag NPs precipitated a lot and the average size of the micro-crystals was small.A lot of precipitations of Ag NPs,leading to short distance between Ag NPs and Er3+ions,made the energy transfer from Ag NPs to Er3+ions become a possible explanation for the enhanced luminescence[25].The non-resonance excitation light excites the d-band electron to unoccupied sp-conduction band[1].Subsequently,electron and hole recombine and moves to Fermi level through a phonon-electron interaction.Therefore,luminescence is mainly in visible region[26].The local electric field change cause the enhancement of photoluminescence and the effective electric field)can be written as[17]:

    Fig.7 Up-conversion emission spectra of TWL-ErYb-1AgCl glasses at different heat treatment conditions

    here ε0is the dielectric constant in the presence of an external electromagnetic field of amplitude,q is the nanocrystal specific volume,ωpis the plasma frequency,i is the ground level,and γ is the damping of the resonance.The damping γ is the contribution of the conduction electrons and it can be described as[2]:

    The first term 1/τ0is related to the bulk electron scattering process in the nanoparticle.The interaction between quasi-electron-free and the surface of a sphere causes the second term,where VFis the Fermi velocity,D is the mean core particle size,and gsis the surface factor[26].The shape of the NPs is related to surface plasmon resonance (SPR)and the appropriate size of the NPs can enhance local field[27].Therefore,the glass with more Ag NPs,fewer micro-crystals,as well as high transmittance can obtain the enhancement of the luminescence property[28].The inset of Fig.7 showsthedependenceoftheUC luminescence intensity on the 980 nm pump laser power for 557 nm.The slope (n)for 557 nm wavelength of the sample without heat treatment was found to be 1.87,and the sample with heat treatment at 390℃for 15 min was found to be 2.05.This experimental result confirms that the green emission (557 nm)is due to the twophoton process absorption of Er3+ions.It is worth noting that the slope (n)of the glass doped with Ag NPs is larger than the tellurite base glass (Fig.4),which implies that Ag NPs can promote the two-photon absorption of Er3+ions in the process of the energy transfer and promote particles jump to a high level[29].

    Under the appropriate heat treatment condition at 390℃for 15 min,the up-conversion emission spectra of the glasses with different contents of AgCl are shown in Fig.8.The co-doped AgCl samples are denoted as TWL-ErYb-xAgCl(x=0~2% (w/w).The reduction and growth ofAg nanocrystalsgenerate an efficient localized electric field around the Ag NPs.The local electric field can increase the rate of excitations of Er3+ions in vicinity of Ag NPs.As a result,the rates of transitions from emitting levels are enhanced[29].According to our testing results,the glass sample containing 0.75% (w/w)AgCl shows the maximum intensity enhancement.Furthermore,we find that the glass will be opaque after introducing 2%(w/w)AgCl into the glass.It means that doping content of AgCl is limited.

    Fig.8 Up-conversion emission spectra of TWL-ErYbxAgCl with heat treatment temperature (390 ℃-15 min)

    2.3 Effect of co-doped AgCl and AgNO3on luminescence of the TWL-ErYb glassceramics

    Ag NPs can be produced by the introduction of AgCl,however,itwillcause the overgrowth of microcrystals at the same time.In order to find a better way to increase the precipitation of Ag NPs,the effect of different contents of AgNO3on luminescence of TWL-ErYb glass-ceramics has been studied,and the luminescence spectra are shown in Fig.9.The single doped AgNO3samples are denoted as TWLErYb-yAgNO3(y=0~3%, (w/w).Under the heat treatment condition at 390℃for 15 min,the glass sample containing 2.5% (w/w)AgNO3shows the maximum intensity enhancement.Under the condition of large content,the luminescent property of the glass single doped AgNO3is better than that with single doped AgCl.However,the UC emission intensity enhancement of the glasses doped with a small content of AgNO3is not obvious.Besides,it was difficult to find Ag NPs in the TEM images of TWL-ErYb-2.5AgNO3.It is not easy for AgNO3to generate Ag NPs in the glasses.Therefore,we consider co-doping AgCl and AgNO3to inhibitthe precipitation of AgCl crystals and introduce more Ag+ions into the glasses.

    Fig.9 Up-conversion emission spectra of TWL-ErYbyAgNO3with heat treatment temperature(390℃-15 min)

    We studied the effect of the proportion of AgCl and AgNO3on luminescent properties,the results are shown in Fig.10.The single doped AgCl and AgNO3samples are denoted as TWL-ErYb-xAgCl-yAgNO3(x=0~1%,y=0~1%,(w/w)and the proportion of AgCl and AgNO3is x∶y.The luminescent intensity of the glass co-doped with AgCl and AgNO3was stronger than the glass which was single doped with AgCl or AgNO3.The sample with x ∶y=0.5 ∶0.5 displayed the highest luminescence intensity.The glass with x∶y=0.7∶0.3 show the better luminescence intensity than the glass with x∶y=0.3∶0.7,which proves that AgCl can have greater effect on fluorescence enhancement of glasses when the content of silver source is limited.However,when x∶y=1∶1,the glass didn′t obtain further enhanced luminescence intensity.The luminescence microsecond time resolution were performed on the luminescence of the Er3+ions in TWL-ErYb base glass and TWL-ErYb-0.5AgCl-0.5AgNO3glass.The samples were excited at 823 nm,and the decay curves were detected at 557 nm,as described in Fig.11.Both the luminescence decays are well fitted to single exponential decay function,the calculated lifetime of the Er3+ions in TWL-ErYb base glass (τEr)and TWL-ErYb-0.5AgCl-0.5AgNO3glass (τErAg)is 81.001 and 95.081 μs,respectively.The energy transfer between Ag NPs and Er3+ions and the effect of LSPR enhanced emission are might responsible for the longer lifetime of the glass with Ag NPs[30].Zhang et al[31].also find a longer lifetime of Er3+ions (4I13/2)in TeO2-WO3-La2O3-AgNO3glass than TeO2-WO3-La2O3glass.

    Fig.10 Up-conversion emission spectra of TWL-ErYbxAgCl-yAgNO3glasses with heat treatment temperature (390 ℃-15 min)

    Fig.11 Luminescence decay curves of the Er3+ions in TWL-ErYb base glass and TWL-ErYb-0.5AgCl-0.5AgNO3glass

    LSPR and plasma coupling effectbetween particles make the effective enhancement of local electric field near the nanoparticles,leading to the increase of the radiative transition probability of each energy level of Er3+ions,which eventually makes luminescence emission enhanced.Comparing to LSPR and plasma coupling effect,the energy transfer between Ag NPs and Er3+ions is however the secon-dary factor lead to the enhancement of luminescence[30].Besides,micro-crystallization can decrease the phonon energy of glasses,and boost the energy level transition probability of RE ions[32].

    Fig.12 TEM images of the sample TWL-ErYb-0.5AgCl-0.5AgNO3annealed at 380 ℃ for 2 h:(a)is the enlarged view of(c)and (b)is the enlarged view of(a)

    TWL-ErYb-0.5AgCl-0.5AgNO3glasswith heat treatment at 390℃for 15 min shows the maximum enhancement and the HR-TEM images of the glass are shown in Fig.12.A large number of Ag NPs in uniform distribution were observed.The shapes of Ag NPs are mainly spherical and ellipsoidal.It can be clearly seen the regular arrangement of silver atoms,and the size is about 4~6 nm.However,we didn′t find micro-crystals in this TEM image.It is probably that the amount of Cl-ions of TWL-ErYb-0.5AgCl-0.5AgNO3glass is less than TWL-ErYb-1AgCl glass.The effect of AgCl on the precipitation of microcrystals becomes weak,and the glass becomes more stable.Therefore,the precipitation of micro-crystals wasnotobviousinTWL-ErYb-0.5AgCl-0.5AgNO3glass.Besides,TWL-ErYb-0.5AgCl-0.5AgNO3glass can provide the same amount of Ag+ions comparing to the TWL-ErYb-1AgCl glass.According to the above results,we conclude the follow results: (1)The introduction of AgCl can be helpful to produce Ag NPs,but it will cause the overgrowth of microcrystals;(2)It is not easy for AgNO3to produce Ag NPs,but introducing AgNO3can increase the content of Ag+ions.Therefore,co-doping AgCl and AgNO3can combine the characteristics of AgCl and AgNO3.Comparing to single doped AgCl or AgNO3,co-doping AgCl and AgNO3can bring more Ag NPs into the glass,and keep the glass transparent.Based on the above reasons,the glass with appropriate co-doping proportion of AgCl and AgNO3show an enhancement ofup-conversion emission intensity due to the formation of a lot of Ag NPs and a small amount of micro-crystals.

    3 Conclusions

    The role of micro-crystals and Ag NPs on the thermal,structural and spectroscopic properties of TWL-ErYb glasses have been studied in this paper.Micro-crystallization can improve the efficiency of luminescence emission.In the meantime,Ag NPs can also increase the strength of luminescence emission.The luminous efficiency of glasses can be further increased by introducing micro-crystals and Ag NPs at the same time.However,the excessive growth of micro-crystals will decrease the strength of luminescence emission.We find that co-doping AgCl and AgNO3can increase the precipitation of Ag NPs and reducetheovergrowth ofmicro-crystals.Besides,appropriate heattreatmenttemperature can also promote the precipitation of Ag NPs,and help to control the precipitation of micro-crystals.TWL-ErYb glasses with a lot of Ag NPs and a small amount of micro-crystals can further improve the up-conversion luminescence intensity due to the enhanced LSPR effect and a low phonon energy environment.

    Acknowledgements:The research is supported by theShanghaiScienceTechnologyCommittee (GrantNo.12nm0504700).

    :

    [1]Dousti M R,Sahar M R,Amjad R J,et al.J.Lumin.,2013,143:368-373

    [2]Rivera V A G,Ledemi Y,Osorio S P A,et al.J.Non-Cryst.Solids,2012,358:399-405

    [3]Culea E,Vida-Simiti I,Borodi G,et al.Ceram.Int.,2014,40:11001-11007

    [4]Tikhomirov V K,Rodríguez V D,Méndez-Ramos J,et al.Sol.Energy Mater.Sol.Cells,2012,100:209-215

    [5]Dousti M R,Amjad R J,Mahraz Z A S.J.Mol.Struct.,2015,1079:347-352

    [6]Qiu J B,Jiao Q,Zhou D C,et al.J.Rare Earths,2016,34:341-367

    [7]Gao Y,Hu Y B,Ren P,et al.J.Alloys Compd.,2016,667:297-301

    [8]Ansari G F,Mahajan S K.J.Lumin.,2014,156:97-101

    [9]de Araujo C B,da Silva D S,de Assumpcao T A A,et al.The Scientific World Journal,2013,2013:385193

    [10]Wu Y,Shen X,Dai S X,et al.J.Phys.Chem.C,2011,115:25040-25045

    [11]Chin P T,van der Linden M,van Harten E J,et al.Nanotechnology,2013,24:075703

    [12]Amjad R J,Sahar M R,Dousti M R,et al.Opt.Express,2013,21:14282-14290

    [13]Mertens H,Koenderink A F,Polman A.Phys.Rev.B,2007,76(11):115123

    [14]Chen S M,Qiu J B,Zhou D C,et al.Chin.Opt.Lett.,2014,12:081601-081604

    [15]Balaji S,Misra D,Debnath R.J.Fluoresc.,2011,21:1053-1060

    [16]XIAO Sheng-Chun(肖生春),Lü Jing-Wen (呂景文),ZHENG Tao(鄭濤)et al.Chinese Journal of Lasers(中國激光),2012,39(2):0206002

    [17]Rivera V A G,Osorio S P A,Manzani D,et al.Opt.Mater.,2011,33:888-892

    [18]Wei Y L,Li J J,Yang J W,et al.J.Lumin.,2013,137:70-72

    [19]Zhang Q Y,Feng Z M,Yang Z M,et al.J.Quant.Spectrosc.Radiat.Transfer,2006,98:167-179

    [20]Ma Y,Lin J,Chen J J,et al.Mater.Lett.,2011,65:282-284

    [21]Ghoshal S K,Awang A,Sahar M R,et al.J.Lumin.,2015,159:265-273

    [22]Reza Dousti M,Sahar M R,Ghoshal S K,et al.J.Mol.Struct.,2013,1035:6-12

    [23]Zhang W J,Lin J,Cheng M Z,et al.J.Quant.Spectrosc.Radiat.Transfer,2015,159:39-52

    [24]Lide D R.CRC Handbook of Chemistry and Physics.Boca Raton:CRC press,2004.

    [25]Mattarelli M,Montagna M,Vishnubhatla K,et al.Phys.Rev.B,2007,75(12):125102

    [26]Baida H,Marhaba S,et al.Nano Lett.,2009,9:3463-3469

    [27]Amjad R J,Sahar M R,Ghoshal S K,et al.J.Lumin.,2013,136:145-149

    [28]Hou Z X,Xue Z L,Li F,et al.J.Alloys Compd.,2013,577:523-527

    [29]JIA Yu-Jie(賈玉潔),LIN Jian(林?。?ZHANG Wen-Jun(張文?。?Chinese Journal of Luminescence(發(fā)光學報),2014,35:287-292

    [30]Ma R H,Qian J Y,Cui S,et al.J.Lumin.,2014,152:222-225

    [31]ZHANG Shuo(張碩),LIN Jian(林健),ZHANG Wen-Jun(張文?。?Chinese Journal of Luminescence(發(fā)光學報),2015,36:305-311

    [32]Ledemi Y,Trudel A A,Rivera V A G,et al.Optical Components and Materials XI,2014,8982:UNSP 89820V

    猜你喜歡
    微晶學報
    鋰鋁硅微晶玻璃不混溶及其析晶探討
    NASICON型微晶玻璃電解質(zhì)的研究現(xiàn)狀與展望
    陶瓷學報(2021年1期)2021-04-13 01:32:44
    致敬學報40年
    微晶剛玉磨粒磨削20CrMnTi鋼的數(shù)值模擬研究
    Li2O加入量對Li2O-Al2O3-SiO2微晶玻璃結(jié)合劑性能的影響
    學報簡介
    學報簡介
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    《深空探測學報》
    微晶玻璃的制備、分類及應用評述
    河南科技(2014年16期)2014-02-27 14:13:13
    黑人巨大精品欧美一区二区mp4| 亚洲免费av在线视频| 一级作爱视频免费观看| 欧美日韩福利视频一区二区| 99久久精品国产亚洲精品| 日韩一卡2卡3卡4卡2021年| 国产视频内射| 亚洲熟妇熟女久久| 久久久久国产精品人妻aⅴ院| 亚洲国产欧美网| 亚洲在线自拍视频| 国产av一区在线观看免费| 非洲黑人性xxxx精品又粗又长| 亚洲精品久久国产高清桃花| 丝袜美腿诱惑在线| 91av网站免费观看| 久久久久久大精品| 美女高潮到喷水免费观看| 男女床上黄色一级片免费看| 啦啦啦免费观看视频1| 日韩精品青青久久久久久| 男人舔女人的私密视频| 身体一侧抽搐| 在线观看66精品国产| 国产伦在线观看视频一区| 亚洲av中文字字幕乱码综合 | 欧美日本视频| 一级毛片女人18水好多| 日韩欧美国产在线观看| 欧美成人免费av一区二区三区| 97超级碰碰碰精品色视频在线观看| 丝袜人妻中文字幕| 免费搜索国产男女视频| 18禁美女被吸乳视频| 欧美日韩亚洲综合一区二区三区_| av有码第一页| 亚洲国产欧洲综合997久久, | 搡老妇女老女人老熟妇| 成人亚洲精品一区在线观看| 久热这里只有精品99| 人人妻,人人澡人人爽秒播| 成人国产一区最新在线观看| 免费在线观看影片大全网站| 婷婷亚洲欧美| 成人国产综合亚洲| 成人国产综合亚洲| 手机成人av网站| 少妇熟女aⅴ在线视频| 精品卡一卡二卡四卡免费| 日日摸夜夜添夜夜添小说| 中文字幕久久专区| 日韩欧美国产在线观看| 91麻豆av在线| 91麻豆av在线| 国产亚洲欧美精品永久| av片东京热男人的天堂| 欧美日韩福利视频一区二区| 免费在线观看黄色视频的| 亚洲成av人片免费观看| 亚洲一码二码三码区别大吗| 叶爱在线成人免费视频播放| 老汉色av国产亚洲站长工具| 91麻豆精品激情在线观看国产| 国内揄拍国产精品人妻在线 | 精品久久久久久久久久久久久 | 嫁个100分男人电影在线观看| 欧美成人一区二区免费高清观看 | 超碰成人久久| 亚洲 欧美一区二区三区| 可以在线观看毛片的网站| 久久青草综合色| 少妇熟女aⅴ在线视频| 在线十欧美十亚洲十日本专区| 色播在线永久视频| 国产激情偷乱视频一区二区| 黄色毛片三级朝国网站| 可以在线观看毛片的网站| 丁香六月欧美| 日韩欧美国产在线观看| 色综合亚洲欧美另类图片| 精品电影一区二区在线| 亚洲av五月六月丁香网| 欧美成人午夜精品| 婷婷精品国产亚洲av在线| 好男人电影高清在线观看| 精品国产超薄肉色丝袜足j| 欧美精品啪啪一区二区三区| 在线国产一区二区在线| xxx96com| 亚洲中文日韩欧美视频| 欧美最黄视频在线播放免费| 精品国产乱子伦一区二区三区| 无限看片的www在线观看| 日韩大码丰满熟妇| 在线观看一区二区三区| 欧美zozozo另类| 欧美色欧美亚洲另类二区| 精品国产乱子伦一区二区三区| 韩国av一区二区三区四区| 12—13女人毛片做爰片一| 日韩欧美一区二区三区在线观看| 日韩av在线大香蕉| 久久中文字幕一级| 视频区欧美日本亚洲| 亚洲国产毛片av蜜桃av| 欧美在线一区亚洲| 级片在线观看| 午夜激情av网站| 久久国产精品男人的天堂亚洲| 一个人免费在线观看的高清视频| 国产成人影院久久av| 一级片免费观看大全| 日韩欧美免费精品| 中文字幕人妻丝袜一区二区| 亚洲精品久久成人aⅴ小说| 欧美zozozo另类| 国产精品久久电影中文字幕| 国产精品国产高清国产av| 熟妇人妻久久中文字幕3abv| 亚洲av中文字字幕乱码综合 | 成年女人毛片免费观看观看9| 男人操女人黄网站| 母亲3免费完整高清在线观看| 精品国产乱码久久久久久男人| 桃色一区二区三区在线观看| 亚洲av五月六月丁香网| 99精品欧美一区二区三区四区| www.www免费av| 精品第一国产精品| 好男人电影高清在线观看| 露出奶头的视频| av片东京热男人的天堂| 成人国产综合亚洲| 中文字幕人妻丝袜一区二区| e午夜精品久久久久久久| 香蕉久久夜色| 久久精品夜夜夜夜夜久久蜜豆 | 中亚洲国语对白在线视频| 中文字幕最新亚洲高清| 自线自在国产av| av在线天堂中文字幕| 国产单亲对白刺激| 亚洲三区欧美一区| 久久久精品欧美日韩精品| 国产成人欧美在线观看| 日本黄色视频三级网站网址| 午夜福利免费观看在线| 国产麻豆成人av免费视频| 男女床上黄色一级片免费看| 午夜福利欧美成人| 国产一级毛片七仙女欲春2 | 黑人欧美特级aaaaaa片| 亚洲专区中文字幕在线| 欧美成人性av电影在线观看| 久久草成人影院| 欧美丝袜亚洲另类 | www.www免费av| 亚洲精华国产精华精| 精品欧美一区二区三区在线| e午夜精品久久久久久久| 真人一进一出gif抽搐免费| 日日干狠狠操夜夜爽| 日韩av在线大香蕉| 久久久久久久精品吃奶| or卡值多少钱| xxxwww97欧美| 麻豆成人av在线观看| 午夜影院日韩av| 国产蜜桃级精品一区二区三区| 国产蜜桃级精品一区二区三区| 午夜福利一区二区在线看| 国产精品久久久av美女十八| 亚洲精品中文字幕在线视频| 男女床上黄色一级片免费看| a级毛片a级免费在线| 欧美性猛交黑人性爽| 国产精品自产拍在线观看55亚洲| 精品国产一区二区三区四区第35| 18美女黄网站色大片免费观看| 91老司机精品| 国产成人系列免费观看| 国产熟女午夜一区二区三区| 色老头精品视频在线观看| 亚洲第一青青草原| 久久久久久亚洲精品国产蜜桃av| 亚洲电影在线观看av| 久久久久久大精品| 久久久久精品国产欧美久久久| 国产午夜福利久久久久久| 国产午夜精品久久久久久| 国产精品亚洲av一区麻豆| 欧美日韩精品网址| 日韩三级视频一区二区三区| 中出人妻视频一区二区| 亚洲精品国产区一区二| 亚洲aⅴ乱码一区二区在线播放 | 一级黄色大片毛片| 19禁男女啪啪无遮挡网站| 香蕉丝袜av| av视频在线观看入口| 欧美黑人巨大hd| 亚洲精品美女久久久久99蜜臀| 长腿黑丝高跟| 国产精品爽爽va在线观看网站 | 搡老妇女老女人老熟妇| 国产黄色小视频在线观看| 国产精品一区二区三区四区久久 | 91在线观看av| 亚洲成人国产一区在线观看| 可以免费在线观看a视频的电影网站| 欧美日韩精品网址| 国产精品爽爽va在线观看网站 | 男人舔奶头视频| 国产成人精品久久二区二区91| x7x7x7水蜜桃| 亚洲国产精品久久男人天堂| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美在线二视频| 国产免费男女视频| 两个人免费观看高清视频| 亚洲精品久久国产高清桃花| 亚洲精品av麻豆狂野| 国产三级在线视频| 午夜福利视频1000在线观看| 日韩国内少妇激情av| 日韩欧美一区视频在线观看| 日韩有码中文字幕| 欧美不卡视频在线免费观看 | 免费看十八禁软件| 色综合婷婷激情| 日本五十路高清| 日韩av在线大香蕉| 亚洲精品av麻豆狂野| 亚洲国产精品sss在线观看| 啪啪无遮挡十八禁网站| 日本一本二区三区精品| 午夜福利欧美成人| 桃色一区二区三区在线观看| 女同久久另类99精品国产91| 亚洲中文av在线| 国产亚洲av嫩草精品影院| 一进一出抽搐动态| 午夜精品久久久久久毛片777| 校园春色视频在线观看| 国产成+人综合+亚洲专区| 欧美日韩精品网址| 熟女电影av网| 欧美+亚洲+日韩+国产| 精品人妻1区二区| 美女高潮喷水抽搐中文字幕| 久久久久国产一级毛片高清牌| 久久精品91蜜桃| 欧美激情高清一区二区三区| 亚洲精品av麻豆狂野| 国产高清视频在线播放一区| 精华霜和精华液先用哪个| 日本 av在线| 成人免费观看视频高清| 国产精品 欧美亚洲| 国内少妇人妻偷人精品xxx网站 | 搡老妇女老女人老熟妇| 精品久久久久久久人妻蜜臀av| 在线观看一区二区三区| 在线观看一区二区三区| 免费在线观看成人毛片| 身体一侧抽搐| 国产精品久久视频播放| 久久久久国产精品人妻aⅴ院| 99久久久亚洲精品蜜臀av| 国产又爽黄色视频| 美女午夜性视频免费| 免费人成视频x8x8入口观看| 亚洲天堂国产精品一区在线| 欧美 亚洲 国产 日韩一| 少妇 在线观看| 男人舔女人的私密视频| 国产av一区二区精品久久| 啦啦啦免费观看视频1| 亚洲国产精品成人综合色| 亚洲欧洲精品一区二区精品久久久| 不卡av一区二区三区| 嫩草影视91久久| 91成人精品电影| 国产在线观看jvid| 女性生殖器流出的白浆| 高清在线国产一区| av欧美777| x7x7x7水蜜桃| 一进一出抽搐gif免费好疼| 久久亚洲真实| 99国产精品一区二区三区| 黄色视频不卡| 亚洲人成网站高清观看| 黄色女人牲交| 91麻豆av在线| 人人妻人人澡欧美一区二区| 可以在线观看的亚洲视频| 变态另类成人亚洲欧美熟女| 亚洲欧美一区二区三区黑人| 亚洲午夜理论影院| 成人免费观看视频高清| 日韩大尺度精品在线看网址| 久久婷婷人人爽人人干人人爱| 老司机午夜十八禁免费视频| 老熟妇仑乱视频hdxx| 又大又爽又粗| 免费无遮挡裸体视频| 亚洲无线在线观看| 成人欧美大片| 变态另类丝袜制服| 久久天躁狠狠躁夜夜2o2o| 两人在一起打扑克的视频| 久久久久久亚洲精品国产蜜桃av| 在线播放国产精品三级| www日本在线高清视频| 在线观看www视频免费| 欧美日本亚洲视频在线播放| 在线视频色国产色| 国产精品九九99| 亚洲第一电影网av| 精品国产一区二区三区四区第35| 夜夜夜夜夜久久久久| 亚洲国产欧美日韩在线播放| 男人操女人黄网站| 国产精品免费视频内射| 免费搜索国产男女视频| 岛国在线观看网站| 满18在线观看网站| 中文字幕精品免费在线观看视频| 91av网站免费观看| 色播在线永久视频| 久久久精品欧美日韩精品| 一级毛片精品| 此物有八面人人有两片| 国产一区二区在线av高清观看| 亚洲av第一区精品v没综合| 国产v大片淫在线免费观看| 亚洲国产高清在线一区二区三 | 久久亚洲真实| 亚洲人成网站高清观看| 亚洲精品一区av在线观看| 丝袜人妻中文字幕| 黄色毛片三级朝国网站| 亚洲第一av免费看| 在线观看午夜福利视频| 亚洲精品av麻豆狂野| 免费在线观看完整版高清| www.精华液| 国产真人三级小视频在线观看| 国产成人欧美在线观看| 成人三级黄色视频| 欧美另类亚洲清纯唯美| 精品国产一区二区三区四区第35| 精品欧美一区二区三区在线| 欧美在线黄色| 亚洲第一欧美日韩一区二区三区| 国产不卡一卡二| 国产成人欧美在线观看| 精品国产一区二区三区四区第35| 一卡2卡三卡四卡精品乱码亚洲| 久久国产精品男人的天堂亚洲| 欧美黄色淫秽网站| 97人妻精品一区二区三区麻豆 | 亚洲中文字幕一区二区三区有码在线看 | 欧美一区二区精品小视频在线| 国产亚洲av嫩草精品影院| 日本黄色视频三级网站网址| 国产色视频综合| 亚洲中文字幕一区二区三区有码在线看 | 精品国产国语对白av| 国产精品香港三级国产av潘金莲| 91国产中文字幕| 成人精品一区二区免费| 久久久久久久午夜电影| 一区二区三区国产精品乱码| 国产免费av片在线观看野外av| 国产麻豆成人av免费视频| 老司机深夜福利视频在线观看| 男女床上黄色一级片免费看| 国产精品亚洲av一区麻豆| 丝袜在线中文字幕| 91av网站免费观看| xxx96com| 久久国产乱子伦精品免费另类| a在线观看视频网站| 色播在线永久视频| 国产91精品成人一区二区三区| 18禁黄网站禁片午夜丰满| 成年版毛片免费区| 国产精品精品国产色婷婷| 欧美乱码精品一区二区三区| 日本免费a在线| 天天一区二区日本电影三级| 大型av网站在线播放| 国产乱人伦免费视频| 日韩av在线大香蕉| 女人爽到高潮嗷嗷叫在线视频| 欧美黑人欧美精品刺激| 精品欧美一区二区三区在线| 韩国精品一区二区三区| 国内精品久久久久久久电影| 天天躁狠狠躁夜夜躁狠狠躁| 精品欧美一区二区三区在线| 少妇被粗大的猛进出69影院| 日韩欧美国产在线观看| 岛国视频午夜一区免费看| 在线播放国产精品三级| 亚洲国产精品sss在线观看| 99精品久久久久人妻精品| 婷婷亚洲欧美| 国产精品日韩av在线免费观看| 欧美成人免费av一区二区三区| 老汉色∧v一级毛片| 国产精品久久视频播放| netflix在线观看网站| 亚洲精品粉嫩美女一区| 美国免费a级毛片| 国产亚洲精品久久久久5区| 久久 成人 亚洲| 久久精品国产清高在天天线| 日韩欧美国产在线观看| 999久久久国产精品视频| 国产高清有码在线观看视频 | 麻豆成人午夜福利视频| 午夜激情av网站| 日韩视频一区二区在线观看| 欧美乱色亚洲激情| 精品久久久久久久末码| 精品国产亚洲在线| 99久久国产精品久久久| 波多野结衣av一区二区av| 性欧美人与动物交配| 日韩精品免费视频一区二区三区| 久久久久精品国产欧美久久久| 男女床上黄色一级片免费看| 一级毛片高清免费大全| 51午夜福利影视在线观看| 岛国在线观看网站| 一区二区三区精品91| 老汉色∧v一级毛片| 久久这里只有精品19| 亚洲精品在线观看二区| 精品欧美一区二区三区在线| 1024香蕉在线观看| 窝窝影院91人妻| 女性生殖器流出的白浆| 又黄又粗又硬又大视频| 一边摸一边抽搐一进一小说| 999精品在线视频| 人人妻人人澡人人看| 听说在线观看完整版免费高清| bbb黄色大片| 少妇 在线观看| а√天堂www在线а√下载| 啦啦啦韩国在线观看视频| 午夜a级毛片| 成年免费大片在线观看| 国产又爽黄色视频| www.熟女人妻精品国产| 免费电影在线观看免费观看| 成人一区二区视频在线观看| 黑丝袜美女国产一区| 搡老熟女国产l中国老女人| 国产伦人伦偷精品视频| 亚洲一区中文字幕在线| 视频在线观看一区二区三区| 亚洲成人久久性| 日韩一卡2卡3卡4卡2021年| 亚洲自拍偷在线| 91麻豆av在线| 免费电影在线观看免费观看| 色播在线永久视频| 日本a在线网址| 变态另类成人亚洲欧美熟女| 久99久视频精品免费| 人人妻,人人澡人人爽秒播| 国产区一区二久久| 久久婷婷人人爽人人干人人爱| 人妻丰满熟妇av一区二区三区| a级毛片a级免费在线| 欧美乱色亚洲激情| 视频在线观看一区二区三区| 国产爱豆传媒在线观看 | 国产高清videossex| 精品乱码久久久久久99久播| 日日夜夜操网爽| videosex国产| 亚洲一区中文字幕在线| 欧美色视频一区免费| 男人舔奶头视频| 特大巨黑吊av在线直播 | 一级毛片精品| 叶爱在线成人免费视频播放| 免费无遮挡裸体视频| 久9热在线精品视频| 欧美又色又爽又黄视频| 精品久久蜜臀av无| 免费电影在线观看免费观看| 欧美日本视频| 黄频高清免费视频| 亚洲人成网站在线播放欧美日韩| 精品一区二区三区四区五区乱码| 国产真人三级小视频在线观看| www.熟女人妻精品国产| 国产三级黄色录像| 美女国产高潮福利片在线看| 禁无遮挡网站| 人人妻人人澡欧美一区二区| 欧美大码av| 亚洲精品国产精品久久久不卡| 欧美日本视频| 俺也久久电影网| 精品电影一区二区在线| 久久精品国产99精品国产亚洲性色| 免费av毛片视频| 亚洲精品av麻豆狂野| 国内毛片毛片毛片毛片毛片| av免费在线观看网站| 欧美色视频一区免费| 丁香欧美五月| 国产高清videossex| 丰满的人妻完整版| 法律面前人人平等表现在哪些方面| 一a级毛片在线观看| 在线看三级毛片| 一进一出抽搐gif免费好疼| 色精品久久人妻99蜜桃| 老司机在亚洲福利影院| 黄频高清免费视频| 日韩精品中文字幕看吧| 久久性视频一级片| 波多野结衣高清无吗| 法律面前人人平等表现在哪些方面| 国产一区二区在线av高清观看| 亚洲专区字幕在线| 18美女黄网站色大片免费观看| 日韩精品青青久久久久久| 特大巨黑吊av在线直播 | 亚洲欧美日韩高清在线视频| 黄频高清免费视频| 麻豆久久精品国产亚洲av| 免费看日本二区| 亚洲成人国产一区在线观看| 久久久久免费精品人妻一区二区 | 国产亚洲精品一区二区www| 久久精品成人免费网站| 2021天堂中文幕一二区在线观 | 久热这里只有精品99| 啦啦啦观看免费观看视频高清| 亚洲av第一区精品v没综合| 国产99白浆流出| 可以免费在线观看a视频的电影网站| 免费在线观看完整版高清| 又黄又粗又硬又大视频| 两性夫妻黄色片| 18禁黄网站禁片免费观看直播| 黑人欧美特级aaaaaa片| 免费观看人在逋| 亚洲精品中文字幕在线视频| 精品欧美一区二区三区在线| 亚洲精品粉嫩美女一区| 手机成人av网站| 人人妻人人澡人人看| 日韩欧美一区视频在线观看| 亚洲午夜理论影院| a在线观看视频网站| 波多野结衣av一区二区av| 黄片播放在线免费| 免费看美女性在线毛片视频| 在线观看www视频免费| 精品午夜福利视频在线观看一区| 天堂√8在线中文| 老司机在亚洲福利影院| 三级毛片av免费| 国产91精品成人一区二区三区| 欧美日本视频| 亚洲色图 男人天堂 中文字幕| 精品久久久久久,| 欧美最黄视频在线播放免费| 日韩av在线大香蕉| 韩国精品一区二区三区| 九色国产91popny在线| 国产亚洲精品久久久久5区| 不卡一级毛片| 法律面前人人平等表现在哪些方面| 视频区欧美日本亚洲| 又紧又爽又黄一区二区| 夜夜夜夜夜久久久久| 深夜精品福利| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品美女特级片免费视频播放器 | 国产精品国产高清国产av| 免费在线观看黄色视频的| 午夜免费观看网址| 国产熟女xx| a在线观看视频网站| 一级a爱片免费观看的视频| 亚洲欧美日韩高清在线视频| 日韩av在线大香蕉| 男人舔奶头视频| 亚洲欧洲精品一区二区精品久久久| 亚洲九九香蕉| 久久久久久人人人人人| 老司机福利观看| 欧美性猛交黑人性爽| 精品国产超薄肉色丝袜足j| 首页视频小说图片口味搜索| 在线永久观看黄色视频| 免费观看精品视频网站| 91大片在线观看| 国产私拍福利视频在线观看| netflix在线观看网站| 给我免费播放毛片高清在线观看| 一级a爱片免费观看的视频| 99精品在免费线老司机午夜|