• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative Studies on Sperm Ultrastructure of Three Gecko Species, Gekko japonicus, Gekko chinensis and Hemidactylus bowrigii (Reptilia, Squamata, Gekkonidae)

    2015-10-31 10:56:48ShuangliHAOLiangliangPANZhouxiFANGandYongpuZHANG
    Asian Herpetological Research 2015年3期

    Shuangli HAO, Liangliang PAN, Zhouxi FANGand Yongpu ZHANG*

    1College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China

    2College of Life Science, Wenzhou Medical University, Wenzhou 325035, China

    Comparative Studies on Sperm Ultrastructure of Three Gecko Species, Gekko japonicus, Gekko chinensis and Hemidactylus bowrigii (Reptilia, Squamata, Gekkonidae)

    Shuangli HAO1, Liangliang PAN2, Zhouxi FANG2and Yongpu ZHANG1*

    1College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China

    2College of Life Science, Wenzhou Medical University, Wenzhou 325035, China

    We provide the first description of the ultrastructure of the spermatozoa of Gekko japonicus, Gekko chinensis and Hemidactylus bowrigii for further understanding of the phylogenetic relationships of Gekkonidae. Mature spermatozoa of the three species differ in the occurrence and shape of epinuclear electron-lucent zone, nuclear space, neck cylinder and mitochondria. G. japonicus and G. chinensis have similar spermatozoan ultrastructure while H. bowrigii differs from these two species. In addition, these three species have neck cylinder with mitochondria in neck region and dense bodies arranged in grid with mitochondria in the midpiece, which may be the autapomorphies of the family Gekkonidae. Statistical analyses reveal that: total length of the spermatozoa was significantly different between G. japonicus and G. chinensis, as well as between G. japonicus and H. bowrigii (F2,57= 23.66, P<0.0001); G. japonicus and H. bowrigii differ in head length (F2,43= 4.64, P<0.05) and the width of nuclear base (F2,22= 3.97, P<0.05). In addition, the midpiece length (F2,33= 23.66, P<0.01) of the spermatozoa was significantly different between H. bowrigii and G. japonicus, and also between H. bowrigii and G. chinensis. Lengths of perforatorium, acrosomal complex and nuclear rostrum and the width of nuclear shoulder are similar in all three species. Our results indicated that the sperm ultrastructure contained intra and intergeneric variabilities which is helpful for better understanding their genetic relationships.

    Spermatozoa, ultrastructure, Gekkonidae, phylogenetic relationship

    1. Introduction

    The sperm is a highly differentiated reproductive cell produced by testes and is a necessity in the fertilization process of Gekkonidae. Thus, any study on sperm ultrastructure is of great significance to help reveal the biological mechanisms of fertilization and reproductive biology. In addition, the ultrastructure of squamata sperm contains valuable phylogenetic information and provides important evidence for phylogenetic analyses (Jamiesion and Healy, 1992; Jamiesion, 1995; Oliver et al., 1996; Teixeira et al., 1999b, c; Vieira et al., 2004; Vieira et al., 2005; Zhang et al., 2006). The spermultrastructure of squamata has rich polymorphism within the family (Giugliano et al., 2002; Jamieson, 1995; Liu and Zhang, 2004; Oliver et al., 1996; Teixeira et al., 1999b, c; Tavares-Bastos et al., 2002). Knowledge of the sperm ultrastructure improves the accuracy of the phylogenetic analysis, and contributes to the phylogenetic reconstruction in the higher order of classification (Giugliano et al., 2002; Liu and Zhang, 2004; Tavares-Bastos et al., 2002).

    The Gekkonidae is widely distributed around the world and contains more than 90 genera and over 1000 named species (Han et al., 2004). Other than Scincidae, it is the second-most-numerous family in sauria. However, detailed information on the ultrastructure of spermatozoa or spermiogenesis and studies clarifying the phylogenetic relationships of Gekkonidae remain obscure. Furieri (1970) briefly described the spermof Lygodactylus picturatus, Hemidactylus frenatus, Hemidactylus mabouia, and Tarentola mauritanica while Phillips and Asa (1993) reported the development of the midpiece section in Sphaerodactylus cinereus. Jamieson et al. (1996) has detailed study of the ultrastructure of spermatozoa of Heteronotia binoei and R?ll and von Düring (2008) investigated the difference in the spermiogenesis of the normal and the phenotypic males. Rheubert et al. (2011) provided a detailed description of the formation of the sperm of Hemidactylus turcicus. There is a need for additional ultrastructural spermatozoa studies to develop a comprehensive phylogenetic hypothesis for this family.

    Gekko japonicus, Gekko chinensis and Hemidactylus bowrigii in our study are all oviparous and nocturnal animals. G. japonicus mainly distributes in the south of the Huaihe, west to Shanxi and Gansu in China, but also in Japan and Korea. G. chinensis is the endemic species of China, living in the wild or the structure gaps in Fujian, Guangdong, Hainan, Guangxi, while H. bowrigii distributes mainly in Fujian, Hainan, Sichuan, Guangdong, Guangxi, Taiwan and Yunnan in China, and is also common in India, Sikkim, Burma and Ryukyu islands in Japan (Zhao et al. 1999). Here we provided a detailed description of the mature spermatozoa of G. japonicus, G. chinensis and H. bowrigii for the first time. Our results were compared with the mature spermatozoa of previously examined gecko species. The main objectives of this study were to understand the spermatozoal autapomorphies in the family Gekkonidae and to provide a theoretical basis for detailed phylogenetic study on Gekkonidae. Specifically, we ascertained the degree of variability in sperm morphology of three Gekkonidae species common in China.

    2. Materials and Methods

    Mature spermatozoa from male G. japonicus, G. chinensis and H. bowrigii were collected from animals captured in three locations in China: Wenzhou, Zhejiang (27°23' N, 119°37' E), Quanzhou (24°30' N, 117°27' E) and Putian (25°45' N, 119°03' E), Fujian. All lizards used in this study were captured in early May 2014.

    Four adult specimens of each species were quickly sacrificed in the laboratory. Epididymides of each experimental lizard were removed, and diced into 1–2 mm3pieces and placed in a petri dish with phosphatebuffered saline solution (PBS, pH 7.2). A small part of epididymides sample for sperm smear analysis was fixed using a solution containing 2.5% glutaraldehyde, 2% paraformaldehyde and 3% sucrose in 0.1M sodium cacodylate buffer, pH 7.2, for 10 min. Once fixed, each sample was stained for 30 s withtoluidine blue under an alcohol lamp. The morphology of entire sperm was observed under a light microscope (Olympus BX51, Japan) and morphological features were digitally captured with a CCD camera (Olympus DP71, Japan). Lengths of the head, midpiece and entire sperm of the three species were measured with a micrometer under the light microscope (Olympus BX51, Japan). The descriptions of sperm ultrastructure were based on the protocol described for the saurians (Colli et al., 2007; Giugliano et al., 2002; Jamieson et al., 1996; Scheltinga et al., 2001).

    The rest of the epididymides samples were fixed at 4°C overnight using 2.5% glutaraldehyde solution. Tissue samples were then rinsed in 0.1M phosphate buffer at pH 7.2, post-fixed for 1h in buffered 1% osmium tetroxide,rinsed in 0.1M phosphate buffer, dehydrated through series of ascending contents of acetone (70–100%) and then finally embedded in epoxy resin. Ultrathin sections prepared by microtome were stained for 30 s in lead citrate, rinsed in distilled water, then in 6% aqueous uranyl acetate for 4 min, rinsed in distilled water, and further stained for 2 min in lead citrate before final rinse with distilled water. Electron micrographs were taken on a Hitachi 7500 transmission electron microscope (TEM). Using the TEM, the following morphometric were determined for each species following the techniques suggested by Teixeira et al. (2002) and Zhang et al. (2006): the length of perforatorium, midpiece, acrosome, nuclear rostrum, the width of nuclear shoulder and nuclear base. We used one-way analysis of variance (ANOVA) to statistically compare the various morphometric parameters (e.g., length of mid-piece, width of nucleus shoulder) of sperm collected from these three groups of Gekkonidae used in the study. Post-hoc comparisons of significantly different (P< 0.05) parameters were conducted by the Tukey’s test using Statistica version 6.0.

    3. Results

    3.1 Spermatozoal morphometrics Main sperm morphological dimensions and the statistical results of the three species of Gekkonidae are shown in Table 1. The total length (F2,57= 23.66, P<0.0001), head length (F2,43= 4.64, P<0.05) and nuclear base width (F2,22= 3.97, P< 0.05) of the spermatozoa were significantly different among species. G. japonicus had significantly shorter sperm than G. chinensis and H. bowrigii. The head length and nuclear base width follow the trend G. japonicus >G. chinensis > H. bowrigii. H. bowrigii had significantly longer midpiece than G. chinensis and G. japonicus (F2,33= 23.66, P<0.01). There were no statistical differences between any of the three species in the length of perforatorium (F2,10= 1.62, P = 0.25), acrosomal complex (F2,10= 0.34, P = 0.72) and nuclear rostrum (F2,18= 1.89, P = 0.18) or the width of nuclear shoulder (F2,20= 0.34, P = 0.72).

    3.2 Ultrastructure of spermatozoa Spermatozoa of G. japonicus (Figure 1A), G. chinensis (Figure 1B) and H. bowrigii (Figure 1C) are filiform cells, consisting of head,midpiece and tail. The head is made up of acrosomal complex and the nucleus (Figures 2A; 4A and 6A) while the tail is subdivided into principal piece and endpiece (Figures 3E; 5F and 7N).

    Acrosome complex In all three species, the acrosomal complex has a coniform and slightly curved shape and is composed of two caps: an external acrosomal vesicle and an internal subacrosomal cone. The acrosomal vesicle is the anterior terminal portion of the spermatozoon, also called acrosomal cap, which is distinctly divided into an external, moderately electrodense and thin cortex, and an internal denser medulla (Figures 2A, B, K; 4A, B, C; and 6A, B, G). Cross striations are seen in concentric circles (Figures 2B; 4C; and 6B). The posterior of acrosomal vesicle is very thin and sleeve-shaped, hence it is often referred to as acrosomal sleeve (Figures 2A; 4A, B; and 6A). Within the acrosomal medulla, the subacrosomal space contains a perforatorium that resembles a very narrow elongated cone with a pointed tip (Figures 2A, C, K; and 4B, C). The perforatorium begins at a stopperlike perforatorial base plate, embedded in the apex of the subacrosomal cone (Figures 2A, D; 4A, D; and 6G). The subacrosomal cone surrounds the tapered anterior end of the nucleus (Figures 2A, 4A, B; and 6A, G). There is a slightly densified subacrosomal space between the base of the perforatorium and the anterior extremity of the subacrosomal cone (Figures 2A; 4A, B; and 6A, G). The transverse sections of acrosomal vesicle are rounded. In G. japonicus and G. chinensis, an epinuclear electronlucent zone is present within the anterior region of the subacrosomal cone immediately anterior to the nuclearrostrum, while in H. bowrigii it is beginning at the tip of the nuclear space (Figures 2A, E, K; 4A, E; and 6C, G). However, the shape of epinuclear electron-lucent zone differs among the three species. G. japonicus is short rodlike with low electron density, G. chinensis is fusiform while H. bowrigii is long rod-like with high electron density. The nuclear space from the anterior to the nuclear rostrum in H. bowrigii was not observed in other two species that we examined (Figure 6G).

    Nucleus The nucleus is elongated and composed of highly condensed, electron-dense chromatin. In transverse section, the nucleus is circular (Figures 2I, J; 4G; and 6E, F). Nucleus anteriorly tapers to form a slender cone, called nuclear rostrum, within the acrosome complex (Figures 2A; 4A, B; and 6A). Rounded nuclear shoulder is observed at the basal end of the rostrum (Figures 2A; 4B; and 6A). Nuclear shoulder has a diameter slightly smaller than the base of the nucleus. The basal pole of the nucleus has a conical depression called the nuclear fossa or implantation fossa associated with the neck elements(Figures 2L, J; and 6F, H).

    Neck region The neck region occurs at the junction between nucleus and midpiece. It includes proximal and distal centrioles, neck cylinder or dense collar and mitochondria (Figures 2L; 3C; 5A; and 7A, I). The proximal centriole is located before the distal centriole, and it lies at approximately 90°to the distal centriole. The proximal centriole has nine short microtubule triplets arranged in a circular pattern (Figures 3C; and 7L). Electron-densed lamellar structures that are associated with pericentriolar material lie on both sides in the front of the proximal centriole (Figures 3C; 5A; 6H; and 7A, L). The distal centriole forms the basal body or basal granule of the axoneme and is characterized by the presence of a central electron-dense body (Figures 3F; 5G; and 7C, D). Nine triplets of microtubules and a pair of central microtubules from the axoneme are observed in a distal centriole. Nine peripheral fibers that partially cover each triplets and a central fiber connected to the centralmicrotubule are present. A special structure observed in all three species is the neck cylinder. However, the neck cylinders of different species have their distinct characteristics. The neck cylinders of G. japonicus and G. chinensis are thick, 0.19 μm and form a ring structure in cross-section containing a few mitochondria (Figures 3F; and 5G), while that of H. bowrigii is very thin, about 0.02 μm and looks like a seven-pointed star in cross-section. Besides, around the neck cylinder of H. bowrigii, there are seven mitochondria (Figures 7C, D).

    Midpiece The midpiece of G. japonicus, G. chinensis and H. bowrigii begins with the neck cylinder and ends with the annulus. It includes the neck region, axoneme surrounded by mitochondrial sheath and the fibrous sheath (Figures 3A, B; 5B; and 7A, B, I).

    The mitochondrial sheath surrounds the fibrous sheath and is composed of mitochondria and dense bodies arranged in grid. The mitochondria are in meshes formed by the dense bodies (Figures 3B; 5C; and 7I). In the species of G. japonicus and G. chinensis, the mitochondria are ovoid in oblique section while in H. bowrigii, the mitochondria have irregular shape. In transverse section, mitochondria are ovoid in shape composed of linear cristae (Figures 3G; 5H; and 7E). In addition, there are seven mitochondria without dense bodies before the annulus (Figures 3H; and 7F). The small ovoid annulus lies in the end of the midpiece and is close to the inner surface of the cell membrane (Figures 3D, I; 5B, I; and 7B). Axoneme is enclosed by the fibrous sheath that begins at the base of the distal centriole and extends into the midpiece (Figures 3A, G, H; 5D, H; and 7A, B E). Fibrous sheath appears as ring structures of dense material in transverse sections, and has regular shape composed of neatly arranged squares when viewed in the longitudinal section. Axoneme complex is composed of a pair of central microtubules (singlets) surrounded by nine doublets of microtubules associated with nine peripheral dense fibers (Figures 3A, G; 5D, H; and 7B). A central fiber connects with the two singlets, which posteriorly diminishes in size and is located centrally between the singlets of the axoneme. The central fiber is vestigial and not observable at the level of the granular cytoplasmic zone (Figures 3J; 5J; and 7G). In all species, the diameter of peripheral fibers rapidly decrease posteriorly except for the fibers at doublets 3 and 8 that form a double structure separated from their corresponding doublet and closely associated with the fibrous sheath (Figures 3G, H; 5H; and 7E, F). Posterior to the granular cytoplasmic zone, all nine peripheral fibers are vestigial or absent. The fibers at doublets 3 and 8 are absent at the anterior of the principal piece, which is the granular cytoplasmic zone (Figures 3J; 5J; and 7G).

    Principal piece In all three species, the principalpiece has similar structure and is the longest part of the spermatozoon and occurs behind the midpiece. It consists of the axoneme surrounded by fibrous sheath, cytoplasm, and plasma membrane (Figures 3J, K; 5E, K; and 7H, M). In the anterior portion of the principal piece and immediately after the annulus, the diameter of the spermatozoon does not decrease compared to the annulus diameter and a thick region of granular cytoplasm widely separates the plasma membrane from the fibers sheath (Figures 3D; 5B; and 7B). Posteriorly, the plasma membrane becomes closely attached to the fibrous sheath (Figures 3E; 5E; and 7M). The thickness of the fibrous sheath becomes thinner and thinner and disappeared the junction with the endpiece, while the 9 + 2 pattern of the axonemal microtubules remains unaltered (Figure 7J).

    Endpiece The three species have endpiece with similar structure. It is a short axoneme extending beyond the posterior limit of the fibrous sheath (Figures 3E; 5F; and 7N). The length of the endpiece is difficult to measure because the fiber sheath disappears and only the plasma membrane was observable. In the proximal section, the axoneme is still visible with the “9 + 2” structure that gradually becomes disrupted and shows irregular arrangement (Figures 3L; 5L; and 7K).

    4. Discussion

    4.1 Synapomorphies of the family Gekkonidae The spermatozoa of G. japonicus, G. chinensis and Hemidactylus bowrigii exhibit the following squamate synapomorphies: a acrosomal vesicle and subacrosomal cone; a single prenuclear perforatorium; absence of endonuclear canal; presence of a nucleus rostrum and intermitochondrial dense bodies; linear mitochondrial cristae; fibers at doublets 3 and 8 are thick and form a double structure separated from their corresponding doublet and fibrous sheath extending into midpiece but not into the neck region (Jamieson, 1995; Jamieson et al., 1996; Jamieson and Healy, 1992; Giugliano et al., 2002; Oliver, 1996; Teixeira et al., 1999b, c; Teixeira et al., 2002; Vieira et al., 2004; Zhang et al., 2006). Furthermore, rounded nuclear shoulder, a perforatorial base-plate, subacrosomal space were observed in the three species and all the gekkonid lizards reported (Furieri, 1970; Jamieson et al., 1996; Rheubert et al., 2011). The neck cylinder with mitochondria and densebodies arranged in grid with mitochondria were also observed in the three species, which were accordance to the Jamieson’s report (Jamieson et al., 1996). The similar results were observed in Furieri’s research about Hemidactylus frenatus, L. picturatus and T. mauritanica (Furieri, 1970). Hence, we concluded that the rounded nuclear shoulder, a perforatorial base-plate, subacrosomal space, the neck cylinder with mitochondria and dense bodies arranged in grid with mitochondria are synapomorphies of Gekkonidae. In lizards other than Gekkonidae, such as Tropiduridae, Phrynosomatidae, Polychrotidae, Crotaphytidae, Agamidae, Chamaeleonidae (Scheltinga et al., 2001), Hoplocercidae, Opluridae (Vieira et al., 2007), Varanidae (Oliver, 1996), Lacertidae (Zhang et al., 2005) and Scincidae (Liu and Zhang, 2004; Zhang et al., 2006), the neck cylinder with mitochondria and dense bodies arranged in grid with mitochondria have not been reported. Although the neck cylinder surrounding the distal centriole has been observed in serpents, there is no inset mitochondria around it (Colli et al., 2007; Cunha et al., 2008; Oliver et al., 1996; Tavares-Bastos et al., 2008; Tourmente et al., 2006; Teixeira et al., 2002; Vieira et al., 2007). In the midpiece, zigzagged mitochondria are tightly arranged and the dense body is scarce and even absent (Cunha et al., 2008; Jamieson and Koehler, 1994; Oliver et al., 1996; Tavares-Bastos et al., 2008; Tourmente et al., 2008; Tourmente et al., 2006). Therefore, our results showed that neck cylinder with mitochondria and dense bodies arranged in grid with mitochondria are autapomorphies of Gekkonidae.

    Table 1 Sperm morphological dimensions of the three species of Gekkonidae

    4.2 Polymorphic characters among the Gekkonidae species Our research, as well as previous studies on spermatozoa ultrastructure of Gekkonidae shows several distinct features in spermatozoa ultrastructure of the different species (Table 2). The subacrosomal cone in cross-section of Heteronotia binoei (Jamieson et al., 1996) is apically quadrangular rather than circular like observed in other species. The epinuclear electron-lucent zone is absent in Hemidactylus frenatus and Heteronotia binoei (Furieri, 1970; Jamieson et al., 1996) short, rodshaped and low electron dense in G. japonicus, fusiform in G. chinensis and is long, rod-like and highly electrondense in Hemidactylus bowrigii. The nuclear space is only observed in Hemidactylus bowrigii and not in others of Gekkonidae species. However, this nuclear space structure has been reported in four species of Tupinambis (Tavares-Bastos et al., 2002) and some serpents, such as Epicrates cenchria, Boa constrictor amarali, and Corallus hortulanus (Tavares-Bastos et al., 2008). Furthermore, the neck cylinders of G. japonicus and G. chinensis are thick and ring-shaped with few mitochondria in cross-section while those of Hemidactylus bowrigii and Heteronotia binoei are thin. In Hemidactylus bowrigii, the neck cylinder is like a seven-pointed star surrounded by seven mitochondria while in Heteronotia binoei, it is arranged as a six- or seven-pointed star surrounded by more mitochondria(Jamieson et al., 1996). The laminar structure observed in G. chinensis, G. japonicus and Hemidactylus bowrigii is absent in Heteronotia binoei ( Jamieson et al., 1996). In oblique section of the midpiece, mitochondria are ovoid in G. japonicus, G. chinensis and Hemidactylus frenatus, but are anomalous in Hemidactylus Bowrigii, Heteronotia binoei and Lygodactylus picturatus (Furieri, 1970; Jamieson et al., 1996). In addition, the mitochondrial abundance of different Gekkonidea species varies from 3 to 9 in transverse section of the midpiece with notable three species of Hemidactylus containing 6 (Furieri, 1970; Jamieson et al., 1996; Rheubert et al., 2011). The midpiece lengths of G. japonicus (5.77 μm)and G. chinensis (6.45 μm) are very much shorter than Hemidactylus bowrigii (14.28 μm).

    Table 2 Variability of spermatozoa ultrastructure among different species of Gekkonidae

    The polymorphic traits in sperm ultrastructure among congeneric species had been documented in lizards such as Crotaphytidae(Scheltinga et al., 2001), Polychrotidae ( Teixeira et al., 1999a ; Scheltinga et al., 2001) and Tropiduridae ( Teixeira et al., 1999d). Polymorphic characters commonly occur in the acrosome complex and midpiece, which are believed to be infuenced by the fertilization processes and physiological environment demands. In fertilization processes, acrosome aids the sperm to penetrate the ovum using energy provided by the midpiece section. However, spermatozoa of different species have to acclimatize to various fertilization conditions including the penetration of various kinds of egg envelopes (Tavares-Bastos et al., 2002). Therefore, the knowledge on polymorphism of sperm ultrastructure can improve the veracity of the phylogenetic analysis, and it has great value on comparative biology, phylogenetic reconstruction, and evolution history.

    4.3 Concluding remarks The sperm ultrastructure characteristics such as the shape of subacrosomal cone point in transverse section, the presence or absence of nuclear space and laminar structure, the shape of the epinuclear electron-lucent zone, the structure of the neck region and the forms of the mitochondria in the midpiece, and the sperm dimensions have certain intergeneric and interspecific differences. These features can cast light on the phylogenetic relationships of Gekkonidae. In addition, detailed description of the spermatozoa ultrastructure and statistical analyses of sperm dimensions of Gekkonidae provide quantitative estimates of the degree of variability in sperm ultrastructure between different genera in Gekkonidae. Moreover, our results provide basic information that are of value for further studies on molecular mechanism of reptile spermatogenesis.

    For future study, the molecular mechanism of reptile spermatogenesis should be emphasized. Spermatogenesis is a complex process where spermatogonia undergo mitotic, meiotic, morphological transformations to finally become a functional mature sperm (Hou and Yang, 2013). There are three important steps in this process which include acrosome formation, nuclear shaping and fagellum formation (Hu et al., 2012; Hu et al., 2013). Future studies should include the following topics: formation of acrosome; factors affecting nuclear elongation; composition and function of motor protein and cytoskeleton during spermatogenesis of reptile.

    Acknowledgements We thank Joselito M. Arocena, the full professor of University of Northern British Columbia, for his help in polishing the language of our manuscript. Our experimental procedures complied with the current laws on animal welfare and research in China. This work was supported by the grants from the National Natural Science Foundation of China (31170376).

    Cunha L. D., Tavares-Bastos L., Báo S. N. 2008. Ultrastructural description and cytochemical study of the spermatozoon of Crotallus durissus (Squamata, Serpentes). Micron, 39: 915–925

    Colli G. R., Teixeira R. D., Scheltinga D. M., Mesquita D. O., Wiederhecker H. C., Báo S. N. 2007. Comparative study of sperm ultrastructure of five species of teiid lizards (Teiidae, Squamata), and Cercosaura ocellata (Gymnophthalmidae, Squamata). Tissue Cell, 39: 59–78

    Furieri P. 1970. Sperm morphology of some reptiles: Squamata and Chelonia. In Baccetti B. (Ed.), Comparative Spermatology. Rome: Accademia Nazionale dei Lincei, 115–131

    Giugliano L. G., Teixeira R. D., Colli G. R., Báo S. N. 2002. Ultrastructure of spermatoxoa of the Lizard Ameiva ameiva, with considerations on polymorphism within the Family Teiidae (Squamata). J Morph, 253: 264–271

    Hu J. R., Liu M., Wang D. H., Hu Y. J, Tan F. Q., Yang W. X. 2013. Molecular characterization and expression analysis of a KIFC1-like kinesin gene in the testis of Eumeces chinensis. Mol Biol Rep, 40: 6645–6655

    Hu J. R., Xu N., Tan F. Q., Wang D. H., Liu M., Yang W. X. 2012. Molecular characterization of a KIF3A-like kinesin gene in the testis of the Chinese fire-bellied newt Cynops orientalis. Mol Biol Rep, 39(4): 4207–4214

    Hou C. C., Yang W. X. 2013. Acroframosome-dependent KIFC1 facilitates acrosome formation during spermatogenesis in the caridean shrimp Exopalaemon modestus. PloS ONE, 8(9): 1–16

    Han D. M., Zhou K. Y., Bauer A. M. 2004. Phylogenetic relationships among gekkotan lizards inferred from C-mos nuclear DNA sequences and a new classification of the Gekkota. Biol J Linn Soc, 83: 353–368

    Jamieson B. G. M. 1995. The ultrastructure of spermatozoa of the Squamata (Reptilia) with phylogenetic considerations. In Jamieson B. G. M., Ausio J., Justine J. (Eds.), Advancesin Spermatozoal Phylogeny and Taxonomy. Paris: Muséum National d’Histoire Naturelle, 359–383

    Jamieson B. G. M., Healy J. M. 1992. The phylogenetic position of the tuatara Sphenodon (Sphenodontida, Amniota), as indicated by cladistic analysis of the ultrastructure of spermatozoa. Philos Trans R Soc London (B), 335: 207–219

    Jamieson B. G. M., Koehler L. 1994. The ultrastructure of the spermatozoon of the northern water snake, Nerodia sipedon (Colubridae, Serpentes), with phylogenetic considerations. Can J Zool, 72: 1648–1652

    Jamieson B. G. M., Oliver S. C., Scheltinga D. M. 1996. The ultrastructure of spermatozoa of Squamata, I, Scincidae, Gekkonidae and Pygopodidae (Reptilia). Acta Zool, 77: 85–100

    Liu Y. Z., Zhang Y. P. 2004. Ultrastructure of spermatozoa of Eumeces elegans. Zool Res, 25(5): 429–435 (In Chinese)

    Oliver S. C., Jamieson B. G. M., Scheltinga D. M. 1996. The ultrastructure of spermatozoa of Squamata, II, Agamidae, Varanidae, Colubridae, Elapidae, and Boidae (Reptilia). Herpetologica, 52: 216–241

    Phillips D. M., Asa C. S. 1993. Strategies for formation of the midpiece. In Baccetti B. (Ed.), Comparative Spemiauilogy 20 Years After Serono Symp. New York: Raven Press, 75

    Rheubert J. L., Siegel D. S., Venable K. J., Sever D. M., Gribbins K. M. 2011. Ultrastructural description of spermiogenesis within the Mediterranean Gecko, Hemidactylus turcicus (Squamata: Gekkonidae). Micron, 42: 680–690

    R?ll B., von Düring M. U. G. 2008. Sexual characteristics and spermatogenesis in males of the parthenogenetic gecko Lepidoctylus lugubris (Reptilia, Gekkonidae). Zoology, 5: 385–400

    Scheltinga D. M., Jamieson B. G. M., Espinoza R. E., Orrell K. S. 2001. Descriptions of the mature spermatozoa of the lizards Crotaphytus bicinctores, Gambelia wislizenii (Crotaphytidae) and Anolis carolinensis (Polychrotidae) (Reptilia, Squamata, Iguania). J Morph, 247: 160–171

    Teixeira R. D., Colli G. R., Báo S. N. 1999a. The ultrastructure of spermatozoa of the lizard Polycbrus acutirostris (Squamata, Polychrotidae). J Submicrosc Cytol Pathol, 31 : 387–395

    Teixeira R. D., Colli G. R., Báo S. N. 1999b. The ultrastructure of the spermatozoa of the lizard Micrablepharus maximiliani (Squamata, Gymnophthalmidae), with considerations on the use of sperm ultrastructure characters in phylogenetic reconstruction. Acta Zool, 80: 47–59

    Teixeira R. D., Colli G. R., Báo S. N. 1999c. The ultrastructure of the spermatozoa of the worm lizard Amphisbaena alba (Squamata, Gymnophthalmidae), and the phylogenetic relationships of amphisbaenians. Can J Zool, 77: 1254–1264

    Tavares-Bastos L., Colli G. R., Báo S. N. 2008. The evolution of sperm ultrastructure among Boidae (Serpentes). Zoomorphology, 127: 189–202

    Teixeira R. D., Vieira G. H. C., Colli G. R., Báo S. N. 1999d. Ultrastructural study of spermatozoa of the neotropical lizards , Tropidurus semitaeniatus and Tropidurus torquatus (Squamata, Tropiduridae). Tissue Cell, 31: 308–317

    Tourmente M., Cardozo G., Bertona M., Guidobaldi A., Giojalas L., Chiaraviglio M. 2006. The ultrastructure of the spermatozoa of Boa constrictor occidentalis, with considerations on its mating system and sperm competition theories. Acta Zool, 87: 25–32

    Tourmente M., Giojalas L., Chiaraviglio M. 2008. Sperm ultrastructure of Bothrops alternatus and Bothrops diporus (Viperidae, Serpentes), and its possible relation to the reproductive features of the species. Zoomorphology, 127: 241–248

    Teixeira R. D., Scheltinga D. M., Trauth S. E., Colli G. R., Báo S. N. 2002. A comparative ultrastructural study of spermatozoa of the teiid lizards Cnemidophorus gularis gularis, Cnemidophorus ocellifer, and Kentropyx altamazonica (Reptilia, Squamata, Teiidae). Tissue Cell, 34 (3): 135–142

    Tavares-Bastos L., Teixeira R. D., Colli G. R., Báo S. N. 2002. Polymorphism in the sperm ultrastructure among four species of lizards in the genus Tupinambis (Squamata: Teiidae). Acta Zool, 83: 297–307

    Vieira G. H. C., Colli G. R., Báo S. N. 2004. The ultrastructure of the spermatozoon of the lizard Iguana iguana (Reptilia, Squamata, Iguanidae) and the variability of sperm morphology among iguanian lizards. J Anat, 204 (6): 451–464

    Vieira G. H. C., Colli G. R., Báo S. N. 2005. Phylogenetic relationships of corytophanid lizards (Iguania, Squamata, Reptilia) based on partitioned and total evidence analyses of sperm morphology, gross morphology, and DNA data. Zool Scr, 34: 605–625

    Vieira G. H. C., Cunha L. D., Scheltinga D. M., Glaw F., Colli G. R., Báo S. N. 2007. Sperm ultrastructure of hoplocercid and oplurid lizards (Sauropsida, Squamata, Iguania) and the phylogeny of Iguania. J Zool Syst Evol Res, 45(3): 230–241

    Zhang Y. P., Fang Z. X., Ji X. 2006. A comparison of the ultrastructure of spermatozoa of two species of skinks Mabuya multifasciata and Sphenomorphus indicus. Acta Zool Sin, 52(3): 591–602 (In Chinese)

    Zhang Y. P., Hu J. R., Ji X. 2004. Ultrastructure of spermatozoa of the Chinese skink Eumeces chinensis. Acta Zool Sin, 50 (3): 431–441 (In Chinese)

    Zhang Y. P., Ying X. P., Ji X. 2005. Ultrastructure of spermatozoon of the northern grass lizard (Takydromus septentrionalis) with comments on the variability of sperm morphology among lizard taxa. Zool Res, 26(5): 518–526 (In Chinese)

    Zhao E. M., Zhao K. T., Zhou K. Y. 1999. Fauna Sinica: Reptilia, Vol. 2, Squamata: Lacertilia. Beijing: Science Press (In Chinese)

    Prof. Yongpu ZHANG, Wenzhou University, Wenzhou, China, with his research focusing on physiological ecology and reproductive evolution of reptiles.

    E-mail: zhangyp@wzu.edu.cn

    18 October 2014 Accepted: 19 January 2015

    一区二区三区高清视频在线| 亚洲精品一卡2卡三卡4卡5卡| 性少妇av在线| 免费在线观看视频国产中文字幕亚洲| 日本三级黄在线观看| 在线观看日韩欧美| av视频在线观看入口| 日本精品一区二区三区蜜桃| 精品人妻1区二区| 欧美日韩瑟瑟在线播放| 啦啦啦观看免费观看视频高清 | 久久九九热精品免费| 91精品三级在线观看| 不卡一级毛片| 一级毛片精品| 性欧美人与动物交配| 久久午夜亚洲精品久久| 黄频高清免费视频| 亚洲成av片中文字幕在线观看| 好男人电影高清在线观看| 成年版毛片免费区| 成人三级做爰电影| 一级片免费观看大全| 欧美黑人精品巨大| 久久精品91蜜桃| 中文字幕av电影在线播放| 婷婷丁香在线五月| 18美女黄网站色大片免费观看| 99国产精品免费福利视频| 亚洲成人精品中文字幕电影| 女性被躁到高潮视频| √禁漫天堂资源中文www| av有码第一页| 在线观看www视频免费| 看黄色毛片网站| 国内久久婷婷六月综合欲色啪| 99精品久久久久人妻精品| 搡老妇女老女人老熟妇| 美女高潮到喷水免费观看| 日韩欧美一区二区三区在线观看| 999精品在线视频| 国语自产精品视频在线第100页| 啦啦啦观看免费观看视频高清 | 国产亚洲精品综合一区在线观看 | 成人国产一区最新在线观看| 熟妇人妻久久中文字幕3abv| 久久影院123| 免费人成视频x8x8入口观看| 久久精品人人爽人人爽视色| 18禁国产床啪视频网站| 亚洲熟女毛片儿| 久久精品国产综合久久久| 久久久久精品国产欧美久久久| 最新在线观看一区二区三区| 亚洲欧美激情综合另类| 久久午夜亚洲精品久久| 亚洲五月天丁香| 国产精品av久久久久免费| 国产在线观看jvid| 久久人人97超碰香蕉20202| 一本综合久久免费| 亚洲情色 制服丝袜| 三级毛片av免费| 亚洲色图 男人天堂 中文字幕| 视频区欧美日本亚洲| 宅男免费午夜| 亚洲av美国av| 日韩欧美三级三区| 无遮挡黄片免费观看| 国产高清视频在线播放一区| 又黄又爽又免费观看的视频| 91老司机精品| 久久久精品国产亚洲av高清涩受| 视频在线观看一区二区三区| 麻豆国产av国片精品| 精品国产国语对白av| 国产精品一区二区在线不卡| videosex国产| av天堂在线播放| 曰老女人黄片| 别揉我奶头~嗯~啊~动态视频| 在线观看舔阴道视频| 午夜亚洲福利在线播放| 侵犯人妻中文字幕一二三四区| tocl精华| 国产成人系列免费观看| 久久伊人香网站| 亚洲久久久国产精品| 国产亚洲精品一区二区www| 亚洲天堂国产精品一区在线| 婷婷丁香在线五月| 一区二区三区精品91| 欧美日本中文国产一区发布| 午夜免费成人在线视频| 精品少妇一区二区三区视频日本电影| 777久久人妻少妇嫩草av网站| 美女 人体艺术 gogo| 免费在线观看完整版高清| 欧美国产精品va在线观看不卡| 99在线视频只有这里精品首页| 国产又爽黄色视频| 国产成人免费无遮挡视频| 国产精品久久久久久人妻精品电影| 妹子高潮喷水视频| 精品日产1卡2卡| 欧美日本中文国产一区发布| 九色亚洲精品在线播放| 久久这里只有精品19| 91麻豆精品激情在线观看国产| 久久久久久人人人人人| 一进一出好大好爽视频| 精品久久久久久久久久免费视频| 99国产综合亚洲精品| 国产午夜福利久久久久久| 成熟少妇高潮喷水视频| videosex国产| 妹子高潮喷水视频| 午夜成年电影在线免费观看| 国产一区二区三区在线臀色熟女| 999久久久精品免费观看国产| 婷婷丁香在线五月| 日韩三级视频一区二区三区| 色老头精品视频在线观看| 国内精品久久久久久久电影| 亚洲第一青青草原| 久久精品亚洲熟妇少妇任你| 一进一出抽搐动态| 欧美黄色片欧美黄色片| 成年版毛片免费区| 精品欧美一区二区三区在线| 一个人免费在线观看的高清视频| 亚洲国产高清在线一区二区三 | 亚洲国产欧美日韩在线播放| 亚洲国产精品久久男人天堂| 欧美日韩亚洲综合一区二区三区_| 久久婷婷成人综合色麻豆| 国内久久婷婷六月综合欲色啪| 香蕉丝袜av| 伊人久久大香线蕉亚洲五| 国产人伦9x9x在线观看| 亚洲一码二码三码区别大吗| 午夜免费成人在线视频| 一区二区三区国产精品乱码| 真人一进一出gif抽搐免费| 一进一出好大好爽视频| 欧美精品亚洲一区二区| 欧美另类亚洲清纯唯美| 香蕉丝袜av| 久久久国产欧美日韩av| 国产亚洲精品综合一区在线观看 | 色综合婷婷激情| 一进一出抽搐动态| 国产亚洲欧美在线一区二区| 黄色 视频免费看| 91大片在线观看| 欧美成人一区二区免费高清观看 | 国产精品一区二区精品视频观看| 精品久久蜜臀av无| 香蕉丝袜av| 成人三级黄色视频| 女人爽到高潮嗷嗷叫在线视频| 69精品国产乱码久久久| 亚洲精品美女久久久久99蜜臀| 亚洲熟女毛片儿| av天堂久久9| 18禁裸乳无遮挡免费网站照片 | 久久青草综合色| 日韩有码中文字幕| 亚洲中文av在线| 黑人巨大精品欧美一区二区蜜桃| 色播在线永久视频| 国产精品秋霞免费鲁丝片| 久久中文字幕人妻熟女| 午夜福利在线观看吧| 久久久精品国产亚洲av高清涩受| 久99久视频精品免费| 无人区码免费观看不卡| 老司机午夜十八禁免费视频| 两人在一起打扑克的视频| 麻豆av在线久日| 国产欧美日韩精品亚洲av| 日韩免费av在线播放| 精品久久久久久久久久免费视频| 成年人黄色毛片网站| 亚洲av成人av| 久久人人97超碰香蕉20202| 精品久久久精品久久久| 午夜福利成人在线免费观看| 最近最新免费中文字幕在线| 18禁国产床啪视频网站| 国产又色又爽无遮挡免费看| 欧美激情极品国产一区二区三区| 成人亚洲精品一区在线观看| 黄色视频,在线免费观看| 黄频高清免费视频| 国产成人精品久久二区二区91| 亚洲国产精品成人综合色| 亚洲精品久久国产高清桃花| 国产精品日韩av在线免费观看 | 十八禁人妻一区二区| 亚洲精品国产精品久久久不卡| 波多野结衣av一区二区av| 亚洲色图av天堂| 亚洲欧美日韩高清在线视频| 精品无人区乱码1区二区| 黄频高清免费视频| 久久中文看片网| 久久欧美精品欧美久久欧美| 激情在线观看视频在线高清| 国产精品一区二区免费欧美| 三级毛片av免费| 国产高清有码在线观看视频 | 欧美激情 高清一区二区三区| 91字幕亚洲| 国产亚洲精品一区二区www| 日本在线视频免费播放| av福利片在线| 亚洲aⅴ乱码一区二区在线播放 | 国产成人影院久久av| 久久久久久国产a免费观看| 啦啦啦免费观看视频1| 在线观看66精品国产| 亚洲 欧美一区二区三区| 中文字幕色久视频| 日韩大码丰满熟妇| 精品久久久久久久毛片微露脸| 精品国产一区二区三区四区第35| 久久精品91蜜桃| 香蕉久久夜色| 久久影院123| 成人国语在线视频| 午夜福利视频1000在线观看 | 在线播放国产精品三级| 国产麻豆成人av免费视频| cao死你这个sao货| 亚洲中文av在线| 久热这里只有精品99| 91字幕亚洲| 少妇 在线观看| 男男h啪啪无遮挡| √禁漫天堂资源中文www| 女警被强在线播放| 母亲3免费完整高清在线观看| 女性生殖器流出的白浆| av视频免费观看在线观看| 日本免费一区二区三区高清不卡 | 亚洲熟妇中文字幕五十中出| 村上凉子中文字幕在线| 精品一区二区三区视频在线观看免费| 在线观看舔阴道视频| 淫妇啪啪啪对白视频| 大码成人一级视频| 国产熟女午夜一区二区三区| av视频在线观看入口| 长腿黑丝高跟| 日韩精品免费视频一区二区三区| 欧美+亚洲+日韩+国产| 午夜两性在线视频| 无限看片的www在线观看| 黄色a级毛片大全视频| 午夜福利成人在线免费观看| 人人妻人人澡人人看| 这个男人来自地球电影免费观看| av在线天堂中文字幕| АⅤ资源中文在线天堂| 国产不卡一卡二| 男女午夜视频在线观看| 级片在线观看| 亚洲成国产人片在线观看| 69精品国产乱码久久久| 一级,二级,三级黄色视频| 香蕉丝袜av| 亚洲av日韩精品久久久久久密| 国产一卡二卡三卡精品| 巨乳人妻的诱惑在线观看| 日韩精品青青久久久久久| 国产午夜福利久久久久久| 亚洲av五月六月丁香网| 咕卡用的链子| 麻豆一二三区av精品| 我的亚洲天堂| 久久伊人香网站| 精品欧美一区二区三区在线| 亚洲人成伊人成综合网2020| 国产熟女午夜一区二区三区| 亚洲人成电影观看| 国产精品 国内视频| 免费女性裸体啪啪无遮挡网站| 成人免费观看视频高清| 日本精品一区二区三区蜜桃| 亚洲五月天丁香| 国产在线精品亚洲第一网站| 超碰成人久久| 欧美+亚洲+日韩+国产| 亚洲激情在线av| 亚洲精品中文字幕一二三四区| 在线观看日韩欧美| 黄色片一级片一级黄色片| 久9热在线精品视频| 麻豆国产av国片精品| 欧美色视频一区免费| 麻豆国产av国片精品| 好看av亚洲va欧美ⅴa在| 久久久国产欧美日韩av| 久久精品国产亚洲av高清一级| 精品国产一区二区久久| 黄色片一级片一级黄色片| 国产欧美日韩综合在线一区二区| 久久香蕉激情| 国产精品日韩av在线免费观看 | 最近最新中文字幕大全免费视频| 大陆偷拍与自拍| 91成年电影在线观看| 淫秽高清视频在线观看| aaaaa片日本免费| 好看av亚洲va欧美ⅴa在| 国产欧美日韩一区二区三区在线| 久久婷婷人人爽人人干人人爱 | 一级毛片高清免费大全| 精品少妇一区二区三区视频日本电影| 国产又爽黄色视频| 国产精品精品国产色婷婷| 欧美日韩亚洲综合一区二区三区_| 男女之事视频高清在线观看| 大型av网站在线播放| 日韩av在线大香蕉| 国产精品久久视频播放| 日本 欧美在线| 免费看十八禁软件| 一区二区三区精品91| tocl精华| 99香蕉大伊视频| 美女 人体艺术 gogo| 亚洲成a人片在线一区二区| 亚洲一区高清亚洲精品| 成熟少妇高潮喷水视频| √禁漫天堂资源中文www| 久久久久精品国产欧美久久久| 久久热在线av| 欧美最黄视频在线播放免费| 国产成人免费无遮挡视频| 国产亚洲精品av在线| 欧美绝顶高潮抽搐喷水| 亚洲av五月六月丁香网| 亚洲人成网站在线播放欧美日韩| 欧美亚洲日本最大视频资源| 天天躁夜夜躁狠狠躁躁| 国产野战对白在线观看| 在线视频色国产色| 精品人妻在线不人妻| 亚洲激情在线av| 国产午夜精品久久久久久| 黑丝袜美女国产一区| 最近最新中文字幕大全免费视频| 国产精品 国内视频| 精品欧美国产一区二区三| 一进一出抽搐动态| 成人国语在线视频| svipshipincom国产片| 淫妇啪啪啪对白视频| 亚洲国产欧美网| 一边摸一边抽搐一进一出视频| 亚洲专区国产一区二区| 悠悠久久av| 亚洲国产精品999在线| 精品人妻在线不人妻| 一二三四社区在线视频社区8| 露出奶头的视频| 男女之事视频高清在线观看| 免费看十八禁软件| 国产欧美日韩综合在线一区二区| 免费在线观看视频国产中文字幕亚洲| 欧美日本视频| 国产精品一区二区精品视频观看| 国产一区二区三区视频了| 国产男靠女视频免费网站| 久久狼人影院| АⅤ资源中文在线天堂| 香蕉丝袜av| 嫁个100分男人电影在线观看| 中文字幕人妻熟女乱码| 婷婷丁香在线五月| 淫妇啪啪啪对白视频| 亚洲一区二区三区不卡视频| 变态另类成人亚洲欧美熟女 | 亚洲一码二码三码区别大吗| 精品第一国产精品| 50天的宝宝边吃奶边哭怎么回事| netflix在线观看网站| 午夜激情av网站| 国产精品综合久久久久久久免费 | 一进一出好大好爽视频| 91成年电影在线观看| 麻豆av在线久日| 老司机午夜十八禁免费视频| 国产av一区在线观看免费| 日日摸夜夜添夜夜添小说| 国产精品乱码一区二三区的特点 | 久久人妻福利社区极品人妻图片| 久久精品成人免费网站| 国内精品久久久久久久电影| 天堂影院成人在线观看| 在线观看舔阴道视频| 一边摸一边做爽爽视频免费| 欧美日本亚洲视频在线播放| 精品乱码久久久久久99久播| 免费看美女性在线毛片视频| a在线观看视频网站| e午夜精品久久久久久久| 国产aⅴ精品一区二区三区波| 一本综合久久免费| 国产一区二区三区视频了| 国产一区在线观看成人免费| 国产精品久久久久久亚洲av鲁大| avwww免费| 美女免费视频网站| 国产精品一区二区三区四区久久 | 国产亚洲精品久久久久久毛片| 99国产极品粉嫩在线观看| 亚洲男人天堂网一区| 欧美成人性av电影在线观看| 国产国语露脸激情在线看| 欧美国产日韩亚洲一区| 女人爽到高潮嗷嗷叫在线视频| 国产成人欧美| 亚洲精品久久成人aⅴ小说| 亚洲性夜色夜夜综合| 亚洲成av人片免费观看| 亚洲av电影不卡..在线观看| 男男h啪啪无遮挡| 妹子高潮喷水视频| 男女做爰动态图高潮gif福利片 | 一本久久中文字幕| 欧美性长视频在线观看| 久久久久久大精品| 看免费av毛片| 久久人人精品亚洲av| 啪啪无遮挡十八禁网站| 在线国产一区二区在线| 国产三级黄色录像| 精品一区二区三区av网在线观看| 久久亚洲精品不卡| 欧美中文日本在线观看视频| 一二三四在线观看免费中文在| 一二三四社区在线视频社区8| 精品欧美一区二区三区在线| 亚洲国产欧美日韩在线播放| 亚洲国产精品成人综合色| 丰满人妻熟妇乱又伦精品不卡| 黄网站色视频无遮挡免费观看| 国产黄a三级三级三级人| 99久久精品国产亚洲精品| 欧美日韩精品网址| www.999成人在线观看| 国产97色在线日韩免费| 午夜福利高清视频| 变态另类丝袜制服| 后天国语完整版免费观看| 我的亚洲天堂| 亚洲精品中文字幕在线视频| 欧美黄色片欧美黄色片| 高清毛片免费观看视频网站| 伦理电影免费视频| 麻豆成人av在线观看| 少妇被粗大的猛进出69影院| 亚洲国产欧美一区二区综合| 亚洲avbb在线观看| 色婷婷久久久亚洲欧美| 国产精品久久久av美女十八| 99热只有精品国产| 久久九九热精品免费| 欧美大码av| 激情视频va一区二区三区| 午夜福利,免费看| 成人手机av| 午夜免费鲁丝| 亚洲国产欧美日韩在线播放| 欧美日本中文国产一区发布| 国产欧美日韩一区二区精品| 人人澡人人妻人| 久久久久久免费高清国产稀缺| 亚洲男人天堂网一区| 亚洲五月婷婷丁香| 精品第一国产精品| 国产99白浆流出| 99国产精品免费福利视频| 亚洲成av人片免费观看| 脱女人内裤的视频| 精品电影一区二区在线| 视频区欧美日本亚洲| 免费在线观看亚洲国产| av电影中文网址| 国产又爽黄色视频| av网站免费在线观看视频| 国产精品久久电影中文字幕| 欧美精品啪啪一区二区三区| 国产高清激情床上av| 18禁裸乳无遮挡免费网站照片 | 亚洲精品美女久久久久99蜜臀| 精品熟女少妇八av免费久了| 久久国产亚洲av麻豆专区| 久久久久亚洲av毛片大全| 香蕉丝袜av| 校园春色视频在线观看| 97人妻天天添夜夜摸| 黄片小视频在线播放| 麻豆国产av国片精品| 丝袜美足系列| 91成人精品电影| 久久亚洲真实| 久久久久久久久免费视频了| 午夜精品国产一区二区电影| av在线天堂中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 国产精品亚洲一级av第二区| АⅤ资源中文在线天堂| 日本撒尿小便嘘嘘汇集6| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产国语对白av| 精品国产一区二区三区四区第35| 又大又爽又粗| 亚洲精品av麻豆狂野| 日韩成人在线观看一区二区三区| 免费搜索国产男女视频| 50天的宝宝边吃奶边哭怎么回事| 乱人伦中国视频| 国产精品久久久久久人妻精品电影| 两个人看的免费小视频| 日韩精品青青久久久久久| 欧美成人性av电影在线观看| 成人18禁高潮啪啪吃奶动态图| 伊人久久大香线蕉亚洲五| 两个人视频免费观看高清| 九色国产91popny在线| 国产精品久久久久久亚洲av鲁大| 欧美成人性av电影在线观看| 九色国产91popny在线| 人人妻,人人澡人人爽秒播| av视频在线观看入口| 亚洲在线自拍视频| 午夜免费成人在线视频| 最近最新免费中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 午夜影院日韩av| 桃红色精品国产亚洲av| 精品国产国语对白av| 国产精品久久久久久精品电影 | 搡老妇女老女人老熟妇| 最近最新中文字幕大全电影3 | 亚洲av电影不卡..在线观看| 国产成人欧美| 亚洲aⅴ乱码一区二区在线播放 | 97碰自拍视频| 视频在线观看一区二区三区| 国产亚洲精品综合一区在线观看 | 如日韩欧美国产精品一区二区三区| 亚洲一区二区三区不卡视频| 欧美老熟妇乱子伦牲交| x7x7x7水蜜桃| 亚洲五月色婷婷综合| 久久久久久大精品| 亚洲精品国产色婷婷电影| 日本五十路高清| 久久性视频一级片| 亚洲va日本ⅴa欧美va伊人久久| 一二三四社区在线视频社区8| 成人三级做爰电影| 91字幕亚洲| 十八禁人妻一区二区| av电影中文网址| 一二三四社区在线视频社区8| 欧美另类亚洲清纯唯美| 日韩精品青青久久久久久| 日韩大码丰满熟妇| 久久精品亚洲熟妇少妇任你| 一二三四社区在线视频社区8| 亚洲av电影不卡..在线观看| 欧美+亚洲+日韩+国产| 十八禁人妻一区二区| 久久精品亚洲精品国产色婷小说| 88av欧美| 国产精品 欧美亚洲| 村上凉子中文字幕在线| 亚洲色图 男人天堂 中文字幕| 老熟妇乱子伦视频在线观看| 亚洲性夜色夜夜综合| 欧美最黄视频在线播放免费| 他把我摸到了高潮在线观看| 亚洲成国产人片在线观看| 纯流量卡能插随身wifi吗| 人成视频在线观看免费观看| 国产亚洲精品综合一区在线观看 | 久9热在线精品视频| 欧美精品亚洲一区二区| 国产亚洲精品久久久久5区| 精品久久久久久久人妻蜜臀av | 成人免费观看视频高清| 午夜久久久久精精品| 巨乳人妻的诱惑在线观看| 午夜老司机福利片| 纯流量卡能插随身wifi吗| 99久久精品国产亚洲精品| 一区福利在线观看| 久久国产精品人妻蜜桃| 日韩欧美三级三区| 一级毛片女人18水好多| 国产三级黄色录像| 久久久久久久久中文| 久久中文字幕人妻熟女| 搞女人的毛片| 亚洲一码二码三码区别大吗| 国产乱人伦免费视频| 久久久久久久久久久久大奶| 亚洲国产精品合色在线| 大陆偷拍与自拍|