• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of the Genetic Diversity of Trachemys dorbigni and Phrynops hilarii

    2015-10-31 10:56:51GUIDETTIBrendaYamileSIROSKIPabloArielandAMAVETPatriciaSusana
    Asian Herpetological Research 2015年3期

    GUIDETTI Brenda Yamile, SIROSKI Pablo Ariel and AMAVET Patricia Susana

    Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina

    Characterization of the Genetic Diversity of Trachemys dorbigni and Phrynops hilarii

    GUIDETTI Brenda Yamile*, SIROSKI Pablo Ariel and AMAVET Patricia Susana

    Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina

    The utilization of RAPD and ISSR molecular markers is proposed to initiate studies of genetic variability in Phrynops hilarii (Chelidae) and Trachemys dorbigni (Emydidae), two species of fresh water turtles distributed in South America. Three primers of RAPD and four of ISSR were selected and the amplified products of these markers were evaluated by electrophoretic runs in agarose and polyacrylamide gels. The levels of heterozygosity, Shannon index and different allele numbers were slightly higher in P. hilarii for both types of markers. Levels of polymorphism were also higher in P. hilarii than T. dorbigni and both were elevated compared to those recorded for other species. The fact that similar results were obtained with both types of markers for all estimates of diversity highlights the usefulness and validity of the RAPD technique. The molecular markers used were found potentially useful for analysing future temporal and spatial distribution of genetic diversity in both species, expanding scales work.

    fresh water turtles, variability, molecular markers, RAPD, ISSR

    1. Introduction

    According to the method of Hoffmann et al. (2010), between 48% and 54% of turtle species in the world are threatened or endangered. Longevity and overlapping generations that characterize the group mask the problem, with severe demographic effects which are not yet observable likely to take years or decades to manifest (Fagundes et al., 2010). Some turtles may exhibit little plasticity in habitat use, in freshwater turtles this can be particularly serious because they generally require more than one environment throughout the life cycle. Despite this, at least in Argentina, those species receive the least protection within the group (Ubeda and Grigera, 2003). Trachemys dorbigni (Emydidae) and Phrynops hilarii (Chelidae) are freshwater turtles widely distributed in South America. Neither of the two species are considered endangered (CITES, 2011; IUCN, 2011). Phrynops hilarii is well represented across its vast distribution, even more, the area of the species has expanded inrecent times favoured by anthropochory, showing the ability to adapt to highly modified habitats (Richard, 1999). On the other hand, according to the evaluation index for tetrapod fauna proposed by Reca et al. (1994), T. dorbigni can be considered a vulnerable species and there are many reasons for the current situation to be aggravated: the species is being affected by the advance of the agricultural frontier, is capable of hybridizing with native species (Lavilla et al., 2000; Richard, 1999), and also suffers a severe pressure through egg and juvenile capture for illegal trafficing that supplies pet markets and has high levels of exploitation for consumption of meat and meat products (Bujes, 2010; Carreira et al., 2007; Fagundes et al., 2010). What is more, both species live in environments with polluted waterways, where there also have been established hydroelectric stems (Bujes, 2010). Ecologists have also started to become aware of the many deaths resulting from accidents on roads and paths (Bager et al., 2007; Bujes, 2010).

    The necessity to update the information referring to population parameters, current distribution and conservation status of these species motivates the realization of this study. Mostly, T. dorbigni genetic studies are related to karyotypic analysis and cytogenetictechniques (Martinez et al., 2009; Salas, 2011) and as far as is known, there are no genetic studies for P. hilarii. This lack of antecedents was considered sufficient to initiate studies of the genetic variability by comparing the inter and intra specific diversity. It was proposed to employ the methodology of two molecular DNA markers: RAPD (random amplified polymorphic DNA) and ISSR (intersimple sequence repeats ), that have been used successfully in other species of aquatic turtles (Duan et al., 2011; Zheng et al., 2008; Zhu et al., 2008; Zhu, 2011). Both techniques are practical, simple, easily reproducible and cheap, which allows researchers to obtain results quickly and without destructive or highly invasive sampling for a large number of individuals (Rentaria Alcántara, 2007; Rocha and Gasca, 2007; Zietkiewicz et al., 1994). Considering broader scales of work, such methodologies allowed one to obtain a large amount of genetic information for analysing the temporal and spatial distribution of genetic diversity of species, which is the foundation for planning accurate actions for species conservation (Alacs et al., 2007; Ma et al., 2007b; Souza et al., 2002; Zhu et al., 2005). These molecular markers can also be useful to determine the origin of organisms extracted from their habitat, to reintroduce them at appropriate locations (Rocha and Gasca, 2007) or guide the management of captive populations in reserves, zoos and urban areas (Amavet et al., 2009).

    2. Methods

    2.1 Sample collection and DNA extraction Twenty six (26) blood samples were obtained from adult specimens (Phrynops hilarii, N = 13 and Trachemys dorbigni, N = 13) from the Applied Zoology Laboratory: Vertebrates (MASPyMA / FHUC UNL) according to Olson’s technique (Olson et al., 1975). All the individuals used in this experiment were rescued during seizure operations and the original geographical location of each specimen is unknown. DNA extraction was performed using the technique of extraction of Murray and Thompson (1980) from blood samples diluted (1:10) in a lysis buffer (Longmire et al., 1988) for long-term blood storage at room temperature according to White and Densmore (1992). The extractions for each individual were stored at 4 ± 2°C until to test the quality and quantity of extracted DNA by electrophoresis using 0.8% agarose gels, runs at 120 V in 0.5× TBE (Tris/Borate/EDTA) buffer, stained with Gel Green (Biotium) and analysed in dark light transilluminator (Dark Reader). DNA samples were diluted with H2O 1:4, 1:3 and mostly 1:2.

    2.2 Amplifcation of polymorphic regions with primers RAPD and ISSR Three samples for each species were used to screen a set of 10 primers from Promega? (B050-10 and B051-10) for RAPD and 13 primers from Operon? series for ISSR, to test amplification profiles for readability and reproducibility. Seven primers that showed the best resolution and reproducible bands were selected to obtain RAPD and ISSR profiles for all individuals, and three repeatability test samples were included in each amplification reaction.

    The RAPD amplification reactions were carried out at first in accordance to the methodology of Bardakci and Skibinski (1994), in a final volume of 15 μl, containing 1.5 μl of buffer, 1.5 μl of dATP, dTTP, dGTP and dCTP solution (200 mM), 0.75 μl of the selected primer, 1.5 μl of MgCl2, 0.15 μl of Taq DNA polymerase (PB-L?)and 50 ng of genomic DNA. Occasionally, the amounts of reactants were adjusted, such as varying the amount of primer from 0.75-1 μl and then from 1-1.2 μl. The amount of Taq DNA polymerase (PB-L?) must also be increased from 0.15-0.2 μl, but returned to settle in 0.15 μl when it was decided to use the brand Invitrogen?. Amplifications were performed in a thermocycler (MPI?)with a program of 40 cycles of 1 min at 94°C, 1 min at 40°C and 1 min at 72°C, with an initial denaturation of 94°C for 4 minutes and a final extension at 72°C for 10 minutes.

    To amplify ISSR regions, reactions were performed to a final volume of 15 μl containing 1.5 μl buffer, 1 μl dATP , dTTP , dGTP and dCTP solution (200 mM),1 μl of the selected primer, 1 μl of MgCl2, 0.15 μl of Taq DNA polymerase (PB-L?) and 50 ng of genomic DNA. Amplifications were performed in a thermocycler (MPI?) with a program of 40 cycles of 1 min at 94°C, 1 min at annealing temperature according to the selected primer and 1 min at 72°C , with an initial denaturation of 94°C for 4 minutes and a final extension at 72°C for 10 minutes.

    2.3 Analysis of markers For the selection of primers, the PCR products were visualized and analyzed by electrophoretic runs in 2% agarose gels, at 120–130 V in 0.5× TBE buffer. For RAPD: 3 primers Series A were selected (Table 1) and the PCR products corresponding to these primers were analyzed by vertical electrophoresis runs performed in 4% polyacrylamide gels, of 33 cm × 39 cm, run at 220 V and 75 W in 0.5× TBE buffer for 2:30 to 3 hours, with a 30 minutes pre-electrophoretic run. Gel staining was performed with silver nitrate, using the methodology of Bassam et al. (1991) described by Promega?. In all electrophoresis runs, DNA ladders (10bp from Invitrogen? and 100 bp from PB-L?) were used to estimate the size of the amplified fragments. For ISSR:4 primers were selected (Table 1) and the PCR products were analyzed by electrophoresis runs performed in 6% non-denaturing polyacrylamide gels, of 10 cm × 10 cm, at 120V–130V in 0.1× TBE buffer. Pre-electrophoretic run was performed during 20 minutes, and finally the gel was electrophoresed for period between 2 and 2:40 hours. The staining was performed with silver nitrate, using the methodology of Herring et al. (1982). A molecular weight marker (O’RangeRuler?20 bp DNA Ladder) was used in all electrophoresis runs to estimate the size of the amplified fragments. All gels were observed with background light and photographed with an Olympus? C- 5000 Zoom 5.0 Megapixel digital camera.

    2.4 Data Analysis The bands are interpreted as present if they can be clearly detected, whether they had more or less intensity. Through the observation of all obtained bands in the gels, we built binary matrices that were analyzed using the program GenAlEx (version 6.41) (Peakall and Smouse, 2006).

    Measures of genetic variability thrown by these program for each species were: original (1972) and unbiased Nei genetic distance (1978), percentage of polymorphic loci = number of polymorphic loci/total number of loci analyzed, He = heterozygosity expected (on HW equilibrium) = 2 * p * q; UHE = unbiased heterozygosity (Nei) = (2N / (2N-1)) * I ; I = Shannon’s information index = –1 * (p * Ln (p) + q * Ln (q)) (used in ecology to measure the specific biodiversity and considered robust for dominant markers when heterozygous loci cannot be detect); Na = Number of alleles and Ne = number of effective alleles = 1 / (p2+ q2). Keep in mind that for diploid binary data, Hardy-Weinberg equilibrium is assumed: q = (1 – frequency band) 0.5 and p = 1 – q.

    3. Results

    The total number of loci (bands) analyzed with the 3 RAPD primers was 122, with an average of 40.66 per primer. Of the 122 bands, 104 were amplified in individuals of P. hilarii and 102 in individuals of T. dorbigni, all at a higher frequency than 5%. Numerous bands that appear only in one species were observed (20 exclusive bands of P. hilarii and 18 bands in T. dorbigni), but these bands were not recorded in all individuals of the species. The total number of amplified fragments was 866, considering 439 fragments in P. hilarii and 427 for T. dorbigni, with an average number of fragments per individual of 33.77 for P. hilarii and 32.85 for T. dorbigni. The size of the PCR products ranged from 352 bp to about 2419 bp.

    The total number of loci (bands) analyzed with the 4 ISSR primers was 117, with an average of 29.25 per primer. Of the 117 bands, 106 amplified in individuals of P. hilarii and 86 in individuals of T. dorbigni, all at a higher frequency than 5%. None of the 31 exclusive bands of P. hilarii found occurred in all individuals, on average these exclusive bands appeared only in 3.48 individuals. In T. dorbigni, only one of 11 unique bands observed is presented in all sampled individuals (average exclusive bands appear in 5.09 individuals). The total number of fragments amplified with 4 primers of ISSR was 1040, considering 470 fragments for P. hilarii and 570 for T. dorbigni. The average number of fragments per individual was 36.15 for P. hilarii and 43.85 for T. dorbigni. The descriptive statistics values (percentage of polymorphic loci, genetic distance, expected heterozygosity, unbiased heterozygosity, Shannon index, different alleles and effective alleles) obtained in both species by analysis of RAPD and ISSR markers employing software GenAlEx are summarized in Tables 2 and 3.

    The percentage of polymorphic loci obtained in this study with RAPD were similar for both species (84.43% for Phrynops hilarii and 82.79% for Trachemys dorbigni) and could be considered high when compared to those found for other species studied with these types of molecular markers (Duan et al., 2011; Ma et al., 2007a; Zheng et al., 2008; Zhu, 2011). The estimated percentage of polymorphic loci based on ISSR was higher in P. hilarii (89.74%) than in T. dorbigni (69.23%). These percentages reaffirm the idea that levels of polymorphism within Chelonia are not as low as previously thought (Souza et al., 2002). It is also true that the estimates of polymorphism could be sensitive to a certain level of subjectivity during the counting of the bands, and somehow this would limit the possibility of making comparisons between different studies.

    Levels of expected heterozygosity (He) and unbiased heterozygosity (UHE) were similar in both species, slightly higher in P. hilarii when compared to T. dorbigni for RAPD and ISSR markers. The values from the Shannon information index (I) (0.348 ± 0.021 in P. hilarii and 0.327 ± 0.020 in T. dorbigni with RAPD, and 0.379 ± 0.019 in P. hilarii and 0.345 ± 0.026 in T. dorbigni with ISSR) and the number of different alleles (1.697 ± 0.065 and 1.664 ± 0.067 with RAPD and 1.803 ± 0.055 and 1.427 ± 0.082 with ISSR for P. hilarii and T. dorbigni, respectively) are also similar in both species, barelyhigher in P. hilarii than T. dorbigni for both marker types. Only with ISSR the number of effective alleles per locus is somewhat higher in T. dorbigni (1.407 ± 0.037, in contrast with 1.370 ± 0.027 for P. hilarii). The values of the descriptive statistics obtained with RAPD and ISSR molecular markers for P. hilarii are higher in all cases comparing to those obtained for T. dorbigni, suggesting more genetic variability in this species.

    Table 1 RAPD (Promega?) and ISSR (Operon?) primers selected to perform PCR amplifications.

    Table 2 Descriptive statistics obtained with RAPD primers according to GenAlEx software.

    Table 3 Descriptive statistics obtained with ISSR primers according to GenAlEx software.

    4. Discussion

    Molecular methodologies used in this study proved to be effective for an initial screening of the genetic variability of these species. We were able to observe a higher number of variable markers than other similar studies in turtles. The total number of loci (bands) analyzed was 117 with the four ISSR primers and 122 with the 3 RAPD primers. In Semyenova et al. (2004) the five RAPD primers allowed amplification of a total pool containing 180 fragments, while Zhu et al. (2008) scored a total of 20 population-specific RAPD fragments from 16 primers. In Zheng et al. (2008) 8 fragments were obtained with each of the 12 RAPD primers. This would be due in part to the use of polyacrylamide gels, which provide greater resolution and depth analysis. These methods also allow working with small amounts of DNA and it is not necessary to have prior knowledge of their sequence, furthermore, nonradioactive probes are required in the process (Grosberg et al., 1996; Lynch and Milligan, 1994; Rocha and Gasca, 2007).

    In both species for RAPD and ISSR, the numbers of different alleles were higher than the effective numbers of alleles, which might suppose that the presence of low frequency alleles may influence the presenceof heterozygous, causing a decrease in the genetic variability.

    The RAPD genetic distance calculated between individuals of the same species showed peak (0.140–0.680 for P. hilarii; 0.180–0.630 for T. dorbigni) and mean values (0.374 for P. hilarii; 0.342 for T. dorbigni) that may be somewhat high if one takes into account those recorded for other species studied with RAPD. Duan et al. (2011) calculate genetic distances from 0.0829 to 0.1813 and an average of 0.1327 ± 0.0299 in Eretmochelys imbricate. For Chinemys reevesii the genetic distance calculated ranged from 0.168 to 0.467, and the average was 0.324 ± 0.0631 according to Zhu et al. (2005) but ranged from 0.1360 to 0.3609, with an average of 0.2092 ± 0.0623 according to Zhu (2011). In Mauremys mutica the average genetic distance among two populations was 0.299 ± 0.108 (Zhu et al., 2008). The genetic distance between individuals of the two species determined by ISSR markers in this study also showed a wide range with high maximum values (0.130–0.560 for P. hilarii; 0.560–0.070 for T. dorbigni). These high values suggest that individuals sampled may belong to different populations, situated in distant geographical locations (the exact origin of the rescued individuals is unknown, reason for which this statement cannot be tested).

    The RAPD and ISSR markers may be useful to analyse the temporal and spatial distribution of genetic diversity in these species. Most amphibians and reptiles exhibit deep phylogeographic differentiation, basically due to their low vagility, understood as the distance between the point of birth of an individual and the point of death (constituting a parameter that define mobility or dispersion, referring to the ability or tendency of individuals or populations to spread, changing its distribution over time) (Fagundes et al., 2010; Souza et al., 2002). Based on site fidelity, reduced dispersal and longevity, turtles seem to be an interesting group to include in phylogenetic studies. Moreover, high levels of population structure were recognized, it would be possible and necessary to begin delineating ESUs (Evolutionarily Significant Units) that consider and protect long-term evolutionary potentials (Vázquez Domínguez, 2007).

    The ISSR technique is very useful to evaluate diversity in species. Given the high genetic variation between individuals within a population, it is possible to use these markers in paternity analysis and identification of individuals (Rentaría Alcantara, 2007; Rocha and Gasca, 2007). Their high polymorphism also allows to apply them in distinction of intraspecific varieties and population genetic subdivision, including complex cases where gene flow, introgression and hybridization is evidenced (Ma et al., 2007b, Schilde et al., 2004). They have also been used to perform genetic mapping and phylogenetic reconstruction including sometimes cryptic species distinction (Fritz et al., 2005, 2007).

    Given the high polymorphism detect by RAPDs, they have proven to be useful in the genetic identification (including clones, hybrid or mutant) and the study of relationship. The technique is also applied in genetic mapping, detection of genetic uniformity and analysis of intraspecific population structure at different spatial scales, allowing estimating effective size, reproductive isolation and levels of crossing fecundation (Alacs et al., 2007; Rocha and Gasca, 2007; Rubin et al., 2001). The RAPD markers facilitate the realization of fast and efficient analysis of genetic variability in not well known,vulnerable or endangered species, also in those that are of economic interest to subsistence of certain societies (Duan et al., 2011; Ma et al., 2007a; Mockford et al., 1999; Tan et al., 2000; Zheng et al., 2008; Zhu et al., 2008). The genetic information collected usually can be integrated with ecological data in advance, allowing the development of more effective conservation strategies (Souza et al., 2002).

    5. Conclusions

    Estimators of genetic variability for Phrynops hilarii and Trachemys dorbigni were obtained from the use of molecular markers RAPD and ISSR, two relatively new, simple, fast and economical techniques, so far had not been used in any of the two species under study. It is also considered that the use of polyacrylamide gels increases the resolution of the analysis bands.

    The usefulness and validity of RAPD is reinforced in this study by the fact that very similar results were obtained with both types of markers for all diversity estimators. Taking the necessary precautions (appropriate laboratory conditions, negative controls and repetitions, etc.) the lack of reproducibility that sometimes has been criticized for this technique can be avoided.

    The results achieved encourage research in both species according to all the possibilities offered by these markers in relation to the lack of studies on them. The information obtained in this work can be useful as a starting point for phylogeographic studies at the population and/or specific level in both P. hilarii and T. dorbigni, suitable for the development of appropriate management strategies to protect and conserve these species in the region.

    Acknowledgements We thank the staff of Laboratory of Applied Zoology: Vertebrates, MASPyMA / FHUC-UNL that took blood samples and made available for this work.

    Alacs A., Janzen F., Scribner K. 2007. Genetic issues in freshwater turtle and tortoise conservation. In Shaffer H., FitzSimmons N., Georges A., Rhodin A. (Eds.), Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises. Chelonian Research Foundation, Chelon Res Monogr, 4: 134–152

    Amavet P., Vilardi J., Rosso E., Saidman B. 2009. Genetic and morphometric variability in Caiman latirostris (broad-snouted caiman), reptilia, alligatoridae. J Exp Zool, 309A: 1–12

    Bager A., de Freitas T., Krause L. 2007. Nesting ecology of population of Trachemys dorbignyi (Emydidae) in Southern Brazil. Herpetologica, 63(1): 56–65

    Bardakci F., Skibinsi O. 1994. Application of the RAPD technique in tilapia fish: Species and subspecies identification. Heredity, 73: 117–123

    Bassam B., Caetano-Anollés G., Gresshoff P. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 196: 80–83

    Bujes C. 2010. Os Testudines continentais do Rio Grande do Sul, Brasil: Taxonomía, historia natural e conserva??o. Iheringia, Sér Zool, 4: 413–424

    Carreira S., Estrades A., Achaval F. 2007. Estado de conservación de la fauna de tortugas (Reptilia, Testudines) de Uruguay. Boletín Sociedad Zoológica del Uruguay, 16: 20–25

    CITES 2011. Convention on International Trade in Endangered Species of Wild Fauna and Flora. Appendix I, II and III (http:// www.cites.org/eng/app/appendices.shtml)

    Duan J., Gu H., Xia Z., Ye M., Chen H., Zhang F. 2011. Genetic diversity analysis of Eretmochelys Imbricata by RAPD method. Chin J Wildl, 5: 264–266, 292

    Fagundes C., Bager A., Zanini S. 2010. Trachemys dorbigni in an anthropic environment in southern Brazil: Sexual size dimorphism and population estimates. Herpetol J, 20: 185–193

    Fritz U., Fattizzo T., Guicking D., Tripepi S., Pennisi., M., Lenk P., Joger U., Wink M. 2005. A new cryptic species of pond turtle from southern Italy, the hottest spot in the range of the genus Emys (Reptilia, Testudines, Emydidae). Zool Scr, 34: 351–371

    Fritz U., Hundsd?rfer A., ?iroky P., Auer M., Kami H., Lehmann J., Mazanaeva L., Türkozan O., Wink M. 2007. Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex; Testudines, Testudinidae). Amphibia-Reptilia, 28: 97–121

    Grosberg R., Levitan D., Cameron B. 1996. Characterization of genetic structure and genealogies using RAPD-PCR markers: A random primer for the novice and nervous. In Ferraris J., Palumbi S. (Eds.), Molecular Zoology: Advances, Strategies, and Protocols. New York: Wiley-Liss, 67–100

    Herring A., Inglis N., Ojeh C., Snodgrass D., Merizies J. 1982. Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels. J Clin Microbiol, 16: 473–477

    Hoffmann M. et al. 2010. The Impact of Conservation on the Status of the World’s Vertebrates. Science, 330: 1503–1509

    IUCN. 2011. International Union for Conservation of Nature and Natural Resources. Red List of Threatened Species. Version 2011.1 (http://www.iucnredlist.org)

    Lavilla E., Richard E., Scrocchi G. 2000. Categorización de los Anfibios y Reptiles de la República Argentina. Asociación Herpetológica Argentina, San Miguel de Tucumán

    Longmire J., Lewis A., Brown N., Buckingham J., Clark L.,Jones M., Meincke L., Meyne J., Ratliff R., Ray F., Wagner R., Moyzis R. 1988. Isolation and molecular characterization of a highly polymorphic centromic tandem repeat in the family Falconidae. Genomics, 2: 14–24

    Lynch M., Milligan B. 1994. Analysis of population genetic structure with RAPD markers. Mol Ecol, 3: 91–99

    Ma L., Zheng G., Zhu X., Liu Y., Chen Y., Luo J. 2007a. Genetic diversity analysis of Platysternon megacephalum by RAPD method. Freshw Fish, 2: 76–79

    Ma L., Zheng G., Zhu X., Liu Y., Chen Y., Luo J. 2007b. Genetic diversity in two natural populations of Platysternon megacephalum as revealed by ISSR technique. Chin J Zool, 49(1): 13–20

    Martinez P., Boeris J., Sánchez J., Pastori M., Bolzán A., Ledesma M. 2009. Karyotypic characterization of Trachemys dorbigni (Testudines: Emydidae) and Chelonoidis (Geochelone) donosobarrosi (Testudines: Testudinidae), two species of Cryptodiran turtles from Argentina. Genetica, 3: 277–283

    Mockford S, Snyder M., Herman T. 1999. A preliminary examination of genetic variation in a peripheral population of Blanding’s turtle, Emydoidea blandingii. Mol Ecol, 8(2): 323–327

    Murray M., Thompson W. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 8: 4321–4325

    Nei M. 1972. Genetic distance between populations. Amer Nat, 106(949): 283–292

    Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3): 583–590

    Olson G., Hessler J., Faith R. 1975. Technics for blood collection and intravascular infusion of reptiles. Lab Anim Sci, 6: 783–786

    Peakall R., Smouse P. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes, 6: 288–295

    Reca A., úbeda C., Grigera D. 1994. Conservación de la fauna de tetrápodos. Un índice para su evaluación. Mastozool Neotrop, 1(1): 17–28

    Rentaría Alcántara M. 2007. Breve revisión de los marcadores moleculares. In Eguiarte L., Souza V., Aguirre X. (Eds.), Ecología molecular. México: Semarnat-UNAM-Conabio, 541–566

    Richard E. 1999. Tortugas de las Regiones áridas de Argentina. Editorial LOLA, Buenos Aires

    Rocha M., Gasca J. 2007. Ecología molecular de la conservación. In Eguiarte L., Souza V., Aguirre X. (Eds.), Ecología molecular. México: Semarnat-UNAM-Conabio, 253–278

    Rubin C., Warner R., Bouzat J., Paige K. 2001. Populationgenetic structure of Blanding′s turtle (Emydoidea blandingii) in an urban landscape. Biol Cons, 99: 323–330

    Salas A. 2011. Estudios citogenéticos en la tortuga pintada (Trachemys dorbigni: Reptilia, Emydidae). Bachelor Thesis UNL-FHUC, Santa Fe, Argentina

    Schilde M, Barth D., Fritz U. 2004. An Ocadia sinensis x Cyclemys shanensis hybrid (Testudines:Geoemydidae). Asiat Herpetol Res, 10: 120–125

    Semyenova S., Korsunenko A., Vasilyev V., Pereschkolnik S., Mazanaeva L., Bannikova A., Ryskov A. 2004. RAPD variation in Mediterranean turtle Testudo graeca (Testudinidae). Russ J Genet, 12: 1348–1355

    Souza F., Cunha A., Oliveira M., Pereira G., Pinheiro H. F. dos Reisa S. 2002. Partitioning of molecular variation at local spatial scales in the vulnerable neotropical freshwater turtle, Hydromedusa maximiliani (Testudines, Chelidae): Implications for the conservation of aquatic organisms in natural hierarchical systems. Biol Cons, 104: 119–126

    Tan S., Ng Y., Joseph J., Chan E. 2000. Genetic variation in hawksbill turtle (Eretmochelys imbricata) from Malaysia using RAPD markers. Towards sustainable management of the Straits of Malacca, 261–266

    Ubeda C., Grigera D. 2003. Analysis of the last assessment of conservation status of amphibians and reptiles from Argentina. Gayana, 67(1): 97–113

    Vázquez Domínguez E. 2007. Filogeografía y vertebrados. In Eguiarte L., Souza V., Aguirre X. (Eds.), Ecología molecular. México: Semarnat-UNAM-Conabio, 441–466

    White P., Densmore L. 1992. Mitochondrial DNA isolation. In Hoelzel A. (Eds.), Molecular genetic analysis of populations. A practical approach. The practical approach series. Oxford: Oxford University Press, 29–57

    Zheng G., Ma L., Zhu X., Liu Y., Chen Y., Luo J. 2008. Genetic diversity analysis between two populations of Platysternon megacephalum by RAPD. J Huazhong Agric Univ, 27(4): 510–514

    Zhu X., Du H., Zhou L., Li M., Gui J. 2005. Genetic diversity analysis of Chinese three-keeled pond turtle (Chinemys reevesii) by RAPD. Acta Hydrobiol Sin, 29: 167–171

    Zhu X., Zhou L., Chen Y., Du H., Gui J. 2008. Phenotypic and genetic variation between two populations of the Chinese yellow pond turtle, Mauremys mutica (Cantor, 1842). Chin High Tech Lett, 14: 104–111

    Zhu X. 2011. Analysis of genetic diversity amongst Chinemys reevesii in Guangxi using RAPD markers. J South Agric, 42(9): 1148–1150

    Zietkiewicz E., Rafalski A., Labuda D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20: 176-183

    GUIDETTI Brenda Yamile, from Universidad Nacional del Litoral, Santa Fe, Argentina, with his research focusing on conservation ecology.

    E-mail: guidettibrenda@gmail.com

    7 September 2014 Accepted: 16 March 2015

    亚洲精品久久午夜乱码| 国产成人av教育| 美女午夜性视频免费| 亚洲国产精品国产精品| 青春草视频在线免费观看| 在线观看免费视频网站a站| 赤兔流量卡办理| 女性被躁到高潮视频| 国产片特级美女逼逼视频| 亚洲专区国产一区二区| 中文乱码字字幕精品一区二区三区| 国产精品一区二区在线不卡| 国产一区二区 视频在线| 亚洲国产欧美网| 男人爽女人下面视频在线观看| 久久国产精品影院| 久久人人97超碰香蕉20202| 丝袜喷水一区| 久久毛片免费看一区二区三区| 国产主播在线观看一区二区 | 黄频高清免费视频| 大型av网站在线播放| 交换朋友夫妻互换小说| 丝袜人妻中文字幕| 亚洲欧洲国产日韩| 美女扒开内裤让男人捅视频| 我的亚洲天堂| 免费在线观看视频国产中文字幕亚洲 | 嫁个100分男人电影在线观看 | 少妇粗大呻吟视频| av线在线观看网站| 午夜福利乱码中文字幕| 久久鲁丝午夜福利片| 欧美激情高清一区二区三区| 日韩一本色道免费dvd| 欧美成狂野欧美在线观看| 大香蕉久久成人网| 亚洲欧美成人综合另类久久久| 熟女少妇亚洲综合色aaa.| 天堂8中文在线网| 超碰成人久久| 精品福利观看| 少妇粗大呻吟视频| 美女午夜性视频免费| 1024香蕉在线观看| 国产一区二区激情短视频 | 欧美97在线视频| 97在线人人人人妻| 18禁观看日本| 午夜免费成人在线视频| 久久久久久免费高清国产稀缺| 精品国产超薄肉色丝袜足j| 女人被躁到高潮嗷嗷叫费观| 欧美av亚洲av综合av国产av| 国产精品久久久人人做人人爽| 岛国毛片在线播放| 一级毛片黄色毛片免费观看视频| 国产成人精品久久久久久| 国产精品成人在线| 久久精品成人免费网站| 亚洲色图 男人天堂 中文字幕| 色精品久久人妻99蜜桃| 肉色欧美久久久久久久蜜桃| 一级片免费观看大全| 中文字幕人妻熟女乱码| 中文字幕色久视频| 国产视频首页在线观看| 色播在线永久视频| 丝袜脚勾引网站| 中文字幕亚洲精品专区| 国产真人三级小视频在线观看| 成人午夜精彩视频在线观看| 欧美激情极品国产一区二区三区| 亚洲九九香蕉| 免费高清在线观看视频在线观看| 中文字幕色久视频| 校园人妻丝袜中文字幕| 2021少妇久久久久久久久久久| 在线观看www视频免费| 男人舔女人的私密视频| 国产不卡av网站在线观看| 国产熟女欧美一区二区| 亚洲精品日韩在线中文字幕| 又大又黄又爽视频免费| 大片电影免费在线观看免费| 免费久久久久久久精品成人欧美视频| 亚洲综合色网址| 欧美久久黑人一区二区| 大片免费播放器 马上看| 亚洲一区中文字幕在线| 国产成人欧美| 日韩电影二区| 美女高潮到喷水免费观看| 亚洲七黄色美女视频| 日本av免费视频播放| 午夜激情久久久久久久| 黄色a级毛片大全视频| 国产精品久久久久成人av| 黄色 视频免费看| 免费少妇av软件| 久久狼人影院| 在线观看免费视频网站a站| 国产免费现黄频在线看| 欧美在线一区亚洲| 亚洲欧美成人综合另类久久久| 又粗又硬又长又爽又黄的视频| 久久99热这里只频精品6学生| 久热爱精品视频在线9| 成人国产一区最新在线观看 | 午夜av观看不卡| 日韩中文字幕视频在线看片| 欧美少妇被猛烈插入视频| 久久国产亚洲av麻豆专区| 亚洲熟女毛片儿| 一边摸一边做爽爽视频免费| 天堂俺去俺来也www色官网| 久久久国产欧美日韩av| www.999成人在线观看| 19禁男女啪啪无遮挡网站| 亚洲一区二区三区欧美精品| 爱豆传媒免费全集在线观看| 人人澡人人妻人| 无限看片的www在线观看| 秋霞在线观看毛片| 免费在线观看影片大全网站 | 久久免费观看电影| 亚洲av成人精品一二三区| 在线观看国产h片| 亚洲欧洲精品一区二区精品久久久| 人人澡人人妻人| www日本在线高清视频| 乱人伦中国视频| 免费看不卡的av| 国产亚洲欧美在线一区二区| 免费人妻精品一区二区三区视频| 久久久久国产一级毛片高清牌| 男男h啪啪无遮挡| 欧美日韩av久久| 亚洲国产欧美日韩在线播放| 国产xxxxx性猛交| 亚洲第一青青草原| 美女高潮到喷水免费观看| 永久免费av网站大全| 女警被强在线播放| 国产一区亚洲一区在线观看| 国产男人的电影天堂91| 青春草亚洲视频在线观看| 777米奇影视久久| 男女边吃奶边做爰视频| 欧美大码av| 日日爽夜夜爽网站| 午夜福利影视在线免费观看| 蜜桃国产av成人99| av线在线观看网站| 欧美黑人精品巨大| 欧美黑人欧美精品刺激| 性高湖久久久久久久久免费观看| 波野结衣二区三区在线| 男的添女的下面高潮视频| 亚洲av国产av综合av卡| 免费观看人在逋| 大型av网站在线播放| 青草久久国产| 日本一区二区免费在线视频| 午夜老司机福利片| 在线观看免费午夜福利视频| 视频区图区小说| 桃花免费在线播放| av又黄又爽大尺度在线免费看| 桃花免费在线播放| 一级片'在线观看视频| 亚洲国产中文字幕在线视频| 黑人猛操日本美女一级片| 成人国产av品久久久| 免费av中文字幕在线| 日本猛色少妇xxxxx猛交久久| 一边亲一边摸免费视频| 日韩av免费高清视频| 亚洲欧洲日产国产| svipshipincom国产片| 久久久精品94久久精品| 中文字幕最新亚洲高清| 中文字幕av电影在线播放| 亚洲精品国产av成人精品| 男人爽女人下面视频在线观看| 国产精品久久久久久精品古装| 国产精品久久久久久精品古装| 男人舔女人的私密视频| 亚洲国产成人一精品久久久| 天堂俺去俺来也www色官网| 人人妻,人人澡人人爽秒播 | 亚洲欧美一区二区三区黑人| 欧美亚洲 丝袜 人妻 在线| 99精品久久久久人妻精品| 日韩一卡2卡3卡4卡2021年| 制服人妻中文乱码| 好男人视频免费观看在线| 一级黄片播放器| 午夜影院在线不卡| 国产一区二区激情短视频 | 欧美av亚洲av综合av国产av| 成人国产一区最新在线观看 | av一本久久久久| 黑人猛操日本美女一级片| 美国免费a级毛片| 国产日韩欧美视频二区| 9色porny在线观看| 五月天丁香电影| 嫩草影视91久久| 亚洲,一卡二卡三卡| 夫妻午夜视频| 两个人看的免费小视频| 母亲3免费完整高清在线观看| 看十八女毛片水多多多| 赤兔流量卡办理| 亚洲精品久久成人aⅴ小说| 亚洲,欧美,日韩| 天堂中文最新版在线下载| 又大又黄又爽视频免费| 日韩大码丰满熟妇| 人人妻人人澡人人看| 国产成人一区二区三区免费视频网站 | 久久毛片免费看一区二区三区| 国产精品一区二区在线观看99| 欧美日韩亚洲高清精品| 在线亚洲精品国产二区图片欧美| av在线app专区| 久久毛片免费看一区二区三区| 欧美日本中文国产一区发布| 久久久国产精品麻豆| 亚洲国产欧美一区二区综合| 亚洲熟女精品中文字幕| av网站在线播放免费| 日本猛色少妇xxxxx猛交久久| 一本综合久久免费| 在线观看www视频免费| 女人被躁到高潮嗷嗷叫费观| 少妇粗大呻吟视频| 亚洲国产精品国产精品| 精品人妻在线不人妻| 叶爱在线成人免费视频播放| 最近最新中文字幕大全免费视频 | 人人妻人人添人人爽欧美一区卜| 女性被躁到高潮视频| 韩国精品一区二区三区| 精品人妻在线不人妻| 亚洲久久久国产精品| 另类亚洲欧美激情| 中文字幕人妻丝袜制服| 亚洲av成人精品一二三区| 欧美大码av| 欧美国产精品va在线观看不卡| 另类精品久久| 午夜影院在线不卡| 美女脱内裤让男人舔精品视频| 在线观看免费日韩欧美大片| 91麻豆av在线| 精品少妇内射三级| 狂野欧美激情性bbbbbb| 一边摸一边做爽爽视频免费| 极品少妇高潮喷水抽搐| 十八禁网站网址无遮挡| 欧美精品一区二区免费开放| 天堂8中文在线网| 激情视频va一区二区三区| 热99久久久久精品小说推荐| 美女大奶头黄色视频| 最新的欧美精品一区二区| 国产一区二区三区综合在线观看| 中国美女看黄片| 日韩一卡2卡3卡4卡2021年| 亚洲国产精品一区三区| 亚洲欧美清纯卡通| 亚洲成人免费电影在线观看 | 岛国毛片在线播放| 日本午夜av视频| 免费在线观看日本一区| 中文字幕亚洲精品专区| 国产亚洲欧美在线一区二区| 麻豆国产av国片精品| 久久久久精品国产欧美久久久 | 如日韩欧美国产精品一区二区三区| 久久ye,这里只有精品| a 毛片基地| 亚洲精品久久成人aⅴ小说| 叶爱在线成人免费视频播放| 后天国语完整版免费观看| 国产精品 欧美亚洲| 美女福利国产在线| 国产视频一区二区在线看| 国产真人三级小视频在线观看| 啦啦啦 在线观看视频| 国产成人影院久久av| 精品欧美一区二区三区在线| 99久久99久久久精品蜜桃| 在现免费观看毛片| 久久精品国产a三级三级三级| 国产精品.久久久| 青草久久国产| 多毛熟女@视频| 美女福利国产在线| 亚洲精品第二区| 天天躁狠狠躁夜夜躁狠狠躁| 19禁男女啪啪无遮挡网站| 中国美女看黄片| 久久久久国产一级毛片高清牌| 国产成人免费无遮挡视频| 午夜两性在线视频| 国产真人三级小视频在线观看| 亚洲成色77777| 91九色精品人成在线观看| 婷婷色av中文字幕| 成人午夜精彩视频在线观看| 久久中文字幕一级| bbb黄色大片| 91老司机精品| 97精品久久久久久久久久精品| 亚洲欧美色中文字幕在线| 亚洲成色77777| 麻豆国产av国片精品| 欧美大码av| 日韩 亚洲 欧美在线| 亚洲第一av免费看| 天天添夜夜摸| 亚洲国产av影院在线观看| 真人做人爱边吃奶动态| 国产成人系列免费观看| 亚洲av日韩在线播放| 人人妻人人澡人人看| 国产成人av激情在线播放| 三上悠亚av全集在线观看| 国产精品.久久久| 桃花免费在线播放| 欧美性长视频在线观看| 日本五十路高清| 国产精品九九99| 别揉我奶头~嗯~啊~动态视频 | 91国产中文字幕| 脱女人内裤的视频| 女人高潮潮喷娇喘18禁视频| 久久中文字幕一级| 婷婷丁香在线五月| 啦啦啦在线免费观看视频4| www日本在线高清视频| 国产一卡二卡三卡精品| 亚洲人成电影观看| 久久 成人 亚洲| 亚洲欧美色中文字幕在线| 最新的欧美精品一区二区| 久久久久久久久免费视频了| 欧美成人精品欧美一级黄| 亚洲精品一二三| 日本a在线网址| 精品久久蜜臀av无| 老司机深夜福利视频在线观看 | 青春草视频在线免费观看| 丝袜人妻中文字幕| 真人做人爱边吃奶动态| 极品少妇高潮喷水抽搐| 亚洲国产日韩一区二区| 亚洲av男天堂| 久热爱精品视频在线9| 五月开心婷婷网| 欧美日韩一级在线毛片| 国精品久久久久久国模美| 国产欧美日韩一区二区三区在线| 人人妻人人澡人人爽人人夜夜| 亚洲av成人精品一二三区| 啦啦啦在线免费观看视频4| 国产成人欧美| 一级毛片黄色毛片免费观看视频| 亚洲欧洲日产国产| 久久久久久久国产电影| 国产成人精品久久久久久| 国产精品一区二区免费欧美 | av不卡在线播放| 亚洲精品一区蜜桃| 国产在线视频一区二区| 十分钟在线观看高清视频www| 狂野欧美激情性bbbbbb| 久久久久精品人妻al黑| 可以免费在线观看a视频的电影网站| 91九色精品人成在线观看| 免费少妇av软件| 天天躁夜夜躁狠狠久久av| 国产高清国产精品国产三级| 精品国产超薄肉色丝袜足j| 黄色视频不卡| 日韩一卡2卡3卡4卡2021年| 亚洲自偷自拍图片 自拍| 久久精品熟女亚洲av麻豆精品| 亚洲精品自拍成人| 人人澡人人妻人| 晚上一个人看的免费电影| 老司机影院毛片| 狂野欧美激情性xxxx| a 毛片基地| 亚洲第一青青草原| 国产精品成人在线| 国产99久久九九免费精品| 国产高清视频在线播放一区 | 丝瓜视频免费看黄片| 久久人妻福利社区极品人妻图片 | 丝瓜视频免费看黄片| 国产有黄有色有爽视频| 啦啦啦在线观看免费高清www| 精品福利观看| 欧美老熟妇乱子伦牲交| 日本午夜av视频| 99九九在线精品视频| 国产又爽黄色视频| 十八禁人妻一区二区| 国产男女内射视频| 欧美成人精品欧美一级黄| 黄频高清免费视频| 国产精品一区二区在线不卡| 自线自在国产av| 国产av精品麻豆| 首页视频小说图片口味搜索 | 免费在线观看完整版高清| 成年人黄色毛片网站| 婷婷色综合www| 欧美黄色片欧美黄色片| 欧美黄色淫秽网站| 黄网站色视频无遮挡免费观看| 叶爱在线成人免费视频播放| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久精品古装| 国产av精品麻豆| 国产高清国产精品国产三级| 新久久久久国产一级毛片| 18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 午夜福利一区二区在线看| 久久精品久久久久久噜噜老黄| 一本久久精品| 美女中出高潮动态图| 一级,二级,三级黄色视频| 欧美久久黑人一区二区| 少妇精品久久久久久久| 欧美精品一区二区免费开放| 色婷婷久久久亚洲欧美| 另类亚洲欧美激情| e午夜精品久久久久久久| 国产亚洲一区二区精品| 丝袜美腿诱惑在线| 狂野欧美激情性xxxx| 婷婷成人精品国产| 母亲3免费完整高清在线观看| 亚洲中文日韩欧美视频| 午夜免费观看性视频| 国产欧美日韩综合在线一区二区| 一级毛片我不卡| 久久亚洲国产成人精品v| 桃花免费在线播放| 一二三四在线观看免费中文在| 性高湖久久久久久久久免费观看| 亚洲欧洲日产国产| 男女午夜视频在线观看| 日韩伦理黄色片| 国产亚洲一区二区精品| 美女大奶头黄色视频| 亚洲欧美中文字幕日韩二区| 成人影院久久| 亚洲国产精品国产精品| 只有这里有精品99| 久久精品亚洲熟妇少妇任你| www.av在线官网国产| 久久久精品94久久精品| 伊人久久大香线蕉亚洲五| 麻豆av在线久日| 啦啦啦视频在线资源免费观看| 亚洲第一av免费看| 日本色播在线视频| 99国产精品一区二区三区| 亚洲,欧美,日韩| 中文字幕色久视频| 亚洲精品国产区一区二| 男女之事视频高清在线观看 | 国产av国产精品国产| 成年动漫av网址| 日韩一卡2卡3卡4卡2021年| 韩国高清视频一区二区三区| 欧美精品一区二区大全| 9191精品国产免费久久| www.999成人在线观看| 欧美中文综合在线视频| 韩国精品一区二区三区| 亚洲激情五月婷婷啪啪| 亚洲av片天天在线观看| kizo精华| av又黄又爽大尺度在线免费看| 久久精品国产a三级三级三级| 观看av在线不卡| 建设人人有责人人尽责人人享有的| 亚洲av日韩在线播放| 99久久99久久久精品蜜桃| 国产一区二区三区综合在线观看| 国产精品欧美亚洲77777| 十八禁高潮呻吟视频| 久久99精品国语久久久| 国产黄色视频一区二区在线观看| 国产熟女欧美一区二区| 男男h啪啪无遮挡| 国产在线视频一区二区| 黄色怎么调成土黄色| 亚洲男人天堂网一区| 一级毛片电影观看| 美女午夜性视频免费| 国产麻豆69| 亚洲av综合色区一区| av网站免费在线观看视频| 91精品伊人久久大香线蕉| 两个人免费观看高清视频| 亚洲伊人久久精品综合| 91字幕亚洲| 在线观看免费午夜福利视频| 妹子高潮喷水视频| 日韩大码丰满熟妇| 亚洲欧美精品综合一区二区三区| 久久99一区二区三区| 最近手机中文字幕大全| 老司机影院毛片| 日日爽夜夜爽网站| 深夜精品福利| 欧美少妇被猛烈插入视频| 日韩 欧美 亚洲 中文字幕| 大码成人一级视频| 精品亚洲成国产av| 久久久精品国产亚洲av高清涩受| 超碰97精品在线观看| 欧美精品一区二区大全| 我要看黄色一级片免费的| 国产精品一区二区在线观看99| av在线播放精品| 蜜桃在线观看..| 中文字幕最新亚洲高清| 成人午夜精彩视频在线观看| 熟女少妇亚洲综合色aaa.| 免费少妇av软件| 精品欧美一区二区三区在线| 亚洲国产毛片av蜜桃av| 亚洲精品乱久久久久久| 欧美av亚洲av综合av国产av| 亚洲成国产人片在线观看| 国产在线观看jvid| 亚洲国产av新网站| 亚洲国产成人一精品久久久| 久久精品亚洲av国产电影网| 亚洲欧美精品综合一区二区三区| 性色av乱码一区二区三区2| 又黄又粗又硬又大视频| 国产有黄有色有爽视频| 欧美日韩国产mv在线观看视频| 亚洲人成77777在线视频| 丝袜美足系列| 午夜福利在线免费观看网站| 丰满迷人的少妇在线观看| 精品人妻在线不人妻| 熟女少妇亚洲综合色aaa.| 久久国产精品男人的天堂亚洲| 精品久久久久久电影网| 中文字幕制服av| av福利片在线| 午夜精品国产一区二区电影| 婷婷色综合大香蕉| 黄色 视频免费看| 婷婷色综合大香蕉| 晚上一个人看的免费电影| 亚洲熟女精品中文字幕| 啦啦啦啦在线视频资源| 欧美日韩成人在线一区二区| 水蜜桃什么品种好| 男女边摸边吃奶| 亚洲成人免费电影在线观看 | 欧美乱码精品一区二区三区| 美女高潮到喷水免费观看| 啦啦啦中文免费视频观看日本| 欧美黑人欧美精品刺激| 两个人看的免费小视频| 18禁国产床啪视频网站| 欧美精品av麻豆av| 久久久欧美国产精品| 五月天丁香电影| 欧美激情高清一区二区三区| 欧美乱码精品一区二区三区| 国产男女超爽视频在线观看| 国产免费一区二区三区四区乱码| 色94色欧美一区二区| 啦啦啦视频在线资源免费观看| www.av在线官网国产| 中文字幕av电影在线播放| 看免费成人av毛片| 国产av国产精品国产| 大香蕉久久网| 国产成人精品久久二区二区免费| 亚洲成色77777| av国产久精品久网站免费入址| 国产男女超爽视频在线观看| 91九色精品人成在线观看| 美女脱内裤让男人舔精品视频| 一本大道久久a久久精品| 国产亚洲精品久久久久5区| 99国产精品一区二区三区| 满18在线观看网站| 一二三四在线观看免费中文在| 免费高清在线观看视频在线观看| 蜜桃国产av成人99| 精品一区二区三区四区五区乱码 | 免费观看人在逋| 国产视频一区二区在线看| 18在线观看网站| 飞空精品影院首页| 国产成人av教育| 女人高潮潮喷娇喘18禁视频|