陳禹彤 陳華民 余超 Amy Thein 田芳 何晨陽(yáng)
(中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所 植物病蟲(chóng)害生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100193)
水稻miR169o及其靶基因OsNF-YAs對(duì)缺水脅迫的早期表達(dá)模式
陳禹彤 陳華民 余超 Amy Thein 田芳 何晨陽(yáng)
(中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所植物病蟲(chóng)害生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100193)
MicroRNAs(miRNAs)是一類小的非編碼RNA,在植物逆境脅迫應(yīng)答中發(fā)揮重要的調(diào)控作用。miR169可受干旱脅迫誘導(dǎo)表達(dá),而過(guò)表達(dá)miR169則可以增強(qiáng)植物對(duì)干旱的耐受性。然而,miR169及其靶基因NF-YAs在水稻干旱脅迫條件下的表達(dá)動(dòng)態(tài)至今尚不清楚。對(duì)水稻進(jìn)行不同時(shí)間缺水處理,用qRT-PCR法定量測(cè)定了水稻根、莖、葉組織中miR169o及其靶基因表達(dá)的動(dòng)態(tài)變化。結(jié)果表明,隨著缺水處理時(shí)間的增加,水稻不同組織中miR169o表達(dá)量總體上有升高趨勢(shì);而靶基因(NF-YA1、NFYA2 和NF-YA3)表達(dá)模式基本與miR169o的表達(dá)模式相反,但并不全部對(duì)應(yīng)。推測(cè)在水稻干旱脅迫早期反應(yīng)中,miR169o可能主要調(diào)控了部分特定靶基因的表達(dá)。此外,miR169o在水稻根、莖、葉組織中的表達(dá)和豐度存在著明顯的差異,具有組織特異性。
miR169o;OsNF-YAs;水稻;干旱脅迫;表達(dá)模式
MicroRNAs(miRNAs)是一類內(nèi)源基因編碼的單鏈小分子非編碼RNA,長(zhǎng)度為18-25個(gè)核苷酸,其主要通過(guò)兩種機(jī)制調(diào)控其靶基因的表達(dá):剪切靶基因mRNA或者抑制靶基因翻譯[1-3]。miRNAs是植物應(yīng)對(duì)生物和非生物逆境中的重要調(diào)控因子[4,5]。miR169是受多種脅迫(如干旱、氮饑餓、高鹽、冷害等)條件調(diào)控的一個(gè)保守miRNA家族[6-8]。核因子Y(nuclear factor Y,NF-Y)是普遍存在的一類轉(zhuǎn)錄因子,由NF-YA、NF-YB和NF-YC三個(gè)亞基組成。NF-YA家族含有miR169靶標(biāo)位點(diǎn),miR169可以抑制NF-YA基因轉(zhuǎn)錄[9,10]。氮饑餓顯著下調(diào)擬南芥中miR169的表達(dá)水平,上調(diào)靶基因NF-YA的表達(dá),從而調(diào)控植物中氮素傳感器NRT1.1的表達(dá),因此調(diào)節(jié)了植物應(yīng)對(duì)氮饑餓的反應(yīng)[7]。高鹽脅迫能夠誘導(dǎo)擬南芥miR169的表達(dá),其靶基因NF-YA作為CAAT結(jié)合因子,進(jìn)一步參與基因表達(dá)調(diào)控和信號(hào)轉(zhuǎn)導(dǎo),從而抵抗高鹽脅迫[11]。miR169還參與調(diào)控植物的花期,過(guò)量表達(dá)miR169d,抑制了靶基因AtNFYA2,從而減少FLC(Flowering Locus C,F(xiàn)LC)的表達(dá),導(dǎo)致FLC的靶基因FT(FLOWERING LOCUS T)和LFY(LEAFY)表達(dá)量增加,從而促進(jìn)擬南芥開(kāi)花[12]。干旱脅迫下調(diào)擬南芥miR169a和miR169c的表達(dá),共表達(dá)實(shí)驗(yàn)表明miR169a能更高效地抑制atNFYA5的mRNA水平。nfya5突變體和過(guò)表達(dá)ath-miR169a的轉(zhuǎn)基因植株加快了葉片的失水速率,對(duì)干旱脅迫也更加敏感[9]。共表達(dá)實(shí)驗(yàn)和5' RACE實(shí)驗(yàn)都證明miR169可以剪切菜豆GmNFYA3,將GmNFYA3在擬南芥中過(guò)表達(dá),則轉(zhuǎn)基因植株葉片失水速率降低,抗旱性明顯增強(qiáng),而對(duì)高鹽、ABA則更為敏感[10]。此外,miR169還參與了植物根發(fā)育的調(diào)控,通過(guò)miRNAs類似物和剪切位點(diǎn)突變的NF-YA基因的相關(guān)分析表明,miR169在根的生長(zhǎng)和分支上發(fā)揮了特殊的調(diào)控作用。miR169defg通過(guò)抑制NF-YA2和NF-YA10的轉(zhuǎn)錄和蛋白翻譯影響了擬南芥主根的生長(zhǎng)和側(cè)根的起始[13]。干旱脅迫誘導(dǎo)了sly-miR169在番茄體內(nèi)的積累水平,相應(yīng)地下調(diào)了siNF-YA1/2/3的轉(zhuǎn)錄水平,過(guò)量表達(dá)sly-miR169c的轉(zhuǎn)基因植株降低了氣孔的開(kāi)放、呼吸速率和葉片的失水率,從而增強(qiáng)了對(duì)干旱的耐受性[14]。這些結(jié)果表明,盡管miR169是一個(gè)非常保守的家族,但miR169在不同物種中的功能并不完全一致,參與干旱調(diào)節(jié)的主效靶基因也可能并不完全相同。
干旱脅迫是水稻生長(zhǎng)發(fā)育的重要環(huán)境影響因子之一,能夠?qū)е滤緶p產(chǎn),甚至死亡。目前,水稻干旱脅迫反應(yīng)研究已經(jīng)深入到分子水平,涉及抗旱基因克隆、定位及功能分析等[15]。水稻miR169家族中對(duì)植物調(diào)控作用主要包括miR169g和miR169n/o兩部分,其中miR169n和miR169o位于同一個(gè)miRNA基因簇中,二者相距3 707個(gè)堿基[16]。然而,在干旱脅迫條件下,水稻miR169o及其靶基因早期表達(dá)變化及其組織特異性尚不清楚。
為了明確缺水或干旱脅迫條件下,水稻miR169及其靶基因的表達(dá)調(diào)控模式,本研究利用qRTPCR法檢測(cè)了脅迫初期水稻根、莖、葉中miR169o以及靶基因OsNF-YA1(Os03g48970)、OsNF-YA2(Os12g42400)和OsNF-YA3(Os02g53620)的表達(dá)動(dòng)態(tài)變化,以期明確缺水或干旱脅迫初期,miR169o及其靶基因的動(dòng)態(tài)表達(dá)調(diào)控模式和組織特異性情況。
1.1 材料
水稻品種日本晴(Oryza sativa L. cv. Nipponbare)由本實(shí)驗(yàn)室保存;Trizol Regent購(gòu)自Invitrogen公司;TaqMan? MicroRNA Reverse Transcription Kit 購(gòu)自ABI公司;RQ1 RNase-Free DNase、GoScriptTMReverse Transcription System、GoTaq? qPCR Master Mix購(gòu)自Promega公司;其他試劑均為國(guó)產(chǎn)分析純;實(shí)驗(yàn)引物由北京華大基因科技有限公司合成。
水 稻 培 養(yǎng) Hogland營(yíng) 養(yǎng) 液[17]:10 mmol/L KH2PO4,2 mmol/L MgSO4,1 mmol/L CaCl2,0.1 mmol/L Fe-EDTA,50 μmol/L H3BO4,12 μmol/L MnSO4,1 μmol/L ZnCl2,1 μmol/L CuSO4,0.2 μmol/L Na2MoO4,pH5.5-6.0。
1.2 方法
1.2.1 水稻幼苗培養(yǎng)及其缺水脅迫處理 將水稻種子置于培養(yǎng)皿清水中,在37℃下催芽2 d。待幼芽長(zhǎng)至1 cm長(zhǎng)時(shí),將其種植于泡沫板上,將泡沫板置于清水中,覆蓋蛭石。4 d后將泡沫板移至含3 mmol/L KNO3的Hogland培養(yǎng)液中培養(yǎng)(28℃、16 h光照、8 h黑暗)。選取生長(zhǎng)3周的水稻幼苗,將其從營(yíng)養(yǎng)液中取出,用干燥吸水紙迅速吸除根部水分,進(jìn)行脫水干旱脅迫處理0、0.5、1、2和4 h,然后采集根、莖和葉部樣品,經(jīng)液氮速凍后,置于-80℃保存?zhèn)溆谩?/p>
1.2.2 水稻總RNA提取及cDNA合成 經(jīng)缺水處理0、0.5、1、2和4 h的水稻根、莖和葉組織樣品按照稍作改進(jìn)的Trizol方法[18]進(jìn)行水稻總RNA提取。經(jīng)DNase處理后,用瓊脂糖凝膠電泳檢測(cè)RNA完整性及基因組DNA是否完全去除,用Nano Drop 2000分光光度計(jì)檢測(cè)RNA濃度。miR169o反轉(zhuǎn)錄莖環(huán)引物為5'-GTCGTATCCAGTGCAGGGTCCGAGGTATTC GCACTGGATACGACTAGGCA-3',按照ABI TaqMan? MicroRNA Reverse Transcription試劑盒方法進(jìn)行反轉(zhuǎn)錄;靶基因OsNF-YAs反轉(zhuǎn)錄引物為Oligo dT,按照GoScriptTMReverse Transcription System試劑盒方法進(jìn)行反轉(zhuǎn)錄。
1.2.3 實(shí)時(shí)熒光定量PCR分析 利用Primer premier 5.0軟件,設(shè)計(jì)miR169o、靶基因OsNF-YAs和內(nèi)參基因U6的特異性引物(表1)。以合成的cDNA為模板,按照GoTaq? qPCR Master Mix試劑盒方法,用ABI 7500實(shí)時(shí)定量PCR儀進(jìn)行qRT-PCR檢測(cè)。對(duì)照樣品為未經(jīng)脅迫處理的水稻樣品。miR169o及其靶基因相對(duì)表達(dá)量按照2-△△Ct法計(jì)算[19],其中△△Ct =(Ct樣品-CtU6)TimeX -(Ct對(duì)照樣品-CtU6)Time0,Time X表示任意時(shí)間點(diǎn),Ct為熒光閾值。
表1 本研究用引物
2.1 水稻根部miR169o及OsNF-YAs的表達(dá)
以U6為內(nèi)參基因、未處理樣品為對(duì)照,進(jìn)行缺水處理水稻根部樣品qRT-PCR檢測(cè)。實(shí)驗(yàn)中miR169o、OsNFYAs和U6基因熔解曲線均為單一峰。分別計(jì)算各處理樣品中基因的相對(duì)表達(dá)量。結(jié)果(圖1)表明,水稻根部miR169o表達(dá)量總體上呈升高趨勢(shì),在缺水處理0.5 h時(shí)出現(xiàn)極顯著差異,在缺水處理2 h時(shí)達(dá)到最高峰,之后逐步下降,但仍明顯高于對(duì)照。OsNF-YA2的表達(dá)動(dòng)態(tài)變化與miR169o的完全相反,符合miRNA與靶基因的對(duì)應(yīng)關(guān)系;OsNFYA1的表達(dá)動(dòng)態(tài)與miR169o相似;OsNF-YA3在缺水處理1-4 h之間的表達(dá)動(dòng)態(tài)與miR169o相反。
2.2 水稻莖部miR169o及OsNF-YAs的表達(dá)
經(jīng)缺水處理的水稻莖部miR169o表達(dá)動(dòng)態(tài)與根部相似(圖2),但總體表達(dá)變化幅度不超過(guò)5倍。缺水處理1 h表達(dá)量迅速升高,2 h時(shí)出現(xiàn)一個(gè)2倍的峰值,隨后下降,但4 h時(shí)但仍明顯高于對(duì)照。3個(gè)OsNF-YAs的表達(dá)動(dòng)態(tài)變化趨勢(shì)基本一致,均與miR169o相反,符合miRNA與靶基因的對(duì)應(yīng)關(guān)系。
2.3 水稻葉部miR169o及其OsNF-YAs的表達(dá)
經(jīng)缺水處理的水稻葉部miR169o的表達(dá)量整體呈上升趨勢(shì)(圖3)。缺水處理0-0.5 h迅速上升,在0.5 h時(shí)出現(xiàn)顯著差異,0.5-1 h其表達(dá)基本維持此水平,隨后迅速下降,在2 h時(shí)降至最底點(diǎn),隨后又上升至4倍峰值;OsNF-YA2和OsNF-YA3的表達(dá)在初始0.5 h顯著下降,與miR169o呈相反趨勢(shì),但0.5-4 h的表達(dá)趨勢(shì)同miR169o一致;OsNF-YA1的表達(dá)趨勢(shì)與miR169o一致,同其在根部表達(dá)情況類似,不符合miRNA和靶基因的對(duì)應(yīng)關(guān)系。
miRNA在植物生長(zhǎng)發(fā)育和應(yīng)對(duì)逆境脅迫反應(yīng)中發(fā)揮著重要的調(diào)控作用。近年來(lái),針對(duì)miR169家族及靶基因NF-YAs的研究涉及到擬南芥[20]、水稻[21]、番茄[14]、大豆[10]、山楊[22]等植物,主要包括早花[12]、干旱[14]、高鹽[16]、低氮[7]等性狀的調(diào)控方面。水稻中miR169家族包含17個(gè)成員,代表9個(gè)僅存在微小差別的不同的成熟序列。在高鹽脅迫中,僅miR169g和miR169n/o受到誘導(dǎo),其余miR169家族成員對(duì)鹽脅迫無(wú)響應(yīng)[16]。PEG 6000(polyethylene glycol 6000)模擬干旱處理后,芯片分析表明水稻miR169家族中幾個(gè)成員都能被誘導(dǎo)表達(dá),然而Northern blot僅能驗(yàn)證miR169fg的誘導(dǎo)表達(dá)[23],這可能是由于不同技術(shù)方法的靈敏度和特異性所決定的。通常來(lái)說(shuō),鹽脅迫和干旱脅迫之間存在著密切的聯(lián)系,盡管已經(jīng)報(bào)道m(xù)iR169o在高鹽脅迫下誘導(dǎo)表達(dá),但對(duì)于干旱脅迫下水稻miR169o的動(dòng)力學(xué)表達(dá)變化尚無(wú)報(bào)道。本研究對(duì)缺水干旱脅迫初期水稻miR169o及其靶基因的動(dòng)態(tài)變化趨勢(shì)進(jìn)行了監(jiān)測(cè)。對(duì)于脅迫條件設(shè)置,本實(shí)驗(yàn)室未采用PEG6000處理法,而是對(duì)植物進(jìn)行缺水處理來(lái)模擬干旱脅迫初期的情況,這種處理方式較PEG6000處理更為劇烈,在4 h時(shí)植株已經(jīng)出現(xiàn)明顯萎蔫癥狀。在干旱脅迫初期0-4 h內(nèi),盡管水稻miR169表達(dá)水平在根、莖、葉中都有不同程度升降,但其表達(dá)總體上呈上升趨勢(shì)。
圖1 經(jīng)缺水處理的水稻根部m iR169o及OsNF-YAs表達(dá)
圖2 經(jīng)缺水處理的水稻莖部m iR169o及OsNF-YAs表達(dá)
圖3 經(jīng)缺水處理的水稻葉部m iR169o及OsNF-YAs表達(dá)
本研究表明,干旱脅迫下miR169o在水稻不同組織中的表達(dá)具有明顯的組織特異性。其在根、莖部的表達(dá)趨勢(shì)基本一致,但根部變化幅度更大,可高達(dá)171倍。有報(bào)道在鹽脅迫條件下玉米根部應(yīng)答反應(yīng)比葉部更快、更敏感[24]。本研究發(fā)現(xiàn)miR169o根部變化遠(yuǎn)高于莖部,可能是因?yàn)閙iR169o在干旱脅迫下根中的應(yīng)答反應(yīng)更為敏感。miR169o葉部表達(dá)趨勢(shì)不同于根莖部,脅迫初始上調(diào)迅速,可能是干旱脅迫誘導(dǎo)了根部ABA積累、從根部運(yùn)輸?shù)饺~片,氣孔開(kāi)閉受抑制,從而減少水分流失[25-27]。因此,miR169o在葉部能迅速應(yīng)答干旱脅迫,但其表達(dá)量變化范圍遠(yuǎn)遠(yuǎn)小于根部。
本研究還發(fā)現(xiàn),miR169與靶基因的表達(dá)變化趨勢(shì)在莖部完全對(duì)應(yīng),但在根、葉部并不能完全對(duì)應(yīng)??赡艿脑蚴窃诟珊得{迫反應(yīng)中,有其它miRNA、激素以及調(diào)控因子同時(shí)參與了調(diào)控過(guò)程[5]。有報(bào)道擬南芥NF-YAs家族分為3個(gè)亞組,不同亞組在根或地上部的積累量不同[7]。水稻OsNF-YAs家族也分為不同亞組,OsNF-YA1、OsNF-YA2和OsNFYA3處于不同亞組中,3個(gè)靶基因在根莖葉部表達(dá)趨勢(shì)并不一致。其具體分布狀況尚待研究。
本研究定量分析了在干旱脅迫下水稻不同組織中miR169o及靶基因OsNF-YAs表達(dá)的動(dòng)態(tài)變化,發(fā)現(xiàn)miR169o在干旱脅迫下表達(dá)量總體上升,其在根莖部動(dòng)態(tài)變化趨勢(shì)基本一致,根部在應(yīng)對(duì)干旱脅迫應(yīng)中更敏感,葉部反應(yīng)更為迅速。靶基因OsNFYA1、OsNF-YA2、OsNF-YA3的表達(dá)在莖部與miR169o完全對(duì)應(yīng),而在根、葉部并不完全對(duì)應(yīng)。
[1] Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs[J]. Plant Cell, 2013, 25(7):2383-2399.
[2] Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, andfunction[J]. Cell, 2004, 116(2):281-297.
[3] Jones-Rhoades MW, Bartel DP, et al. MicroRNAs and their regulatory roles in plants[J]. Annu Rev Plant Biol, 2006, 57:19-53.
[4] Sunkar R, Chinnusamy V, Zhu J, et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation[J]. Trends in Plant Science, 2007, 12(7):301-309.
[5] Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants[J]. Biochim Biophys Acta,2012, 1819(2):137-48.
[6] Covarrubias AA, Reyes JL. Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs[J]. Plant Cell Environ, 2010, 33(4):481-489.
[7] Zhao M, Ding H, Zhu JK, et al. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis[J]. New Phytol,2011, 190(4):906-915.
[8] Lundmark M, Korner CJ, Nielsen TH. Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays[J]. Physiol Plant, 2010,140(1):57-68.
[9] Li WX, Oono Y, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8):2238-2251.
[10] Ni Z, Hu Z, Jiang Q, et al. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress[J]. Plant Mol Biol, 2013, 82(1-2):113-129.
[11] Liu HH, Tian X, Li YJ, et al. Microarray-based analysis of stressregulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008,14(5):836-843.
[12] Xu MY, Zhang L, Li WW, et al. Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana[J]. J Exp Bot,2014, 65(1):89-101.
[13] Sorin C, Declerck M, Christ A, et al. A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis[J]. New Phytol, 2014, 202(4):1197-1211.
[14] Liu HJ, Chen LG, Zhu PP, et al. Effect of hyacinth mulching on rice(Oryza sativa L. )uptake and utilization of nitrogen[J]. Environmental Science, 2011, 32(5):1292-1298.
[15] 潘雅姣, 傅彬英, 王迪, 等. 水稻干旱脅迫誘導(dǎo)DNA甲基化時(shí)空變化特征分析[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2009, 42:3009-3018.
[16] Zhao B, Ge L, Liang R, et al. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor[J]. BMC Mol Biol, 2009, 10:29.
[17] Hoagland DR, Arnon DI. The water-culture method for growing plants without soil[M]. 2nd ed. Circular. California Agricultural Experiment Station, 1950:347.
[18] Rio DC, Ares M, Hannon GJ, et al. Purification of RNA using TRIzol(TRI reagent)[J]. Cold Spring Harbor Protocols, 2010(6):pdb. prot5439.
[19] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408.
[20] Yang B, Ma HY, Wang XM, et al. Improvement of nitrogen accumulation and metabolism in rice(Oryza sativa L. )by the endophyte Phomopsis liquidambari[J]. Plant Physiol Biochem,2014, 82:172-182.
[21] Liu Q, Zhang YC, Wang CY, et al. Exp ression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling[J]. FEBS Letters,2009, 583(4):723-728.
[22] Jia X, Wang WX, Ren L, et al. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana[J]. Plant Molecular Biology, 2009, 71(1-2):51-59.
[23] Zhao B, Liang R, Ge L, et al. Identification of drought-induced microRNAs in rice[J]. Biochem Biophys Res Commun, 2007,354(2):585-590.
[24] Jia W, Wang Y, et al. Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots[J]. Journal of Experimental Botany, 2002, 53(378):2201-2206.
[25] Daszkowska-Golec A, Szarejko I. The molecular basis of ABA-mediated plant response to drought[J]. Agricultwre and Biological Scieurs, 2013:103-133.
[26] Wilkinson S, Davies WJ. ABA-based chemical signalling:the co-ordination of responses to stress in plants[J]. Plant, Cell & Environment, 2002, 25(2):195-210.
[27] Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought—from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3):239-264.
(責(zé)任編輯 李楠)
Dynam ic Expression of m iR169o and Its Target Genes OsNF-YAs in the Early Response to W ater Deficiency in Rice
Chen Yutong Chen Huamin Yu Chao Amy Thein Tian Fang He Chenyang
(State Key Laboratory for Biology of Plant Disease and Insect Pests,Institute of Plant Protection,Chinese Academy of Agricultural Science,Beijing100193)
MicroRNAs(miRNAs)is noncoding RNAs and play important roles in plant development and response to various environment stresses. Recent evidence have indicated that miR169 is upregulated response to drought stress, and overexpression of miR169 contributes to improve the tolerance to drought stress in plant. However, it is still unclear to the expression pattern of miR169 under drought stress and the regulatory mechanism response to drought stress in rice. In this study, the dynamic expression patterns of miR169o and its target gene NF-YAs(Nuclear Factor Y A subunit, NF-YA)in the root, stem and leaf of rice were analysed systematically by qRT-PCR after water deficiency treatment. Generally, miR169o showed up-regulated after water deficiency stress treatment compared to that before treatment, while target gene NF-YAs showed imperfect reverse expression pattern to miR169o. In addition, the expression pattern and abundance of miR169o in rice root, stem and leaf suggested that the expression of miR169o is tissue-specific.
miR169o;OsNF-YA s;rice;water deficiency;expression pattern
10.13560/j.cnki.biotech.bull.1985.2015.08.034
2015-03-09
國(guó)家轉(zhuǎn)基因生物新品種培育重大專項(xiàng)(2014ZX08010-005,2014ZX08001-002),國(guó)家“863”計(jì)劃(2012AA101504)
陳禹彤,女,碩士研究生,研究方向:分子植物病理學(xué);E-mail:cythxmichelle@163.com
陳華民,副研究員,碩士生導(dǎo)師,研究方向:分子植物病理學(xué);E-mail:hmchen@ippcaas.cn