溫憲春韓翠翠趙月生于海濤李成沖岳麗玲
(1.齊齊哈爾醫(yī)學(xué)院 醫(yī)藥科學(xué)研究中心,齊齊哈爾 161006;2.齊齊哈爾醫(yī)學(xué)院附屬第三醫(yī)院 乳腺外科,齊齊哈爾 161006)
FUT8基因RNAi慢病毒載體的構(gòu)建及對(duì)MCF-7細(xì)胞增殖的影響
溫憲春1韓翠翠1趙月生2于海濤1李成沖1岳麗玲1
(1.齊齊哈爾醫(yī)學(xué)院醫(yī)藥科學(xué)研究中心,齊齊哈爾161006;2.齊齊哈爾醫(yī)學(xué)院附屬第三醫(yī)院乳腺外科,齊齊哈爾161006)
旨在構(gòu)建FUT8基因RNA干擾(RNAi)慢病毒載體并觀察其對(duì)人乳腺癌細(xì)胞MCF-7增殖的影響。針對(duì)FUT8基因設(shè)計(jì)3組短發(fā)夾RNA序列,退火合成雙鏈DNA,通過(guò)連接線性化的pGC-LV-GFP載體,構(gòu)建miRNA慢病毒載體質(zhì)粒,并將其轉(zhuǎn)化至感受態(tài)細(xì)胞DH5α;測(cè)序驗(yàn)證正確后進(jìn)行FUT8基因慢病毒載體的包裝及病毒滴度測(cè)定,將獲得的重組慢病毒pGC-shFUT8轉(zhuǎn)染MCF-7細(xì)胞,利用Real time-PCR、Western blot分別驗(yàn)證轉(zhuǎn)染后MCF-7細(xì)胞中FUT8 mRNA及蛋白的表達(dá),MTT法及克隆形成實(shí)驗(yàn)檢測(cè)shFUT8對(duì)MCF-7細(xì)胞增殖能力的影響。測(cè)序證實(shí)成功構(gòu)建針對(duì)FUT8基因的RNAi慢病毒載體;慢病毒載體經(jīng)293T細(xì)胞包裝成功,測(cè)定病毒懸液滴度>5×108TU/mL;熒光顯微鏡下觀察各轉(zhuǎn)染組細(xì)胞GFP的表達(dá),轉(zhuǎn)染效率達(dá)90%以上;Real-time PCR、Western blot結(jié)果顯示干擾組FUT8的mRNA及蛋白表達(dá)水平較對(duì)照組顯著降低,其中pGC-shFUT8-2序列對(duì)FUT8基因的干擾效率可達(dá)80%,干擾效果最佳,F(xiàn)UT8沉默后MCF-7細(xì)胞增殖能力下降。
FUT8基因;慢病毒載體;RNA干擾;MCF-7細(xì)胞
糖基化是最常見(jiàn)的翻譯后修飾反應(yīng)之一,糖基化異常直接影響細(xì)胞的識(shí)別、黏附、遷移及侵襲等生物學(xué)特性,與腫瘤的發(fā)生、發(fā)展密切相關(guān)。α-1,6巖藻糖基轉(zhuǎn)移酶(α1,6-fucosyltransferase,F(xiàn)UT8)是巖藻糖基轉(zhuǎn)移酶基因超家族的一員,其通過(guò)形成α-1,6糖苷鍵催化巖藻糖基由GDP-Fuc轉(zhuǎn)移至糖蛋白N-連接寡糖的核心結(jié)構(gòu)GlcNAc上,形成核心巖藻糖[1]。這種核心巖藻糖基化修飾普遍存在于糖蛋白中,被認(rèn)為是對(duì)糖蛋白進(jìn)行重要的翻譯后修飾和功能調(diào)控的一種方式[2]。然而,在多種腫瘤惡性演進(jìn)的過(guò)程中,F(xiàn)UT8的活性和表達(dá)量會(huì)逐漸增加[3-8],但FUT8作用的特異性底物以及核心巖藻糖基化修飾在乳腺細(xì)胞惡性變過(guò)程中所發(fā)揮的具體生物學(xué)功能尚不清楚。本研究采用RNA干擾技術(shù)構(gòu)建針對(duì)人FUT8基因的慢病毒表達(dá)載體,并在人乳腺癌細(xì)胞MCF-7中表達(dá),旨在為進(jìn)一步深入研究FUT8基因功能及在乳腺癌發(fā)生發(fā)展中的作用奠定實(shí)驗(yàn)基礎(chǔ)。
1.1 材料
人乳腺癌MCF-7細(xì)胞、293T細(xì)胞購(gòu)自上海中科院細(xì)胞庫(kù),DH5α感受態(tài)細(xì)胞由本室保存,慢病毒載體質(zhì)粒pGC-LV-GFP、pHelper1.0、pHelper2.0為上海吉?jiǎng)P基因化學(xué)技術(shù)有限公司產(chǎn)品;T4 DNA連接酶、限制性內(nèi)切酶Age I和EcoR I購(gòu)自NEB,Lipofectamine 2000、Trizol(Invitrogen公司),質(zhì)粒大提試劑盒(QIAGEN公司),Taq polymerase、凝膠回收試劑盒、PrimeScript RT reagent Kit(TaKaRa公司),胎牛血清、MEM培養(yǎng)基(Gibco公司),F(xiàn)UT8鼠抗人多克隆抗體(Santa公司)、HRP標(biāo)記的羊抗鼠IgG(CST公司)。Positive clone測(cè)序由上海美季生物技術(shù)有限公司完成。
1.2.1 靶向FUT8基因的shRNA慢病毒表達(dá)載體的構(gòu)建 從GenBank查找FUT8基因序列(GI:NM_004480),應(yīng)用Ambion公司的RNA干擾設(shè)計(jì)軟件,設(shè)計(jì)3條針對(duì)人FUT8基因的特異性shRNA序列(表1),以通用序列(negative control,NC)作為陰性對(duì)照。將合成好的單鏈DNA退火形成雙鏈DNA,通過(guò)T4 DNA連接酶連接線性化的pGC-LVGFP載體,并轉(zhuǎn)化至感受態(tài)細(xì)胞DH5α,菌落PCR篩選重組陽(yáng)性克隆進(jìn)行測(cè)序鑒定。
表1 針對(duì)FUT8基因的3個(gè)siRNA靶序列
1.2.2 RNAi慢病毒的包裝 取對(duì)數(shù)生長(zhǎng)期的293T細(xì)胞按照1.2×107個(gè)接種于15 cm培養(yǎng)皿中,待細(xì)胞達(dá)70%-80%融合時(shí)進(jìn)行轉(zhuǎn)染。取20 μg慢病毒表達(dá)質(zhì)粒pGC-LV-GFP-shFUT8、15 μg的pHelper 1.0質(zhì)粒、10 μg的pHelper 2.0質(zhì)粒與2.5 mL Opti-MEM混勻后,脂質(zhì)體Lipofectamine 2000介導(dǎo)轉(zhuǎn)染293T細(xì)胞,培養(yǎng)8 h后換為完全培養(yǎng)基,繼續(xù)培養(yǎng)48 h后收集含慢病毒顆粒的細(xì)胞上清液,于4℃,4 000×g離心10 min,上清液用0.45 μm濾器過(guò)濾,得到的病毒原液命名為pGC-shFUT8,分裝后-80℃保存?zhèn)溆谩?/p>
1.2.3 孔稀釋法測(cè)定病毒滴度 滴度測(cè)定前1 d,以8×103cells/孔的密度接種293T細(xì)胞于96孔板,體積100 μL。將10 μL病毒儲(chǔ)存液加入90 μL的無(wú)血清培養(yǎng)基中,在EP管中做10倍梯度稀釋,連續(xù)10個(gè)稀釋度。選取細(xì)胞孔,吸去90 μL的原培養(yǎng)基,然后在每孔中加入90 μL慢病毒稀釋液,每個(gè)稀釋度重復(fù)3孔,24 h后每孔加入100 μL完全培養(yǎng)基。4 d后根據(jù)GFP表達(dá)情況,以最大稀釋倍數(shù)孔計(jì)算病毒原液滴度,計(jì)算公式:病毒滴度(TU/mL)=熒光細(xì)胞個(gè)數(shù)×1 000/孔的病毒原液量(μL)。
1.2.4 重組慢病毒感染MCF-7細(xì)胞 將人乳腺癌MCF-7細(xì)胞以4×104cells/孔的密度接種于6孔板培養(yǎng),細(xì)胞80%以上融合時(shí)進(jìn)行病毒感染。以預(yù)試驗(yàn)得到的重組慢病毒的最佳MOL值100侵染人MCF-7細(xì)胞,同時(shí)設(shè)立不加病毒的空白對(duì)照組和轉(zhuǎn)染病毒空載體的陰性對(duì)照組,8 h后更換細(xì)胞上清為新鮮培養(yǎng)基。
1.2.5 實(shí)時(shí)PCR檢測(cè)MCF-7細(xì)胞FUT8 mRNA表達(dá) 轉(zhuǎn)染96 h后收集細(xì)胞,Trizol提取細(xì)胞總RNA。取1 μg總RNA進(jìn)行逆轉(zhuǎn)錄反應(yīng),PCR反應(yīng)利用ABI7300熒光定量PCR儀進(jìn)行。PCR反應(yīng)引物序列如下:FUT8上游引物:5'-CCATTTCAGGTTTGTTTGGTAG-3';下游引物5'-ATTGGTCCCGCTTCTCACTT-3';內(nèi)參β-actin上游引物為5'-CTGGGACGACATGGAGAAAA-3',下游引物為5'-AAGGAAGGCTGGAAGAGTGC-3'。PCR反應(yīng)條件:95℃預(yù)變性30 s;95℃變性5 s,60℃退火30 s,共40個(gè)循環(huán)。
1.2.6 Western blot檢測(cè)MCF-7細(xì)胞FUT8蛋白表達(dá)
轉(zhuǎn)染96 h后收集各組細(xì)胞,加入RIPA裂解液,提取細(xì)胞總蛋白,BCA法測(cè)定蛋白濃度。取20 μg總蛋白進(jìn)行SDS-PAGE電泳,轉(zhuǎn)PVDF膜,封閉液室溫封閉2 h后依次加入鼠抗人FUT8一抗(1∶200),HRP標(biāo)記的羊抗鼠二抗(1∶3 000),TBST洗膜后ECL顯色,暗室曝光。以GAPDH作為內(nèi)參,檢測(cè)各蛋白條帶吸光強(qiáng)度,AFUT8/GAPDH的比值表示FUT 8蛋白相對(duì)表達(dá)量。
1.2.7 MTT法分析細(xì)胞增殖能力 各組分別取對(duì)數(shù)生長(zhǎng)期細(xì)胞,以每孔3×103cells/200 μL接種于96孔板,37℃常規(guī)培養(yǎng)7 d,每天每組取4個(gè)平行孔細(xì)胞,加入MTT液(20 μL/孔),繼續(xù)培養(yǎng)4 h后,棄上清,每孔加入150 μL DMSO,充分震蕩后酶標(biāo)儀490 nm波長(zhǎng)處測(cè)定OD值,繪制細(xì)胞生長(zhǎng)曲線圖。試驗(yàn)重復(fù)3次。
“感謝大家收看我們的演出,希望這次演出能給各位帶來(lái)一次與眾不同的體驗(yàn)。”厚重而充滿磁性的男聲再次響起,我和抽煙男牽起手,一起做了一個(gè)謝幕的姿勢(shì),幕簾緩緩閉合,女孩和那兩個(gè)男人臉上露出恍然大悟的表情。
1.2.8 平板克隆形成試驗(yàn) 取對(duì)數(shù)生長(zhǎng)期的細(xì)胞,胰酶消化并吹打成單細(xì)胞懸液,以 3×103cells/孔的細(xì)胞數(shù)接種于6孔板中,每組細(xì)胞設(shè)3個(gè)復(fù)孔。37℃,5% CO2靜置培養(yǎng)2-3周。PBS 清洗,甲醇固定15 min,0.2%結(jié)晶紫染色20 min,流水沖去染液。顯微鏡下計(jì)數(shù)大于50個(gè)細(xì)胞的克隆數(shù),計(jì)算克隆形成率:克隆形成率(%)=克隆數(shù)/接種細(xì)胞數(shù)×100%。
2.1 重組慢病毒載體的測(cè)序鑒定
將3組重組載體的陽(yáng)性克隆進(jìn)行DNA測(cè)序,測(cè)序結(jié)果表明插入片段與設(shè)計(jì)的shRNA核苷酸序列完全一致(圖1),說(shuō)明已成功構(gòu)建針對(duì)FUT 8基因的重組慢病毒載體pGC-LV-GFP-shFUT8。
圖1 慢病毒重組載體pGC-LV-GFP-shFUT8的測(cè)序結(jié)果
2.2 重組慢病毒的滴度測(cè)定
熒光顯微鏡下觀察,重組慢病毒載體轉(zhuǎn)染293T細(xì)胞48 h后各轉(zhuǎn)染組細(xì)胞均可見(jiàn)強(qiáng)綠色熒光(圖2),說(shuō)明轉(zhuǎn)染成功。將病毒原液倍比稀釋分別感染293T細(xì)胞后,計(jì)數(shù)各孔中表達(dá)綠色熒光的細(xì)胞數(shù),本試驗(yàn)最終測(cè)得pGC-shFUT8-1、2、3病毒原液滴度值分別為8×108、1×109和5×108TU/mL,表明病毒包裝成功。
圖2 重組慢病毒載體轉(zhuǎn)染293T細(xì)胞后觀察綠色熒光蛋白表達(dá)(40×)
2.3 重組慢病毒感染MCF-7細(xì)胞的結(jié)果
重組慢病毒感染MCF-7細(xì)胞96 h后,熒光顯微鏡下可見(jiàn)90%以上細(xì)胞發(fā)出綠色熒光(圖3),細(xì)胞傳代后綠色熒光仍可持續(xù)表達(dá),證明重組慢病毒成功轉(zhuǎn)染MCF-7細(xì)胞。
圖3 慢病毒轉(zhuǎn)染MCF-7細(xì)胞后熒光顯微鏡觀察綠色熒光(100×)
2.4 慢病毒轉(zhuǎn)染MCF-7細(xì)胞后下調(diào)FUT8的mRNA表達(dá)
Real-time PCR結(jié)果(圖4)顯示,空白對(duì)照組與陰性對(duì)照組在mRNA表達(dá)水平方面差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);與對(duì)照組相比,pGC-shFUT8實(shí)驗(yàn)組的FUT8 mRNA表達(dá)水平均有不同程度降低,shFUT8-1、2、3的抑制率分別為30%、54%和40.82%,其中pGC-shFUT8-2在mRNA表達(dá)水平抑制效果最為顯著(P<0.05)。
圖4 Real-time PCR檢測(cè)FUT8基因的mRNA表達(dá)水平
2.5 慢病毒轉(zhuǎn)染MCF-7細(xì)胞后下調(diào)FUT8的蛋白表達(dá)
圖5 Western blotting 檢測(cè)FUT8蛋白表達(dá)水平
重組慢病毒載體轉(zhuǎn)染MCF-7細(xì)胞后Western blotting檢測(cè)結(jié)果(圖5)顯示,3個(gè)RNAi組的FUT8蛋白相對(duì)表達(dá)量較空白對(duì)照組與陰性對(duì)照組明顯降低,shFUT8-1、2、3組分別下降了43.08%、80%和69.23%,其中pGC-shFUT8-2組抑制效果最佳(P<0.05);空白對(duì)照組與陰性對(duì)照組間FUT8蛋白表達(dá)量無(wú)顯著性差異(P>0.05)。
2.6 細(xì)胞體外增殖分析
MTT檢測(cè)結(jié)果發(fā)現(xiàn),接種第3天起,pGC-shFUT8-2組細(xì)胞增殖速率明顯低于空白對(duì)照組與陰性對(duì)照組(P<0.05),而陰性對(duì)照組與空白對(duì)照組相比較,增殖未見(jiàn)改變(P>0.05,圖6)。同時(shí),克隆形成試驗(yàn)也顯示,轉(zhuǎn)染pGC-shFUT8-2組細(xì)胞克隆形成率(16.96%)遠(yuǎn)低于空白對(duì)照組及陰性對(duì)照組(分別為41.38%、39.67%),差異顯著(P<0.05),而陰性對(duì)照組與空白對(duì)照組比較無(wú)顯著性差異(P>0.05,圖7)。
圖6 各組MCF-7細(xì)胞生長(zhǎng)曲線圖
細(xì)胞惡性轉(zhuǎn)化過(guò)程中總伴有糖鏈結(jié)構(gòu)的改變,并且這種改變與腫瘤細(xì)胞的黏附、遷移及侵襲等多種運(yùn)動(dòng)功能相關(guān)[9]。核心巖藻糖是位于N-型糖鏈核心部位的唯一的巖藻糖糖基,F(xiàn)UT8是催化核心巖藻糖基反應(yīng)的酶[10]?,F(xiàn)已證明核心巖藻糖基對(duì)多種生長(zhǎng)因子和黏附分子(如EGF、E-cadherins、TGF-β和Integrin等)的信號(hào)傳導(dǎo)是必不可少的[11-15]。如FUT8基因缺失小鼠表現(xiàn)出肺氣腫樣改變的表型和嚴(yán)重的發(fā)育遲緩,出生后3 d之內(nèi)有70%的死亡率[16]。在腫瘤細(xì)胞常??梢砸?jiàn)到FUT8的改變,其通過(guò)催化多種底物蛋白,如芳基硫酸酯A(ARSA)、5T4糖蛋白癌胚抗原、甲胎蛋白、纖連蛋白和鈣粘蛋白等,參與底物分子對(duì)腫瘤發(fā)生、發(fā)展及轉(zhuǎn)移潛能相關(guān)的作用途徑[17,18]。因此,F(xiàn)UT8基因在腫瘤細(xì)胞的生長(zhǎng)和轉(zhuǎn)移過(guò)程中發(fā)揮著重要的調(diào)節(jié)作用。
圖7 各組MCF-7細(xì)胞平板克隆形成能力分析
RNA干擾(RNAi)是一種準(zhǔn)確和有效的基因沉默的方法,是由短雙鏈RNA(dsRNA)誘導(dǎo)的同源mRNA高效特異性降解,從而導(dǎo)致目的基因表達(dá)沉默[19]。常用的siRNA的表達(dá)載體有質(zhì)粒、腺病毒、慢病毒,其中病毒載體感染效率更高。慢病毒作為外源基因載體具有感染范圍廣、表達(dá)穩(wěn)定長(zhǎng)效、基因裝載量大等優(yōu)點(diǎn),是目前進(jìn)行基因功能研究和基因治療的有力工具。本研究設(shè)計(jì)合成3對(duì)靶向FUT8基因的shRNA,構(gòu)建siRNA表達(dá)的慢病毒干擾載體,并利用病毒感染人乳腺癌MCF-7細(xì)胞,以期通過(guò)RNAi機(jī)制實(shí)現(xiàn)對(duì)MCF-7細(xì)胞中FUT8基因的沉默。經(jīng)熒光顯微鏡觀察顯示,本試驗(yàn)構(gòu)建的3組慢病毒干擾載體pGC-shFUT8均可高效率轉(zhuǎn)染MCF-7細(xì)胞,轉(zhuǎn)染效率均在90%以上,并能有效抑制FUT8的mRNA及蛋白的表達(dá),其中pGC-shFUT8-2為最佳靶向FUT8的干擾序列。另外,我們對(duì)FUT8基因的功能進(jìn)行了初步研究,選用干擾效果最佳的pGC-shFUT8-2序列轉(zhuǎn)染MCF-7細(xì)胞,MTT檢測(cè)發(fā)現(xiàn)FUT8干擾的MCF-7細(xì)胞生長(zhǎng)增殖能力較正常的MCF-7明顯下降;同樣反映細(xì)胞增殖能力的克隆形成試驗(yàn)也顯示轉(zhuǎn)染pGC-shFUT8-2后,MCF-7細(xì)胞的克隆形成率比轉(zhuǎn)染前顯著降低,表明FUT8干擾后對(duì)乳腺癌細(xì)胞增殖具有抑制作用,而FUT8基因的其它生物學(xué)功能及其調(diào)控機(jī)制尚需進(jìn)一步深入研究。
本研究成功構(gòu)建靶向人FUT8基因的RNAi慢病毒載體,并篩選出高效干擾MCF-7細(xì)胞FUT8基因表達(dá)的有效靶點(diǎn),初步證實(shí)沉默F(xiàn)UT8對(duì)乳腺癌細(xì)胞具有增殖抑制作用。
[1] Sasaki H, Toda T, Furukawa T,et al. α-1, 6-fucosyltransferase(FUT8)inhibits hemoglobin production during differentiation of murine and K562 human erythroleukemia cells[J]. Journal of Biological Chemistry, 2013,288(7):16839-16847.
[2] Uozumi N, Yanagidani S, Miyoshi E, et al. Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-β-D-glucosaminide α1→ 6fucosyltransferase[J]. J Biol Chem, 1996, 271(44):27810-27817.
[3] Hutchinson WL, Du MQ, Johnson PJ, et al. Fucosyltransfera-ses:differential plasma and tissue alterations in hepatocellular carcinoma and cirrhosis[J]. Hepatology, 1991, 13(4):683-688.
[4] Miyoshi E, Noda K, Ko JH, et al. Overexpression of α1-6 fucosyltransferase in hepatoma cells suppresses intrahepatic metastasis after splenic injection in athymic mice[J]. Cancer Res, 1999, 59(9):2237-2243.
[5] Ito Y, Miyauchi A, Yoshida H, et al. Expression of alpha1,6-fucosyltransferase(FUT8)in papillary carcinoma of the thyroid:its linkage to biological aggressiveness and anaplastic transformation[J]. Cancer Lett, 2003, 200(2):167-172.
[6] Takahashi T, Ikeda Y, Miyoshi E, et al. α1, 6 fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas[J]. Int J Cancer, 2000, 88(6):914-919.
[7] Muinelo-Romay L, Villar-Portela S, Cuevas E, et al. Identification of α(1, 6)fucosylated proteins differentially expressed in human colorectal cancer[J]. BMC Cancer, 2011, 11(10):508-519.
[8] Potapenko IO, Haakensen VD, Lüders T, et al. Glycan gene expression signatures in normal and malignant breast tissue;possible role in diagnosis and progression[J]. Molecular Oncology, 2010, 4(2):98-118.
[9] Ito H, Hiraiwa N, Sawada-Kasugai M, et al. Altered mRNA expression of specific molecular species of fucosyl-and sialyltransferases in human colorectal cancer tissues[J]. Int J Cancer,1998, 71(4):556-564.
[10] Miyoshi E, Moriwaki K, Nakagawa T, et al. Biological function of fucosylation in cancer biology[J]. J Biochem,2008, 143(6): 725-729.
[11] Wang X, Gu J, Ihara H, et al. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling[J]. J Biol Chem, 2006, 281(5):2572-2577.
[12] Matsumoto K, Yokote H, Arao T, et al. N-Glycan fucosylation of epidermal growth factor receptor modulates receptor activity and sensitivity to epidermal growth factor receptor tyrosine kinase inhibitor[J]. Cancer Sci, 2008, 99(8):1611-1617.
[13] Liu YC, Yen HY, Chen CY, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells[J]. Proc Natl Acad Sci USA,2011, 108(28):11332-11337.
[14] Lin H, Wang D, Wu T, et al. Blocking core fucosylation of TGF-β1 receptors downregulates their functions and attenuates the epithelial-mesenchymal transition of renal tubular cells[J]. Am J Physiol Renal Physiol, 2011, 300(4):1017-1025.
[15] Venkatachalam MA, Weinberg JM. New wrinkles in old receptors: core fucosylation is yet another target to inhibit TGF-β signaling[J]. Kidney International, 2013, 84(1):11-14.
[16] Zhao Y, Itoh S,Wang X, et al. Deletion of core fucosylation on α3β1 integrin down-regulates its functions[J]. J Biol Chem,2006, 281(50):38343-38350.
[17] Wang M, Long RE, Comunale MA, et al. Novel fucosylated biom arkers for the early detection of hepatocellular carcinoma[J]. Cancer Epidemiol Biomarkers Prev, 2009, 18(6):1914-1921.
[18]Geng F, Shi BZ, Yang YF, Wu XZ. The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients:prognostic implications[J]. Cell Res, 2004, 14(5):423-433.
[19] Pushparaj PN, Aarthi JJ, Manikandan J, et al. siRNA, miRNA, and shRNA:in vivo applications[J]. J Dent Res, 2008, 87(11):992-1003.
(責(zé)任編輯 馬鑫)
Construction of FUT8 Gene Lentiviral RNA Interference Vector and Regulation on Proliferation of Human Breast Cancer Cells MCF-7
Wen Xianchun1Han Cuicui1Zhao Yuesheng2Yu Haitao1Li Chengchong1Yue Liling1
(1. Research Center of Medical Science,Qiqihar Medical College,Qiqihar161006;2. Breast Surgery,the Third Affiliated Hospital of Qiqihaer Medical College,Qiqihar161006)
This study aimed to construct the lentiviral RNA interference(RNAi)vector of human FUT8 gene and determine its effect on proliferation of human breast cancer cells MCF-7. Designing three short hairpin RNA(shRNA)sequence targeting the FUT8 gene, and then synthesizing the complementary DNA chains containing the target sequence, miRNA lentiviral vector plasmid with linear pGC-LV-GFP carriers were constructed and then transformed to DH5α cells. After identified by sequencing, then packaging lentiviral vectors and measuring the virus titer were done. The recombinant lentiviral vector pGC-shFUT8 was transfected into human MCF-7 cells, and then the expression of FUT8 in transfected MCF-7 cells was detected by real time-PCR and Western Blotting. The effect of shFUT8 on MCL-7 cell proliferation was measured by MTT assay and colony formation experiment. Gene sequencing confirmed the successful construction of RNAi lentiviral vector targeting the FUT8 gene. The lentiviral vectors were packed successfully by 293T cells and the virus titer was more than 5×108TU/mL. Expressed GFP in transfected cells were observed under the fluorescence microscope, and the transfection efficiency was over 90%. Real-time PCR and Western Blotting analysis indicated that the expression levels of FUT8 mRNA and protein in the transfected group significantly reduced when comparing with the negative control group. Particularly the pGC-shFUT8-2 sequence could interfere 80 % of FUT8 gene expression. The proliferation of MCF-7 decreased after FUT8 was inactive.
FUT8 gene;Lentiviral vector;RNA interference;MCF-7cells
10.13560/j.cnki.biotech.bull.1985.2015.05.035
2014-08-25
國(guó)家自然科學(xué)基金項(xiàng)目(81202084),教育部科學(xué)技術(shù)研究重點(diǎn)項(xiàng)目(212047)
溫憲春,男,碩士,研究方向:腫瘤藥理學(xué);E-mail:wenxianchun@sina.com
岳麗玲,女,教授,碩士生導(dǎo)師,研究方向:腫瘤分子生物學(xué);E-mail:yuell1025@126.com