杜玉山,楊 勇,郭迎春,房會(huì)春,胡 罡,田選華
(1.中國石化勝利油田分公司地質(zhì)科學(xué)研究院,山東東營257015;2.廣東石油化工學(xué)院石油工程學(xué)院,廣東茂名525000;3.成都理工大學(xué)油氣藏地質(zhì)及開發(fā)工程國家重點(diǎn)實(shí)驗(yàn)室,四川成都610059)
·油氣采收率·
低滲透油藏地層壓力保持水平對(duì)油水滲流特征的影響
杜玉山1,楊勇1,郭迎春1,房會(huì)春1,胡罡2*,田選華3
(1.中國石化勝利油田分公司地質(zhì)科學(xué)研究院,山東東營257015;2.廣東石油化工學(xué)院石油工程學(xué)院,廣東茂名525000;3.成都理工大學(xué)油氣藏地質(zhì)及開發(fā)工程國家重點(diǎn)實(shí)驗(yàn)室,四川成都610059)
油水滲流規(guī)律的研究是低滲透油藏水驅(qū)開發(fā)的關(guān)鍵。相對(duì)滲透率曲線能直觀反映油水滲流特征,其影響因素研究主要涉及巖石固有性質(zhì)(潤濕性、孔隙結(jié)構(gòu))、流動(dòng)介質(zhì)(油水粘度比)、動(dòng)力條件(驅(qū)替壓力梯度及速度)等方面,極少見到地層壓力對(duì)相對(duì)滲透率曲線影響的研究。通過室內(nèi)流動(dòng)實(shí)驗(yàn),模擬低滲透油藏地層壓力下降過程,建立了不同地層壓力保持水平下的相對(duì)滲透率曲線,分析了地層壓力保持水平對(duì)油水滲流特征的影響規(guī)律。結(jié)果表明,地層壓力保持水平下降,孔隙結(jié)構(gòu)非均質(zhì)性增強(qiáng),油相相對(duì)滲透率下降,水相相對(duì)滲透率上升,等滲點(diǎn)左移,油水兩相區(qū)變窄,殘余油飽和度增加,即低滲透油藏滲流規(guī)律也存在著應(yīng)力敏感性特征。分析認(rèn)為,儲(chǔ)層巖石彈性或塑性變形是低滲透油藏油水滲流特征應(yīng)力敏感性的根本原因,因而提出了儲(chǔ)層巖石初始滲透率越低,越應(yīng)盡早注水保持地層壓力開發(fā)的低滲透油藏效益開發(fā)理念。
低滲透油藏 地層壓力保持水平 孔隙結(jié)構(gòu) 油水滲流特征 應(yīng)力敏感性
相對(duì)滲透率曲線可以直觀地反映油水在多孔介質(zhì)中的滲流特征,是油藏工程研究不可或缺的基礎(chǔ)資料[1-4]。一般可以通過室內(nèi)巖心驅(qū)替實(shí)驗(yàn)來獲得相對(duì)滲透率曲線[5-12]。前人研究表明,巖石的相對(duì)滲透率曲線主要受潤濕性、粘度比、孔隙結(jié)構(gòu)以及飽和歷程、動(dòng)力條件(驅(qū)替壓力或驅(qū)替速度)等因素影響[13-25]。室內(nèi)巖心分析和油氣田礦場監(jiān)測(cè)資料研究均表明,在油藏開采過程中地層壓力的變化會(huì)導(dǎo)致儲(chǔ)層巖石發(fā)生彈性或塑性應(yīng)變,從而引起巖石孔隙結(jié)構(gòu)和孔隙體積的變化,進(jìn)而影響油藏流體的滲流,最終會(huì)影響到油氣井產(chǎn)能和油氣田的開發(fā)效果[12-14]。生產(chǎn)實(shí)踐證實(shí),地層壓力的變化對(duì)低滲透油藏開發(fā)效果的影響尤為敏感[26-37]。由于地層壓力的變化會(huì)影響巖石的孔隙結(jié)構(gòu),而巖石的孔隙結(jié)構(gòu)又是影響相對(duì)滲透率曲線(油水滲流特征)的一個(gè)重要因素,因此,相對(duì)滲透率曲線(油水滲流特征)也會(huì)間接地受到地層壓力保持水平的影響。前人對(duì)中、高滲透油藏儲(chǔ)層巖石的相對(duì)滲透率曲線研究較多[1-25],而對(duì)低滲透油藏尤其是關(guān)于地層壓力對(duì)巖石的相對(duì)滲透率曲線(油水滲流特征)影響的研究相對(duì)較少。為此,筆者通過室內(nèi)實(shí)驗(yàn),建立了低滲透油藏不同地層壓力保持水平的油水兩相相對(duì)滲透率曲線,明確了低滲透油藏地層壓力保持水平對(duì)油水滲流特征的影響規(guī)律,以期為低滲透油藏高效開發(fā)提供理論依據(jù)。
根據(jù)前人研究成果[13-25],儲(chǔ)層巖石固有性質(zhì)(潤濕性、孔隙結(jié)構(gòu))、流動(dòng)介質(zhì)(油水粘度比)、動(dòng)力條件(驅(qū)替壓力梯度及速度)等都是影響油水兩相相對(duì)滲透率的主要因素。因此,室內(nèi)實(shí)驗(yàn)研究應(yīng)立足于研究區(qū)的實(shí)際情況,合理地設(shè)計(jì)實(shí)驗(yàn)方案。
實(shí)驗(yàn)巖心實(shí)驗(yàn)巖心全部取自勝利油區(qū)濱425斷塊沙四段灘壩砂巖油藏儲(chǔ)層的柱塞樣品。巖心樣品按初始空氣滲透率分為1.0×10-3,5.0×10-3和10.0×10-3μm2共3個(gè)級(jí)別采樣。
實(shí)驗(yàn)流體實(shí)驗(yàn)用油為與地層原油粘度相當(dāng)?shù)臋C(jī)械油,粘度為7.601mPa·s,實(shí)驗(yàn)用水為與儲(chǔ)層地層水總礦化度相當(dāng)?shù)穆然浫芤?,礦化度為170 000mg/L。
實(shí)驗(yàn)壓力和溫度根據(jù)油藏埋深(約為2 600 m)及巖石密度(2.3 kg/L)計(jì)算得到,巖石骨架承受的上覆壓力約為60MPa。因此,實(shí)驗(yàn)過程中,始終保持施加在巖心夾持器上的環(huán)壓為60MPa。根據(jù)濱425斷塊沙四段壓力測(cè)試資料可知,該油藏的原始地層壓力為32MPa,因此,設(shè)置實(shí)驗(yàn)初始孔隙壓力為32MPa。
鑒于實(shí)驗(yàn)主要考察地層壓力變化對(duì)巖心相對(duì)滲透率曲線的影響,因此實(shí)驗(yàn)可以在常溫下進(jìn)行,設(shè)置實(shí)驗(yàn)溫度保持在25℃左右。
實(shí)驗(yàn)步驟實(shí)驗(yàn)步驟主要為:①確定孔隙體積。對(duì)巖心樣品抽真空,飽和模擬地層水,確定孔隙體積和孔隙度;②建立束縛水飽和度。模擬原始地層壓力條件,油驅(qū)水建立束縛水飽和度;③測(cè)定相對(duì)滲透率。以流量為1mL/min的恒速水驅(qū)油,注入40~50倍孔隙體積的模擬地層水后停止實(shí)驗(yàn),實(shí)驗(yàn)過程中記錄時(shí)間、累積產(chǎn)油量、累積產(chǎn)液量、驅(qū)替速度和巖樣兩端的驅(qū)替壓差,建立含水飽和度與油水兩相相對(duì)滲透率關(guān)系曲線。
為了便于說明問題,引入地層壓力保持系數(shù)來衡量地層壓力保持水平的高低,其數(shù)值上等于油藏地層壓力與原始地層壓力的比值。利用該實(shí)驗(yàn)方法,獲得了不同地層壓力保持水平下實(shí)際初始空氣滲透率分別為1.2×10-3,6.0×10-3和9.0×10-3μm2的巖心樣品的油水兩相相對(duì)滲透率曲線(圖1)。
從圖1可以看出,地層壓力保持水平也是影響低滲透油藏油水滲流特征的主要因素。其主要體現(xiàn)在以下2個(gè)方面:一方面,隨著地層壓力的下降,油相相對(duì)滲透率下降速度加快,水相相對(duì)滲透率上升速度加快,且相同含水飽和度下的油相相對(duì)滲透率降低,水相相對(duì)滲透率升高。地層壓力保持系數(shù)為1.0的油相相對(duì)滲透率曲線位置靠上,水相相對(duì)滲透率曲線位置靠下;隨著地層壓力保持系數(shù)的減小,油相相對(duì)滲透率曲線的位置逐步向下移動(dòng),水相相對(duì)滲透率曲線的位置逐步向上移動(dòng),表明隨著地層壓力保持水平的下降,儲(chǔ)層巖石孔隙結(jié)構(gòu)非均質(zhì)性增強(qiáng)。分析認(rèn)為,隨著地層壓力保持水平的下降,巖石骨架因承受的有效上覆壓力增加而發(fā)生變形,孔喉半徑變小,且小孔喉變形程度較大,大孔喉變形程度相對(duì)較小,孔隙結(jié)構(gòu)非均質(zhì)性增強(qiáng),儲(chǔ)層滲透率降低。
圖1 不同地層壓力保持水平下的巖心樣品油水兩相相對(duì)滲透率曲線Fig.1 Relative permeability curvesunder different levelsof formation pressuremaintenance
當(dāng)?shù)貙訅毫ο陆禃r(shí),低滲透油藏滲透率隨之下降,即低滲透儲(chǔ)層巖石表現(xiàn)出應(yīng)力敏感性特征[27,29,36]。在某一地層壓力時(shí),儲(chǔ)層巖石的實(shí)時(shí)滲透率可以看成該地層壓力條件下的初始滲透率。實(shí)驗(yàn)證實(shí),低滲透油藏儲(chǔ)層巖石初始滲透率越低,水相相對(duì)滲透率上升速度越大,油相相對(duì)滲透率下降速度越大,水驅(qū)油效果越差;初始滲透率越低,原油流動(dòng)需要克服的啟動(dòng)壓力梯度越高,油水共存時(shí),越易出水,從而影響采油效果[35-37]。
另一方面,隨著地層壓力的下降,油水兩相相對(duì)滲透率曲線的等滲點(diǎn)左移,末端含水飽和度降低。當(dāng)?shù)貙訅毫Ρ3窒禂?shù)由1.0下降到0.5時(shí),3個(gè)不同級(jí)別初始空氣滲透率的巖心樣品的等滲點(diǎn)含水飽和度分別由0.66降至0.55,0.65降至0.54,0.63降至0.57。結(jié)果表明,隨著地層壓力保持水平的下降,等滲點(diǎn)左移,等滲點(diǎn)對(duì)應(yīng)的相對(duì)滲透率逐漸增加,水相相對(duì)滲透率上升速度增大,油相相對(duì)滲透率下降速度增大,水驅(qū)油效果變差。
當(dāng)?shù)貙訅毫Ρ3窒禂?shù)由1.0下降到0.5時(shí),3個(gè)不同級(jí)別初始空氣滲透率的巖心樣品末端含水飽和度分別由0.747降至0.678,0.858降至0.762,0.815降至0.757,且末端含水飽和度(殘余油飽和度)對(duì)應(yīng)的水相相對(duì)滲透率增加,即油水兩相區(qū)的寬度分別減少了0.069,0.096,0.058。結(jié)果表明,隨著地層壓力保持水平的下降,油水兩相共滲區(qū)變窄,殘余油飽和度上升,水驅(qū)油效率下降。
分析認(rèn)為,當(dāng)?shù)貙訅毫ο陆禃r(shí),會(huì)導(dǎo)致儲(chǔ)層巖石發(fā)生彈性或塑性應(yīng)變,從而引起巖石孔隙結(jié)構(gòu)和孔隙體積的變化,進(jìn)而影響原油滲流規(guī)律,即地層壓力保持水平越低,原油所需克服的啟動(dòng)壓力梯度越高,流動(dòng)越困難,等滲點(diǎn)越靠左,殘余油飽和度越高,油水兩相共滲區(qū)變窄,大量的原油將會(huì)滯留在油藏中,水驅(qū)油效果變差[35-37]。
通過測(cè)試4種不同地層壓力保持水平下低滲透油藏儲(chǔ)層巖石油水兩相相對(duì)滲透率曲線可知,束縛水飽和度、殘余油飽和度較高,油相相對(duì)滲透率在等滲點(diǎn)前期急劇下降,水相相對(duì)滲透率較高,是低滲透油藏油水兩相相對(duì)滲透率曲線的典型特征。隨著地層壓力的改變,油水兩相相對(duì)滲透率與含水飽和度的關(guān)系會(huì)發(fā)生變化。
通過室內(nèi)實(shí)驗(yàn),首次將低滲透油藏的應(yīng)力敏感性研究由單相流動(dòng)擴(kuò)展到兩相流動(dòng),分析了低滲透油藏油水兩相相對(duì)滲透率曲線特征及其隨地層壓力保持水平的變化規(guī)律。當(dāng)油藏地層壓力保持水平下降時(shí),由于儲(chǔ)層巖石中小孔喉變形程度較大,大孔喉變形程度相對(duì)較小,孔隙結(jié)構(gòu)的非均質(zhì)性增強(qiáng),從而導(dǎo)致油相相對(duì)滲透率下降,水相相對(duì)滲透率上升,等滲點(diǎn)左移,油水兩相區(qū)變窄,殘余油飽和度增加,且?guī)r石初始滲透率越低,水相相對(duì)滲透率上升速度越大,油相相對(duì)滲透率下降速度越大,水驅(qū)油效果變差,即低滲透油藏油水滲流特征也存在著應(yīng)力敏感性。由于低滲透油藏油水滲流規(guī)律存在著應(yīng)力敏感性,因此水驅(qū)開發(fā)時(shí)應(yīng)立足于超前或早期注水保持原始地層壓力開采,以提高驅(qū)動(dòng)壓差,減小壓敏效應(yīng)對(duì)低滲透油藏開發(fā)的不利影響。
[1] 呂漸江,唐海,呂棟梁,等.利用相滲曲線研究低滲氣藏水鎖效應(yīng)的新方法[J].天然氣勘探與開發(fā),2008,31(3):49-52. Lv Jianjiang,Tang Hai,Lv Dongliang,etal.New researchmethod of water locking effect in low permeability gas reservoir by relative-permeability curve[J].Natural Gas Exploration&Development,2008,31(3):49-52.
[2] 馬建國,劉小娟,杜福祥,等.機(jī)械振動(dòng)對(duì)巖心相滲曲線的影響[J].西安石油學(xué)院學(xué)報(bào):自然科學(xué)版,1999,14(1):13-15. Ma Jianguo,Liu Xiaojuan,Du Fuxiang,et al.Effects ofmechanical vibration on the relative permeability curve of a core[J].Journal of Xi’an Petroleum Institute:Natural Science Edition,1999,14(1):13-15.
[3] 韓進(jìn),甄延忠,張景.安塞油田長10儲(chǔ)層滲流特征研究[J].延安大學(xué)學(xué)報(bào):自然科學(xué)版,2013,32(3):61-63. Han Jin,Zhen Yanzhong,Zhang Jing.Research on the characteristics of Chang10 reservoir of Ansai oilfield[J].Journal of Yanan University:NaturalScience Edition,2013,32(3):61-63.
[4] 羅蟄潭,王允誠.油氣儲(chǔ)集層的孔隙結(jié)構(gòu)[M].北京:科學(xué)出版社,1986. Luo Zhetan,Wang Yuncheng.The pore structure ofoiland gas reservoi[rM].Beijing:Science Press,1986.
[5] 張玄奇.油水相對(duì)滲透率曲線的實(shí)驗(yàn)測(cè)定[J].石油鉆采工藝,1994,16(5):87-90. Zhang Xuanqi.The laboratorialmeasurement of relative permeability curveofoilandwater[J].OilDrilling&Production Technology,1994,16(5):87-90.
[6] Castillo A F,Perez E R,Rojas JA,et al.Numerical and experimentmodeling of relative permeability in heavy oil reservoirs[R]. SPE 123097,2009.
[7] Ahmadloo F,Asghari K,Yadali Jamaloei B.Experimental and theoretical studies of three-phase relative permeability[R].SPE 124538,2009.
[8] 周鳳軍,劉忠眾,張彩霞.穩(wěn)態(tài)法測(cè)定油水相對(duì)滲透率的實(shí)用方法[J].石油地質(zhì)與工程,2009,23(2):105-109. Zhou Fengjun,Liu Zhongzhong,Zhang Caixia.Steady statemethod for determining oil-water relative permeability[J].Petroleum Geology and Engineering,2009,23(2):105-109.
[9] 賈振岐,孫念,吳景春,等.特低滲透巖心相對(duì)滲透率實(shí)驗(yàn)研究[J].特種油氣藏,2009,16(1):82-83. Jia Zhenqi,Sun Nian,Wu Jingchun,et al.Experimental study on relative permeability of super-low permeability cores[J].Special Oil&Gas Reservoirs,2009,16(1):82-83.
[10]陽曉燕,楊勝來,李秀巒,等.非穩(wěn)態(tài)法測(cè)定稠油油藏相對(duì)滲透率實(shí)驗(yàn)研究[J].斷塊油氣田,2010,17(6):745-747. Yang Xiaoyan,Yang Shenglai,Li Xiuluan,et al.Experimental study on determining relative permeability of heavy oil reservoir with nonsteady state method[J].Fault-Block Oil&Gas Field,2010,17(6):745-747.
[11]郭平,張濤,朱中謙,等.裂縫—孔隙型儲(chǔ)層油水相滲實(shí)驗(yàn)研究[J].油氣藏評(píng)價(jià)與開發(fā),2013,3(3):19-22. Guo Ping,Zhang Tao,Zhu Zhongqian,etal.Study on oil-water relative permeability experiments of fractured-porous reservoirs[J]. Reservoir Evaluation and Development,2013,3(3):19-22.
[12]李道品.低滲透油田高效開發(fā)決策論[M].北京:石油工業(yè)出版,2003. Li Daopin.The decision-making theory of efficiency development in low permeability oil field[M].Beijing:Petroleum Industry Press,2003.
[13]郭沫貞,肖林鵬,張生兵,等.低滲透砂巖油層相對(duì)滲透率曲線特征、影響因素及其對(duì)開發(fā)的影響[J].沉積學(xué)報(bào),2008,26(3):445-451. GuoMozhen,Xiao Linpeng,Zhang Shengbing,etal.Features,controls and influence for petroleum development of relative permeability curve in low permeable sandstone reservoirs[J].Acta Sedimentologica Sinica,2008,26(3):445-451.
[14]崔浩哲,姚光慶,周鋒德.低滲透砂礫巖油層相對(duì)滲透率曲線的形態(tài)及其變化特征[J].地質(zhì)科技情報(bào),2003,22(1):88-91. Cui Haozhe,Yao Guangqing,Zhou Fengde.Type and the variety characteristics of relative permeability curve in low permeable glutenite oil reservoirs[J].Geological Science and Technology Information,2003,22(1):88-91.
[15]趙琳,王增林,吳雄軍,等.表面活性劑對(duì)超低滲透油藏滲流特征的影響[J].油氣地質(zhì)與采收率,2014,21(6):72-75. Zhao Lin,Wang Zenglin,Wu Xiongjun,et al.Effect of surfactant on seepage characteristics of ultra-low permeability reservoir[J]. Petroleum Geology and Recovery Efficiency,2014,21(6):72-75.
[16]邵長金,李志航,汪小宇,等.低滲透氣藏相對(duì)滲透率影響因素的孔隙網(wǎng)絡(luò)模型[J].天然氣工業(yè),2010,30(7):36-38. Shao Changjin,LiZhihang,Wang Xiaoyu,etal.Porenetworkmodeling for the investigation of factors affecting relative permeability of low-permeability reservoirs[J].Natural Gas Industry,2010,30 (7):36-38.
[17]皮彥夫,宋考平,劉麗,等.水驅(qū)后聚驅(qū)全過程的相對(duì)滲透率曲線影響因素分析[J].東北師大學(xué)報(bào):自然科學(xué)版,2010,42(4):87-91. Pi Yanfu,Song Kaoping,Liu Li,et al.Affecting factor analysis of the relative permeability curve of full term polymer flooding after water drive[J].Journal of Northeast Normal University:Natural Science Edition,2010,42(4):87-91.
[18]陽曉燕,楊勝來,李秀巒.稠油相對(duì)滲透率曲線影響因素分析[J].斷塊油氣田,2011,18(6):758-760. Yang Xiaoyan,Yang Shenglai,Li Xiuluan.Affecting factors of relative permeability curve in heavy oil reservoir[J].Fault-Block Oil&Gas Field,2011,18(6):758-760.
[19]蔡玥,趙樂,肖淑萍,等.基于恒速壓汞的特低—超低滲透儲(chǔ)層孔隙結(jié)構(gòu)特征——以鄂爾多斯盆地富縣探區(qū)長3油層組為例[J].油氣地質(zhì)與采收率,2013,20(1):32-35. Cai Yue,Zhao Le,Xiao Shuping,et al.Study on pore structure characteristics of super-low permeability and ultra-low permea-bility reservoirs by means of constant-speed mercury intrusion technique-case of oil layers of Chang3 of the Yanchang Formation in Fuxian exploration area of the Ordos Basin[J].Petroleum Geology and Recovery Efficiency,2013,20(1):32-35.
[20]陳鐵龍,唐金星,彭克宗,等.聚合物驅(qū)相對(duì)滲透率曲線的特征研究[J].西南石油學(xué)院學(xué)報(bào):自然科學(xué)版,1996,18(3):51-56. Chen Tielong,Tang Jinxing,Peng Kezong,et al.Determination method of polymer flooding relative permeability curves[J].Journal of Southwestern Petroleum Institute:Science&Technology Edition,1996,18(3):51-56.
[21]趙益忠,程遠(yuǎn)方,劉鈺川,等.啟動(dòng)壓力梯度對(duì)低滲透油藏微觀滲流及開發(fā)動(dòng)態(tài)的影響[J].油氣地質(zhì)與采收率,2013,20(1):67-69,73. Zhao Yizhong,Cheng Yuanfang,Liu Yuchuan,etal.Study on influence ofstart-up pressure gradient tomicro-seepage in low permeability reservoirs and development trends[J].Petroleum Geology and Recovery Efficiency,2013,20(1):67-69,73.
[22]Erle CDonaldson,F(xiàn)aruk Clvan,Waql UIAlam M.Relative permeability atsimulated reservoir conditions[R].SPE 16970,1988.
[23]Sandberg CR.The effectof fluid flow rate and viscosity on laboratory determinations of oil-water relative permeabilities[R].SPE 709-G,1958.
[24]Downie J.Effect of viscosity on relative permeability[R].SPE 1629-G,1961.
[25]呂偉峰,冷振鵬,張祖波,等.應(yīng)用CT掃描技術(shù)研究低滲透巖心水驅(qū)油機(jī)理[J].油氣地質(zhì)與采收率,2013,20(2):87-90. LüWeifeng,Leng Zhenpeng,Zhang Zubo,et al.Study on waterflooding mechanism in low-permeability cores using CT scan technology[J].Petroleum Geology and Recovery Efficiency,2013,20(2):87-90.
[26]王端平,時(shí)佃海,李相遠(yuǎn),等.低滲透砂巖油藏開發(fā)主要矛盾機(jī)理及合理井距分析[J].石油勘探與開發(fā),2003,30(1):87-89. Wang Duanping,ShiDianhai,LiXiangyuan,etal.Themain challenges and the reasonable well spacing for the development of low-permeability sandstone reservoirs[J].Petroleum Exploration and Development,2003,30(1):87-89.
[27]張興焰,閆志軍,李淑梅,等.壓敏效應(yīng)對(duì)文東異常高壓低滲油田開發(fā)的影響[J].大慶石油地質(zhì)與開發(fā),2005,24(2):55-56. Zhang Xingyan,Yan Zhijun,Li Shumei,et al.Influence of pressure-sensitive effects upon developmentofWendong low-permeability oilfield with abnormal high pressure[J].Petroleum Geology&Oilfield Developmentin Daqing,2005,24(2):55-56.
[28]鄭浩,馬春華.基于正交試驗(yàn)法的低滲透油藏超前注水影響因素分析[J].石油鉆探技術(shù),2007,35(5):90-93. Zheng Hao,Ma Chunhua.Analysisof factorsaffecting advancewater injection in low-permeability reservoir by orthogonal experimentmethod[J].Petroleum Drilling Techniques,2007,35(5):90-93.
[29]王道富,李忠興,趙繼勇,等.低滲透油藏超前注水理論及其應(yīng)用[J].石油學(xué)報(bào),2007,28(6):78-81,86. Wang Daofu,Li Zhongxing,Zhao Jiyong,et al.Advance waterflooding theory for low-permeability reservoirs and its application [J].Acta PetroleiSinica,2007,28(6):78-81,86.
[30]Lorenz JC.Stress-sensitive reservoirs[R].SPE 50977,1999.
[31]Farquhar R A,Smart B G D,Todd A C,et al.Stress sensitivity of low-permeability sandstones from the Rotliegendes sandstone[R]. SPE 26501,2001.
[32]Davies JP,Davies DK.Stress-dependentpermeability:characterization andmodeling[R].SPE 71750,2001.
[33]LeiQun,XiongWei,Yuan Jiangru,et al.Analysis of stress sensitivity and its influence on oil production from tight reservoirs[R]. SPE 111148,2007.
[34]Rosalind Archer.Impactofstresssensitive permeability on production dataanalysis[R].SPE 114116,2008.
[35]鄧玉珍.低滲透儲(chǔ)層應(yīng)力敏感性評(píng)價(jià)影響因素分析[J].油氣地質(zhì)與采收率,2010,17(4):80-83. Deng Yuzhen.Factors analysis on stress sensitivity evalutation of low-permeability reservoir[J].Petroleum Geology and Recovery-Efficiency,2010,17(4):80-83.
[36]劉麗,房會(huì)春,顧輝亮.地層壓力保持水平對(duì)低滲透油藏滲透率的影響[J].石油鉆探技術(shù),2011,39(2):104-107. Liu Li,F(xiàn)ang Huichun,Gu Huiliang.The impactof formation pressuremaintenance on permeability in low permeability reservoirs [J].Petroleum Drilling Techniques,2011,39(2):104-107.
[37]劉麗.低滲透油藏啟動(dòng)壓力梯度的應(yīng)力敏感性實(shí)驗(yàn)研究[J].油氣地質(zhì)與采收率,2012,19(2):81-83. Liu Li.Laboratory study on stress sensitivity of threshold pressure gradient in low permeability reservoir[J].Petroleum Geology and Recovery Efficiency,2012,19(2):81-83.
編輯王星
Im pactof formation pressuremaintenanceon oil-water seepage characteristics in low permeability reservoirs
Du Yushan1,Yang Yong1,Guo Yingchun1,F(xiàn)ang Huichun1,Hu Gang2,Tian Xuanhua3
(1.Geoscience Research Institute,ShengliOilfield Company,SINOPEC,Dongying City,Shandong Province,257015,China;2.SchoolofPetroleum Engineering,Guangdong University ofPetrochemical Technology,Maoming City,Guangdong Province,525000,China;3.State Key Laboratory ofOiland GasReservoirGeology and Exploitation,Chengdu University ofTechnology,Chengdu City,Sichuan Province,610059,China)
In low permeability reservoirs,it isessential to exactly know the rule of fluid flow in porousmedia duringwaterflooding development.The relative permeability curvemay intuitively reflect the characteristicsof theoiland water seepage in porousmedia.The study of factors affecting the relative permeability curvemainly focuses on the inherent properties of rock(wettability and pore structure),flow medium(oil and water viscosity ratio),water dynamic condition(displacement pressure gradientand velocity),etc.The impactof the formation pressure on the relative permeability curve in the low permeability reservoirs has seldom been studied.Throughmercury-injection experiment,the decline process of the formation pressurewas simulated,and the relative permeability curves in the low permeability reservoirsunder different levels of formation pressuremaintenancewere established.The variation of the oiland water seepage in the low permeability reservoirs was analyzed.The results of experimental study show thatwhen the heterogeneity of pore structure becomes stronger and the formation pressure goes down,the oil-phase relative permeability declines and thewater-phase relative permeability rises,and also the isotonic pointshifts to the leftand the two-phase region turns narrow,resulting in the increase of residu-al oil saturation.That is,the stress sensitivity exists in the oil-water seepage in the low permeability reservoirs.Analyses have shown that the elastic or plastic deformation in the reservoir rocks is the root cause of the stress sensitivity of the oilwater seepage characteristics.Thus the developmentphilosophy of the low permeability reservoir has been put forward:the lower the initialpermeability of the reservoir rocks is,theearlier thewaterflooding time should be.
low permeability reservoir;formation pressuremaintenance;pore structure;oil-water seepage characteristics;stress sensitivity
TE348
A
1009-9603(2015)03-0072-05
2015-03-12。
杜玉山(1968—),男,山東沂南人,教授級(jí)高級(jí)工程師,博士,從事油藏開發(fā)地質(zhì)研究及管理工作。聯(lián)系電話:(0546)8715399,E-mail:sl_dys@126.com。
胡罡(1978—),男,湖北英山人,高級(jí)工程師,碩士。聯(lián)系電話:(0668)2923009,E-mail:hgcdut@126.com。
國家科技重大專項(xiàng)“勝利油田特高含水期提高采收率技術(shù)”(2011ZX05011)。