• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    抽象泛函微分方程的權(quán)偽概自守溫和解(英文)

    2015-10-20 11:31:52雷國(guó)梁岳田宋曉秋

    雷國(guó)梁 岳田 宋曉秋

    摘要利用算子半群理論和Banach 不動(dòng)點(diǎn)定理研究了一類抽象泛函微分方程權(quán)偽概自守溫和解的存在唯一性,所得結(jié)論拓展了已有結(jié)果.

    關(guān)鍵詞權(quán)偽概自守;抽象泛函微分方程;指數(shù)穩(wěn)定;存在唯一性

    The theory of almost automorphy was first introduced in the literature by Bochner in the earlier sixties, which is a natural generalization of almost periodicity[1], for more details about this topics we refer to the recent book[2] where the author gave an important overview on the theory of almost automorphic functions and their applications to differential equations. In the last decade, several authors including Ezzinbi, Goldstein, NGuérékata and others, have extended the theory of almost automorphy and its applications to differential equations[17].

    Xiao, Liang and Zhang[8] postulated a new concept of a function called a pseudoalmost automorphic function, established existence and uniqueness theorems of pseudoalmost automorphic solutions to some semilinear abstract differential equations and studied two composition theorems about pseudoalmost automorphic functions as well as asymptotically almost automorphic functions (Theorems 2.3 and 2.4, [8]).

    Weighted pseudoalmost automorphic functions are more general than weighted pseudoalmost periodic functions which were introduced by Diagana[911] and recently studied by Hacene, Ezzinbi[1213], Ding[14]. Blot, Mophou, NGuérékata, Pennequin[15] and Liu[1617] have studied basic properties of weighted pseudoalmost automorphic functions and then used these results to study the existence and uniqueness of weighted pseudoalmost automorphic mild solutions to some abstract differential equations.

    Motivated by works [13,16,18], we consider the existence and uniqueness of the weighted pseudo almost automorphic mild solution of the following semilinear evolution equation in a Banach space X

    dx(t)dt=A(t)x(t)+ddtF1(t,x(a(t)))+F2(t,x(b(t))),t∈R,x∈WPPA(R,ρ),(1)

    where WPAA(R,ρ ) is the set of all weighted pseudo almost automorphic functions from R to X and the family {A(t),t∈R} of operators in X generates an exponentially stable evolution family {U (t, s),t. s}.

    湖南師范大學(xué)自然科學(xué)學(xué)報(bào)第38卷第5期雷國(guó)梁等:抽象泛函微分方程的權(quán)偽概自守溫和解1Preliminaries

    In this section, we introduce definitions, notations, lemmas and preliminary facts which are used throughout this work. We assume that X is a Banach space endowed with the norm ||·||.N, R and C stand for the sets of positive integer, real and complex numbers. We denote by B(X) the Banach space of all bounded linear operators from X to itself. BC(R, X )(BC(R×X, X)) is the space of all bounded continuous functions from R to X(R× X to X). L1loc(R) denote the space of locally integrable functions on R. Let U be the collection of functions (weights) ρ:R→ (0,+∞), which are locally integrable over R with.ρ>0(a.e.). From now, if ρ∈U and for r>0, we then set m(r,ρ)=∫r-rρ(t)dt, U∞:={ρ∈U:limr→∞ m(r,ρ)=∞}, UB:={ρ∈U∞: ρ is bounded and infx∈R ρ(x)>0}.

    It is clear that UBU∞U with strict inclusions. {U (t, s),t≥s} is an exponentially stable evolution family, if there exists M≥1 and δ>0 such that ‖U(t,s)‖≤Me-δ(t-s) for t≥s.

    Definition 1.1[19]A continuous function f:R→X is said to be almost automorphic if for every sequence of real numbers {sn}n∈N, there exists a subsequence {τn}n∈N such that g(t)=limn→∞ f(t+τn) is well defined for each t∈R and limn→∞ g(t-τn)=f(t) for each t∈R.

    The collection of all such functions will be denoted by AA(X).

    Definition 1.2[19]A continuous function f:R×X→X is said to be almost automorphic if f (t, x) is almost automorphic for each t∈R uniformly for all x∈B, where B is any bounded subset of X.

    The collection of all such functions will be denoted by AA(R×X,X).

    Lemma 1.3[1]Assume that f:R→X is almost automorphic, then f is bounded.

    Lemma 1.4[1](AA(X),‖·‖AA(X)) is a Banach space endowed with the supremum norm given by ‖f‖AA(X)=supt∈R‖f(t)‖.

    Lemma 1.5[20]Let f:R×X→X be almost automorphic in t∈R,x∈X and assume that f(t,x) satisfies a Lipschitz condition in x uniformly in t∈R Then x(t)∈AA(X) implies f(t, x(t))∈AA(X).

    The notation PAA0,PAA0(R×X,X) respectively, stand for the space of functions

    PAA0(X)={φ(t)∈BC(R,X):limr→∞∫r-r‖φ(t)‖dt=0},

    PAA0(R×X,X)=φ(t)∈BC(R×X,X):limr→∞∫r-r‖φ(t,x)‖dt=0

    uniformly for x in any bounded subset of X.

    Definition 1.6[8]A continuous function f:R→X(R×X→X) is said to be pseudo almost automorphic if it can be decomposed as f=g+φ, where g∈AA(X)(AA(R×X,X)) and φ∈PAA0(X)(PAA0(R×X,X)).

    Denote by PAA(X)(PAA(R×X, X)) the set of all such functions.

    Now for ρ∈U∞, we define

    PAA0(R,ρ):={φ(t)∈BC(R,X):limr→∞1m(r,ρ)∫r-r‖φ(t)‖ρ(t)dt=0},

    PAA0(R×X,ρ)=φ(t,x)∈BC(R×X,X):limr→∞1m(r,ρ)∫r-r‖φ(t,x)‖ρ(t)dt=0

    uniformly for x∈X.

    Definition 1.7[15]A bounded continuous function f:R→X(R×X→X) is said to be weighted pseudo almost automorphic if it can be decomposed as f=g+φ, where

    g∈AA(X)(AA(R×X,X)) and φ∈PAA0(R,ρ)(PAA0(R×X,ρ)).

    Denote by WPAA(R,ρ)(WPAA(R×X,ρ)) the set of all such functions.

    Lemma 1.8[15]The decomposition of a weighted pseudo almost automorphic function is unique for any ρ∈UB.

    Lemma 1.9[15]If ρ∈UB,(WPAA(R,ρ),‖·‖WPAA(R,ρ)) is a Banach space endowed with the supremum norm given by ‖f‖WPAA(R,ρ)=supt∈R‖f(t)‖.

    Lemma 1.10[15]Let f=g+φ∈WPAA(R,ρ) where ρ∈U∞,g∈AA(R×X,X) and φ∈PAA0(R×X,ρ). Assume both f and g are Lipschitzian in x∈X uniformly in t∈R Then x(t)∈WPAA(R,ρ) implies f(t, x(t))∈WPAA(R,ρ).

    Lemma 1.11[16]Let ∑θ={z∈C:|arg z|≤θ}∪{0}ρ(A(t)),θ∈(-π/2,π), if there exist a constant K0 and a set of real numbers α1,α2,…,αk,β1,…,βk with 0≤βi<αi≤2,(i=1,2,…,k) such that

    ‖A(t)(λ-A(t))-1(A(t)-1-A(s)-1)‖≤K0∑ki=1(t-s)αi|λ|βi-1,

    for t,s∈R,λ∈∑θ\{0} and there exists a constant M≥0 such that

    ‖(λ-A(t))-1‖≤M1+λ,λ∈∑θ.

    Then there exists a unique evolution family {U(t,s),t≥s>-∞}.

    Definition 1.12A continuous function x(t):R→X is called weighted pseudo almost automorphic mild solution to equation (1) if it satisfies

    x(t)=F1(t,x(a(t)))+U(t,s)[x(s)-F1(s,x(a(s)))]+∫tsU(t,r)F2(r,x(b(r)))dr,(2)

    for t≥s and s∈R.

    2The Main Results

    To show our main results, we assume that the following conditions are satisfied.

    (H1) F1(t,·)∈WPAA(R×X,X),(i=1,2) and there exist two positive constants Li(i=1,2) such that ‖F(xiàn)i(t,x)-Fi(t,y)‖≤Li‖x-y‖WPAA(R×X,ρ) for all t∈R and x,y∈WPAA(R,ρ), ρ∈U∞.

    (H2) a,b∈C(R,R),a(R)=R,b(R)=R and there exist two positive constants Ki(i=1,2) such that ‖x(a)-y(a)‖≤K1‖x-y‖WPAA(R,ρ),‖x(b)-y(b)‖≤K2‖x-y‖WPAA(R,ρ), with a,b∈WPAA(R,ρ) whenever x,y∈WPAA(R,ρ).

    (H3) {A(t),t∈R} satisfies Lemma 1.11 and {U (t,s),t≥s} is exponentially stable.

    (H4) For every sequence of real numbers {sn}n∈N, there exists a subsequence {τn}n∈N and for any fixed s∈R,ε>0, there exists an N∈N such that, for all n>N, it follows that

    ‖U(t+τn,s+τn)-U(t,s)‖≤εe-δ(t-s)/2,

    for all t≥s∈R. Moreover

    ‖U(t-τn,s-τn)-U(t,s)‖≤εe-δ(t-s)/2, for all t≥s∈R.

    Lemma 2.1If h(s) is almost automorphic, the function v(t)=∫t-∞U(t,s)h(s)ds is almost automorphic.

    ProofFirst we observe that v(t) is bounded. By Lemma 1.3, h(s) is bounded, we assume that there exists M1>0, such that ‖h(·)‖AA(X)≤M1. So

    ‖v(t)‖≤∫t-∞‖U(t,s)‖·‖h(s)‖ds≤MM1∫t-∞e-δ(t-s)ds≤MM1δ<∞.

    Hence v(t) is bounded. Now we show that v(t) is almost automorphic with respect to t∈R. Let {sn}n∈N be an arbitrary sequence of real numbers. Since h(t)∈AA(X), there exist a subsequence {τn}n∈N such that

    (A1) g(t)=limn→∞ h(t+τn) is well defined for each t∈R;

    (A2) limn→∞ g(t-τn)=h(t) for each t∈R.

    Now we consider

    v(t+τn)=∫t+τn-∞U(t+τn,s)h(s)ds=∫t-∞U(t+τn,s+τn)h(s+τn)ds.

    Obviously, v(t+τn) is bounded for all n=1,2,….

    For (A1), for any fixed s∈R and ε>0, there exists an N0∈N such that, for all n>N0, which follows that ‖h(s+τn)-g(s)‖<ε. In addition, by condition (H4), for s and ε above, there exists an N1∈N such that, for all n>N1, it follows that ‖U(t+τn,s+τn)-U(t,s)‖≤εe-δ(t-s)/2.

    Now taking N=max{N0,N1}, for all n>N,

    ‖U(t+τn,s+τn)h(s+τn)-U(t,s)g(s)‖≤

    ‖U(t,s)‖‖h(s+τn)-g(s)‖+‖U(t+τn,s+τn)-U(t,s)‖‖h(s+τn)‖≤

    Mεe-δ(t-s)+M1εe-δ(t-s)/2

    As n→∞, for each s∈R fixed and any t≥s, we have

    U(t+τn,s+τn)h(s+τn)→U(t,s)g(s).

    If we let u(t)=∫t-∞U(t,s)g(s)ds, we observe that the integral is absolutely convergent for each t. So, by Lebesgues dominated convergent theorem, v(t+τn)→u(t) as n→∞ for each t∈R. We can show a similar way that u(t-τn)→v(t) as n→∞ for each t∈R. Hence v(t) is almost automorphic with respect to t∈R. This completes the proof.

    We define a mapping T by

    (Tx)(t)=F1(t,x(a(t)))+∫t-∞U(t,s)F2(s,x(b(s)))ds,t∈R.

    Theorem 2.2F1(t,·),F(xiàn)2(t,·)∈WPAA(R×X,ρ) and U(t,s) satisfies the conditions (H1)(H4). If x(t) is weighted pseudo almost automorphic, then G(t)=∫t-∞U(t,s)F2(s,x(b(s)))ds and H(t)=F1(t,x(a(t))) are weighted pseudo almost automorphic. Moreover, the function Tx is weighted pseudo almost automorphic.

    ProofLet x∈WPAA(R,ρ). Obviously, the function x(a(t)), x(b(t)) are weighted pseudo almost automorphic. By the composition theorem of weighted almost automorphic functions in [14] or Lemma 1.10, it follows that H(t)=F1(t,x(a(t))),F(xiàn)2(t,x(b(t)))∈WPAA(R×X,X).

    Let

    F2(t,x(b(t)))=h(t)+(t), where h∈AA(X), ∈PAA0(R,ρ).

    Then

    G(t)=∫t-∞U(t,s)h(s)ds+∫t-∞U(t,s)(s)ds:=G1(t)+G2(t).

    By Lemma 2.1, we know that G1∈AA(X), so G1(t) is almost automorphic.

    Next, in order to show that G(t) is weighted pseudo almost automorphic, we need to show G2(t)∈PAA0(R,ρ). Let Γ(ρ)=1m(r,ρ)∫r-r‖G2(t)‖ρ(t)dt, we will show limr→∞ Γ(ρ)=0. It is obvious that Γ(ρ)≥0.

    By using the Fubini theorem, we have

    Γ(ρ)≤limr→∞1m(r,ρ)∫r-rdt∫-r-∞Me-δ(t-s)‖(s)‖ρ(s)ds+limr→∞1m(r,ρ)∫r-rdt∫t-rMe-δ(t-s)‖(s)‖ρ(s)ds=

    limr→∞1m(r,ρ)∫-r-∞eδs‖(s)‖ds∫r-rMe-δtρ(t)dt+limr→∞1m(r,ρ)∫r-r‖(s)‖ρ(t)dt∫t-rMe-δ(t-s)ds≤

    limr→∞1m(r,ρ)supt∈R‖(t)‖‖ρ‖L1loc(R)Mδ2[1-e-2δr]+

    limr→∞1m(r,ρ)Mδ2[1-e-δ(t+r)]∫r-r‖(t)‖ρ(t)dt:=Γ1(ρ)+Γ2(ρ).

    Since (t) is bounded and limr→∞ m(r,ρ)=∞, then Γ1(ρ)=0. In addition, we know the fact that δ>0,-r≤t≤r and ∈PAA0(R,ρ), so Γ2(ρ)=0.

    Furthermore, Tx is weighted pseudo almost automorphic. The proof is completed.

    Theorem 2.3Let F1(T,·),F(xiàn)2(t,·) and U (t,s) satisfy all the conditions of (H1), (H2), (H3), (H4), and 0

    ProofBy Theorem 2.2, we can see T maps WPAA(R,ρ) into WPAA(R,ρ) .

    Let x,y∈WPAA(R,ρ), and notice that

    ‖(Tx)(t)-(Ty)(t)‖≤‖F(xiàn)1(t,x(a(t)))-F1(t,y(a(t)))‖+

    ‖∫t-∞U(t,s)[F2(s,x(b(s)))-F2(s,y(b(s)))]ds‖≤

    L1‖x(a(t))-y(a(t))‖+L2∫t-∞‖U(t,s)‖·‖x(b(s))-y(b(s))‖ds≤

    L1K1‖x-y‖WPAA(R,ρ)+ML2K2‖x-y‖WPAA(R,ρ)∫t-∞e-δ(t-s)ds≤

    (L1K1+ML2K2δ)‖x-y‖WPAA(R,ρ).

    So we have

    ‖(Tx)(t)-(Ty)(t)‖WPAA(R,ρ)≤(L1K1+ML2K2δ)‖x-y‖WPAA(R,ρ).

    For 0

    Therefore, by the Banach fixed point theorem, T has a unique fixed point x∈WPAA(R,ρ) such that Tx=x.

    Fixing s∈R we have

    x(t)=F1(t,x(a(t)))+∫t-∞U(t,r)F2(r,x(b(r)))dr.

    Since U(t,s)=U(t,r)U(r,s), for t≥r≥s (see[21, Chapter 5, Theorem 5.2]),

    let x(τ)=F1(τ,x(a(τ)))+∫τ-∞U(τ,s)F2(s,x(b(s)))ds. So

    U(t,τ)x(τ)=U(t,τ)F1(τ,x(a(τ)))+∫τ-∞U(t,s)F2(s,x(b(s)))ds.

    For t≥τ,

    ∫τU(t,s)F2(s,x(b(s)))ds=∫t-∞U(t,s)F2(s,x(b(s)))ds-∫τ-∞U(t,s)F2(s,x(b(s)))ds=

    x(t)-F1(t,x(a(t)))-U(t,τ)x(τ)+U(t,τ)F1(τ,x(a(τ))).

    So that

    x(t)=F1(t,x(a(t)))+U(t,τ)[x(τ)-F1(τ,x(a(τ)))]+∫tτU(t,s)F2(s,x(b(s)))ds.

    It follows that x(t) satisfies equation (2). Hence x(t) is a mild solution to equation (1).

    In conclusion, x(t) is the unique mild solution to equation (1), which completes the proof.

    Remark 2.4When U (t,s)=T(t-s), we can deal with the existence and uniqueness of a weighted pseudo almost automorphic solution for

    dx(t)dt=Ax(t)+ddtF1(t,x(a(t)))+F2(t,x(b(t))), t∈R,x∈WPAA(X),

    where A is the infinitesimal generator of a C0semigroup {T(t)}t≥0. In this case we have the mild solution given by

    x(t)=F1(t,x(a(t)))+∫t-∞T(t-s)F2(s,x(b(s)))ds, for t∈R.

    Remark 2.5When ρ=1, we can deal with the existence and uniqueness of a pseudo almost automorphic solution for

    dx(t)dt=A(t)x(t)+ddtF1(t,x(a(t)))+F2(t,x(b(t))), t∈R,x∈PAA(X).

    In this case we have the mild solution given by

    x(t)=F1(t,x(a(t)))+∫t-∞U(t,s)F2(s,x(b(s)))ds, for t∈R.

    Remark 2.6When U(t,s)=T(t-s),ρ=1, we can also deal with the existence and uniqueness of a weighted pseudo almost automorphic solution for

    dx(t)dt=Ax(t)+ddtF1(t,x(a(t)))+F2(t,x(b(t))), t∈R,x∈PAA(X).

    In this case we have the weighted pseudo almost automorphic mild solution given by

    x(t)=F1(t,x(a(t)))+∫t-∞T(t-s)F2(s,x(b(s)))ds, for t∈R.

    References:

    [1]NGURKATA G M. Almost automorphic and almost periodic functions in abstract spaces [M].New York: Kluwer Academic, 2001.

    [2]NGURKATA G M. Topics in almost automorphy [M]. New York: SpringerVerlag, 2005.

    [3]NGURKATA G M. Existence and uniqueness of almost automorphic mild solutions to some semilinear abstract differential equations [J]. Semigroup Forum, 2004,69(1):8086.

    [4]NGURKATA G M. Almost automorphic solutions to secondorder semilinear evolution equations [J].Nonlinear Anal, 2009,71(2):432435.

    [5]EZZINBI K, NGURKATA G M. Almost automorphic solutions for some partial functional differential equations [J]. J Math Anal Appl, 2007,328(1):344358.

    [6]EZZINBI K, NELSON V, NGURKATA G M. C(n)almost automorphic solutions of some nonautonomous differential equations [J]. Cubo Math J, 2008,6(3):6174.

    [7]GOLDSTEIN J A, NGURKATA G M. Almost automorphic solutions of semilinear evolution equations [J].Proc Am Math Soc, 2005,133(8):24012408.

    [8]LIANG J, ZHANG J, XIAO T J. Composition of pseudo almost automorphic and asymptotically almost automorphic functions [J]. J Math Anal Appl, 2008,340(2):14931499.

    [9]DIAGANA T. Weighted pseudo almost periodic functions and applications [J]. C R Acad Sci, 2006,343(10):643646.

    [10]DIAGANA T. Weighted pseudoalmost periodic solutions to some differential equations [J]. Nonlinear Anal, 2008,68(8):22502260.

    [11]DIAGANA T. Weighted pseudoalmost periodic solutions to a neutral delay integral equation of advanced type [J]. Nonlinear Anal, 2009,70(1):298304.

    [12]HACENE N B, EZZINBI K. Weighted pseudo almost periodic solutions for some partial functional differential equations [J]. Nonlinear Anal, 2009,71(9):36123621.

    [13]HACENE N B, EZZINBI K. Weighted pseudoalmost automorphic solutions for some partial functional differential equations [J]. Nonlinear Anal, 2011,12(1):562570.

    [14]DING H S, LONGA W, NGURKATA G M. A composition theorem for weighted pseudoalmost automorphic functions and applications [J]. Nonlinear Anal, 2010,73(8):26442650.

    [15]BLOT J, MOPHOU G M, NGURKATA G M, et al. Weighted pseudo almost automorphic functions and applications to abstract differential equations [J]. Nonlinear Anal, 2009,71(3):903909.

    [16]LIU J H, SONG X Q. Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equations [J]. J Funct Anal, 2010,258(1):196207.

    [17]LIU J H, SONG X Q, ZHANG P. Weighted pseudo almost periodic mild solutions of semilinear evolution equations with nonlocal conditions [J]. Appl Math Comput, 2009,215(5):16471652.

    [18]WANG Q, WANG Z J, DING M M, et al. Weighted pseudo almost periodic solutions for abstract functional differential equations [J]. Math Appl, 2011,24(3):587592.

    [19]BOCHNER S. Continuous mappings of almost automorphic and almost automorphic functions [J]. Proc Nati Acad Sci USA, 1964,52(4):907910.

    [20]DIAGANA T, HENRIQUEZ H R, HERNNDEZ E M. Almost automorphic mild solutions to some partial neutral functionaldifferential equations and applications [J]. Nonlinear Anal, 2008,69(5):14851493.

    [21]PAZY A. Semigroups of linear operators and applications to partial differential equations [M]. New York: SpringerVerlag, 1983.

    (編輯胡文杰)

    成年av动漫网址| 小说图片视频综合网站| 日韩欧美精品v在线| 十八禁网站免费在线| 成人无遮挡网站| 成年女人毛片免费观看观看9| 精品久久久久久成人av| 国产黄片美女视频| 国产精品福利在线免费观看| 欧美性猛交黑人性爽| 久久久色成人| 老女人水多毛片| 亚洲经典国产精华液单| 精品国产三级普通话版| 中国美女看黄片| 欧美另类亚洲清纯唯美| .国产精品久久| 国产一区二区在线观看日韩| 综合色丁香网| 美女高潮的动态| 少妇的逼水好多| 日韩欧美 国产精品| 久久中文看片网| 欧美成人一区二区免费高清观看| 欧美国产日韩亚洲一区| 国产视频一区二区在线看| 欧美bdsm另类| av卡一久久| 午夜精品国产一区二区电影 | 99热这里只有精品一区| 欧美不卡视频在线免费观看| 亚洲精品日韩av片在线观看| 欧美日韩乱码在线| 色av中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女黄片视频| 男女之事视频高清在线观看| 99久国产av精品| 伦精品一区二区三区| av天堂在线播放| 九九热线精品视视频播放| 毛片女人毛片| 麻豆一二三区av精品| 国产女主播在线喷水免费视频网站 | 美女被艹到高潮喷水动态| 国产熟女欧美一区二区| 天堂√8在线中文| 最近手机中文字幕大全| 可以在线观看毛片的网站| av在线蜜桃| 波多野结衣高清作品| 禁无遮挡网站| 免费一级毛片在线播放高清视频| 久久精品人妻少妇| 国产精品爽爽va在线观看网站| 国产成人aa在线观看| 国产av麻豆久久久久久久| 一进一出抽搐gif免费好疼| 天堂√8在线中文| 国产片特级美女逼逼视频| 成人综合一区亚洲| 一进一出抽搐gif免费好疼| 精品久久久久久久久av| 国产日本99.免费观看| 国产亚洲精品av在线| 国产精品久久久久久亚洲av鲁大| 成人漫画全彩无遮挡| 少妇熟女欧美另类| 国产成人freesex在线 | 亚洲在线自拍视频| 两个人的视频大全免费| 一区福利在线观看| 我要看日韩黄色一级片| 校园春色视频在线观看| 高清午夜精品一区二区三区 | 毛片一级片免费看久久久久| 中文在线观看免费www的网站| 成人亚洲欧美一区二区av| 亚洲av.av天堂| 99riav亚洲国产免费| 国产大屁股一区二区在线视频| 女同久久另类99精品国产91| 成年女人永久免费观看视频| 国产真实乱freesex| 日日摸夜夜添夜夜添小说| 免费在线观看影片大全网站| 亚洲最大成人av| 99热这里只有是精品在线观看| 国产亚洲精品av在线| 国产精品无大码| 精品免费久久久久久久清纯| 成年av动漫网址| av天堂中文字幕网| 有码 亚洲区| 美女 人体艺术 gogo| 尾随美女入室| 亚洲国产精品sss在线观看| 日日干狠狠操夜夜爽| 成熟少妇高潮喷水视频| 日本黄色视频三级网站网址| 国产亚洲91精品色在线| 麻豆乱淫一区二区| 99久久九九国产精品国产免费| 最新中文字幕久久久久| 亚洲av熟女| 午夜老司机福利剧场| 日日摸夜夜添夜夜爱| 亚洲精品影视一区二区三区av| 国产精品爽爽va在线观看网站| 欧美xxxx黑人xx丫x性爽| 午夜激情欧美在线| 成人亚洲精品av一区二区| 精品国内亚洲2022精品成人| 亚洲国产日韩欧美精品在线观看| 亚洲av五月六月丁香网| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品一区av在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日本精品一区二区三区蜜桃| 99九九线精品视频在线观看视频| 久久草成人影院| 亚洲国产精品合色在线| 国产一区亚洲一区在线观看| 国产黄色视频一区二区在线观看 | 麻豆国产av国片精品| 国产色婷婷99| 成人三级黄色视频| 一级毛片我不卡| 又黄又爽又刺激的免费视频.| 成人特级黄色片久久久久久久| 亚洲av免费在线观看| 国产欧美日韩一区二区精品| 国产免费男女视频| 国产高清激情床上av| 国产成人影院久久av| 啦啦啦韩国在线观看视频| av在线蜜桃| a级毛片免费高清观看在线播放| 国产日本99.免费观看| 成人永久免费在线观看视频| 国产一区二区在线观看日韩| 一本久久中文字幕| 91在线观看av| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品久久久久久精品电影| 国产精华一区二区三区| 日日摸夜夜添夜夜添av毛片| 精品一区二区免费观看| 麻豆精品久久久久久蜜桃| 熟妇人妻久久中文字幕3abv| 一进一出好大好爽视频| 欧美xxxx性猛交bbbb| av在线亚洲专区| 少妇丰满av| 久久久久九九精品影院| 久久久欧美国产精品| 国产一区二区在线观看日韩| 人妻少妇偷人精品九色| 人妻制服诱惑在线中文字幕| 波多野结衣高清作品| 在线免费观看不下载黄p国产| 亚洲无线观看免费| 久久久久久久久久黄片| 国产黄色视频一区二区在线观看 | 人妻丰满熟妇av一区二区三区| 大型黄色视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 在线播放国产精品三级| 午夜福利在线观看免费完整高清在 | 3wmmmm亚洲av在线观看| 精品欧美国产一区二区三| 看黄色毛片网站| 无遮挡黄片免费观看| 欧美zozozo另类| 国产色爽女视频免费观看| 欧美又色又爽又黄视频| 18禁裸乳无遮挡免费网站照片| 欧美一级a爱片免费观看看| 久久精品人妻少妇| 在线观看午夜福利视频| 久久久久免费精品人妻一区二区| 国产成人91sexporn| 成人性生交大片免费视频hd| 少妇熟女aⅴ在线视频| 久久精品国产清高在天天线| 在线看三级毛片| 色综合色国产| 国产精品一区二区三区四区久久| 国产精品久久久久久久久免| 国产熟女欧美一区二区| 一夜夜www| 中文在线观看免费www的网站| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩卡通动漫| 少妇的逼水好多| 精品国产三级普通话版| 在线看三级毛片| 欧美不卡视频在线免费观看| 亚洲精品国产成人久久av| 晚上一个人看的免费电影| 小说图片视频综合网站| 俄罗斯特黄特色一大片| 在线播放国产精品三级| 久久国产乱子免费精品| 精品日产1卡2卡| 国产精品亚洲美女久久久| 日本 av在线| 免费观看的影片在线观看| 一级毛片aaaaaa免费看小| 国产真实伦视频高清在线观看| 一区二区三区免费毛片| 欧美绝顶高潮抽搐喷水| 深夜精品福利| 特大巨黑吊av在线直播| 91久久精品电影网| 少妇猛男粗大的猛烈进出视频 | 国产成人精品久久久久久| 九九热线精品视视频播放| 老司机福利观看| 日本-黄色视频高清免费观看| 成年女人永久免费观看视频| 九九爱精品视频在线观看| 老熟妇仑乱视频hdxx| 国产成人a∨麻豆精品| 亚洲丝袜综合中文字幕| 久久精品国产亚洲av香蕉五月| 国产亚洲av嫩草精品影院| 国产精品亚洲美女久久久| 高清日韩中文字幕在线| 女人被狂操c到高潮| h日本视频在线播放| 国国产精品蜜臀av免费| 久久人妻av系列| 国产男靠女视频免费网站| 美女内射精品一级片tv| 成人精品一区二区免费| 亚洲一级一片aⅴ在线观看| 久99久视频精品免费| 精品少妇黑人巨大在线播放 | 亚洲人成网站在线播放欧美日韩| 看非洲黑人一级黄片| 欧美性猛交黑人性爽| 在现免费观看毛片| 国产淫片久久久久久久久| 淫妇啪啪啪对白视频| 婷婷精品国产亚洲av| 日本色播在线视频| 亚洲精品国产成人久久av| 99在线视频只有这里精品首页| 久久精品国产鲁丝片午夜精品| 老熟妇乱子伦视频在线观看| 波多野结衣高清无吗| 成年女人永久免费观看视频| 国产真实乱freesex| 亚洲中文日韩欧美视频| 大型黄色视频在线免费观看| 久久久精品94久久精品| 久久久国产成人免费| 国内精品久久久久精免费| 你懂的网址亚洲精品在线观看 | 亚洲成av人片在线播放无| 亚洲精品在线观看二区| 岛国在线免费视频观看| 久久久久久久久中文| 丰满人妻一区二区三区视频av| 夜夜夜夜夜久久久久| 夜夜看夜夜爽夜夜摸| 欧美一区二区亚洲| 天堂av国产一区二区熟女人妻| 色噜噜av男人的天堂激情| 1024手机看黄色片| 全区人妻精品视频| 亚洲五月天丁香| 尾随美女入室| 亚洲内射少妇av| 午夜福利成人在线免费观看| 波多野结衣高清无吗| 中国美女看黄片| 91在线观看av| 欧美一区二区国产精品久久精品| 淫妇啪啪啪对白视频| 日韩中字成人| 国产亚洲欧美98| 永久网站在线| 免费人成视频x8x8入口观看| 特级一级黄色大片| 深爱激情五月婷婷| 人妻丰满熟妇av一区二区三区| 97人妻精品一区二区三区麻豆| 禁无遮挡网站| .国产精品久久| 99九九线精品视频在线观看视频| 一级毛片aaaaaa免费看小| 国产蜜桃级精品一区二区三区| 夜夜夜夜夜久久久久| 一进一出抽搐gif免费好疼| videossex国产| 97超碰精品成人国产| 国产成年人精品一区二区| 亚洲欧美精品综合久久99| 大型黄色视频在线免费观看| 国产美女午夜福利| 国内精品美女久久久久久| 69av精品久久久久久| 国产亚洲精品综合一区在线观看| 久久久久久久午夜电影| 啦啦啦韩国在线观看视频| 草草在线视频免费看| 国产日本99.免费观看| 国产成人精品久久久久久| 卡戴珊不雅视频在线播放| 精品久久久久久久人妻蜜臀av| 一进一出好大好爽视频| 日本三级黄在线观看| 黄片wwwwww| 韩国av在线不卡| 国产女主播在线喷水免费视频网站| 久久韩国三级中文字幕| 亚洲久久久国产精品| 2018国产大陆天天弄谢| 国产免费又黄又爽又色| 久久人人爽人人爽人人片va| 少妇精品久久久久久久| 亚洲av男天堂| 亚洲精品乱码久久久v下载方式| 国产精品国产三级专区第一集| 人妻少妇偷人精品九色| 日韩欧美 国产精品| 精品久久久精品久久久| 国产男女超爽视频在线观看| 国产高清有码在线观看视频| 国产精品一区二区三区四区免费观看| 成人漫画全彩无遮挡| 另类亚洲欧美激情| 2018国产大陆天天弄谢| 免费少妇av软件| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产成人一精品久久久| 国产真实伦视频高清在线观看| 秋霞在线观看毛片| 国内少妇人妻偷人精品xxx网站| 最近手机中文字幕大全| 亚洲欧美精品自产自拍| 亚洲va在线va天堂va国产| www.av在线官网国产| 欧美性感艳星| 麻豆成人av视频| 久久ye,这里只有精品| 国产伦精品一区二区三区四那| 中国三级夫妇交换| tube8黄色片| 亚洲av男天堂| 在线观看人妻少妇| 中国三级夫妇交换| 黄色欧美视频在线观看| 国产精品人妻久久久影院| 精品亚洲乱码少妇综合久久| 99久久中文字幕三级久久日本| 午夜精品国产一区二区电影| 日韩精品有码人妻一区| 免费黄网站久久成人精品| 日韩中字成人| 99久久人妻综合| 老熟女久久久| 少妇人妻 视频| 免费黄网站久久成人精品| 最新中文字幕久久久久| 高清毛片免费看| 国产极品粉嫩免费观看在线 | 日日啪夜夜爽| 一级毛片 在线播放| 高清毛片免费看| 免费播放大片免费观看视频在线观看| 亚洲精品国产av蜜桃| 成人黄色视频免费在线看| 国产精品国产三级国产专区5o| 国产黄色免费在线视频| 久久精品国产亚洲网站| 国产精品无大码| 妹子高潮喷水视频| 国产一区二区在线观看日韩| 久久久久久久国产电影| 九九久久精品国产亚洲av麻豆| 九九爱精品视频在线观看| 国内揄拍国产精品人妻在线| 97在线人人人人妻| 七月丁香在线播放| 亚洲av成人精品一区久久| xxx大片免费视频| 亚洲国产毛片av蜜桃av| 国产男女内射视频| 亚洲三级黄色毛片| 一级片'在线观看视频| h视频一区二区三区| 亚洲内射少妇av| 亚洲丝袜综合中文字幕| 在线观看国产h片| 97超碰精品成人国产| 美女xxoo啪啪120秒动态图| 日日摸夜夜添夜夜添av毛片| 天美传媒精品一区二区| 成人亚洲精品一区在线观看| 丰满少妇做爰视频| 男女免费视频国产| 国产美女午夜福利| 欧美日韩在线观看h| 亚洲精品456在线播放app| 国产真实伦视频高清在线观看| 极品教师在线视频| 一区二区av电影网| 观看免费一级毛片| 高清av免费在线| 日韩一区二区视频免费看| 少妇人妻久久综合中文| av不卡在线播放| 亚洲欧美成人精品一区二区| 久久久久精品久久久久真实原创| 色婷婷久久久亚洲欧美| 九草在线视频观看| 国产精品欧美亚洲77777| 十八禁高潮呻吟视频 | 亚洲欧美清纯卡通| 国产探花极品一区二区| 国产亚洲欧美精品永久| 久久精品国产亚洲av天美| 日本与韩国留学比较| 国产老妇伦熟女老妇高清| 黄色配什么色好看| 国产亚洲午夜精品一区二区久久| 伊人久久国产一区二区| 欧美日韩视频精品一区| 最近的中文字幕免费完整| 精品国产一区二区三区久久久樱花| 亚洲情色 制服丝袜| 日韩欧美一区视频在线观看 | 国产高清三级在线| 少妇人妻 视频| 纯流量卡能插随身wifi吗| 亚洲欧洲国产日韩| 一个人免费看片子| 激情五月婷婷亚洲| 内射极品少妇av片p| 毛片一级片免费看久久久久| 免费观看av网站的网址| 久久久久国产精品人妻一区二区| 黄片无遮挡物在线观看| 亚洲人成网站在线播| 欧美bdsm另类| 日本91视频免费播放| 一边亲一边摸免费视频| 日日摸夜夜添夜夜添av毛片| 精品少妇内射三级| 大话2 男鬼变身卡| 三级国产精品片| 免费大片黄手机在线观看| 国产av国产精品国产| 色94色欧美一区二区| 亚洲精品国产av成人精品| 成人毛片60女人毛片免费| 欧美日韩av久久| 亚洲真实伦在线观看| 一级av片app| 精品国产一区二区久久| 国产高清三级在线| 国产视频首页在线观看| 亚洲国产日韩一区二区| 久久国内精品自在自线图片| 亚洲精品视频女| 国产精品蜜桃在线观看| 亚洲av.av天堂| 99久久精品一区二区三区| 青春草亚洲视频在线观看| 国产成人freesex在线| 午夜老司机福利剧场| 永久免费av网站大全| 少妇 在线观看| 如日韩欧美国产精品一区二区三区 | 久久99蜜桃精品久久| 欧美日韩亚洲高清精品| 日韩大片免费观看网站| 国产日韩欧美在线精品| 久久人人爽av亚洲精品天堂| 内射极品少妇av片p| 精品国产国语对白av| 中文字幕人妻丝袜制服| 三级国产精品片| 久久久久精品久久久久真实原创| 黄色欧美视频在线观看| 偷拍熟女少妇极品色| .国产精品久久| 免费观看的影片在线观看| 一级,二级,三级黄色视频| 另类精品久久| 国产成人91sexporn| 久热这里只有精品99| 在线观看美女被高潮喷水网站| 老司机影院毛片| 国产成人aa在线观看| 国产熟女午夜一区二区三区 | 久久久久久久久久久免费av| 日韩亚洲欧美综合| 黄片无遮挡物在线观看| 观看免费一级毛片| 成人影院久久| 人人妻人人澡人人爽人人夜夜| 人妻人人澡人人爽人人| 日韩一本色道免费dvd| 纯流量卡能插随身wifi吗| 亚洲怡红院男人天堂| h视频一区二区三区| 黄色怎么调成土黄色| 欧美三级亚洲精品| 国产中年淑女户外野战色| 亚洲欧洲国产日韩| 一级毛片aaaaaa免费看小| 日韩成人av中文字幕在线观看| 国产有黄有色有爽视频| 韩国av在线不卡| 99久久精品热视频| 久久久精品免费免费高清| 亚洲色图综合在线观看| 国产成人精品久久久久久| 亚洲成人一二三区av| 亚洲av男天堂| 熟女av电影| 美女内射精品一级片tv| av网站免费在线观看视频| 久热久热在线精品观看| 亚州av有码| 蜜桃在线观看..| 91精品伊人久久大香线蕉| 国产永久视频网站| 性色av一级| 免费不卡的大黄色大毛片视频在线观看| 久久毛片免费看一区二区三区| 国产免费视频播放在线视频| 亚洲精品aⅴ在线观看| 久热久热在线精品观看| 一边亲一边摸免费视频| 久久久久国产网址| 久久久久网色| 婷婷色综合大香蕉| 国产欧美日韩精品一区二区| 国精品久久久久久国模美| 交换朋友夫妻互换小说| 中文字幕制服av| 日本猛色少妇xxxxx猛交久久| 国产在线视频一区二区| 国产精品久久久久久精品电影小说| 午夜av观看不卡| 国产色婷婷99| 最近中文字幕高清免费大全6| 免费观看在线日韩| 国产精品久久久久久久久免| 中文精品一卡2卡3卡4更新| 看免费成人av毛片| 一本一本综合久久| 日韩伦理黄色片| 黄色欧美视频在线观看| 久久 成人 亚洲| 男的添女的下面高潮视频| 九九爱精品视频在线观看| 黑人猛操日本美女一级片| 成人亚洲欧美一区二区av| 午夜激情福利司机影院| 成人国产av品久久久| 高清av免费在线| 黄色欧美视频在线观看| 亚洲内射少妇av| 久久毛片免费看一区二区三区| 欧美性感艳星| 亚洲国产日韩一区二区| 少妇猛男粗大的猛烈进出视频| 国产高清不卡午夜福利| 午夜福利视频精品| 中文资源天堂在线| 国产成人精品婷婷| 久久久精品免费免费高清| 啦啦啦在线观看免费高清www| 国产欧美日韩一区二区三区在线 | 又大又黄又爽视频免费| 乱码一卡2卡4卡精品| 精品午夜福利在线看| 国产成人精品一,二区| 久久ye,这里只有精品| 亚洲在久久综合| 亚洲成人手机| 我的老师免费观看完整版| 97精品久久久久久久久久精品| 国产精品福利在线免费观看| 九九爱精品视频在线观看| 桃花免费在线播放| 亚洲精华国产精华液的使用体验| 日韩欧美精品免费久久| 亚洲天堂av无毛| 精品一品国产午夜福利视频| 午夜91福利影院| 汤姆久久久久久久影院中文字幕| 欧美精品高潮呻吟av久久| 91在线精品国自产拍蜜月| av天堂中文字幕网| 日韩亚洲欧美综合| 如日韩欧美国产精品一区二区三区 | 美女脱内裤让男人舔精品视频| 美女cb高潮喷水在线观看| 国产永久视频网站| 丰满饥渴人妻一区二区三| 日韩不卡一区二区三区视频在线| 国产日韩欧美亚洲二区| 一边亲一边摸免费视频| 亚洲性久久影院| 嫩草影院入口| 寂寞人妻少妇视频99o| 国产黄色视频一区二区在线观看| 成人黄色视频免费在线看|