• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    抽象泛函微分方程的權(quán)偽概自守溫和解(英文)

    2015-10-20 11:31:52雷國(guó)梁岳田宋曉秋

    雷國(guó)梁 岳田 宋曉秋

    摘要利用算子半群理論和Banach 不動(dòng)點(diǎn)定理研究了一類抽象泛函微分方程權(quán)偽概自守溫和解的存在唯一性,所得結(jié)論拓展了已有結(jié)果.

    關(guān)鍵詞權(quán)偽概自守;抽象泛函微分方程;指數(shù)穩(wěn)定;存在唯一性

    The theory of almost automorphy was first introduced in the literature by Bochner in the earlier sixties, which is a natural generalization of almost periodicity[1], for more details about this topics we refer to the recent book[2] where the author gave an important overview on the theory of almost automorphic functions and their applications to differential equations. In the last decade, several authors including Ezzinbi, Goldstein, NGuérékata and others, have extended the theory of almost automorphy and its applications to differential equations[17].

    Xiao, Liang and Zhang[8] postulated a new concept of a function called a pseudoalmost automorphic function, established existence and uniqueness theorems of pseudoalmost automorphic solutions to some semilinear abstract differential equations and studied two composition theorems about pseudoalmost automorphic functions as well as asymptotically almost automorphic functions (Theorems 2.3 and 2.4, [8]).

    Weighted pseudoalmost automorphic functions are more general than weighted pseudoalmost periodic functions which were introduced by Diagana[911] and recently studied by Hacene, Ezzinbi[1213], Ding[14]. Blot, Mophou, NGuérékata, Pennequin[15] and Liu[1617] have studied basic properties of weighted pseudoalmost automorphic functions and then used these results to study the existence and uniqueness of weighted pseudoalmost automorphic mild solutions to some abstract differential equations.

    Motivated by works [13,16,18], we consider the existence and uniqueness of the weighted pseudo almost automorphic mild solution of the following semilinear evolution equation in a Banach space X

    dx(t)dt=A(t)x(t)+ddtF1(t,x(a(t)))+F2(t,x(b(t))),t∈R,x∈WPPA(R,ρ),(1)

    where WPAA(R,ρ ) is the set of all weighted pseudo almost automorphic functions from R to X and the family {A(t),t∈R} of operators in X generates an exponentially stable evolution family {U (t, s),t. s}.

    湖南師范大學(xué)自然科學(xué)學(xué)報(bào)第38卷第5期雷國(guó)梁等:抽象泛函微分方程的權(quán)偽概自守溫和解1Preliminaries

    In this section, we introduce definitions, notations, lemmas and preliminary facts which are used throughout this work. We assume that X is a Banach space endowed with the norm ||·||.N, R and C stand for the sets of positive integer, real and complex numbers. We denote by B(X) the Banach space of all bounded linear operators from X to itself. BC(R, X )(BC(R×X, X)) is the space of all bounded continuous functions from R to X(R× X to X). L1loc(R) denote the space of locally integrable functions on R. Let U be the collection of functions (weights) ρ:R→ (0,+∞), which are locally integrable over R with.ρ>0(a.e.). From now, if ρ∈U and for r>0, we then set m(r,ρ)=∫r-rρ(t)dt, U∞:={ρ∈U:limr→∞ m(r,ρ)=∞}, UB:={ρ∈U∞: ρ is bounded and infx∈R ρ(x)>0}.

    It is clear that UBU∞U with strict inclusions. {U (t, s),t≥s} is an exponentially stable evolution family, if there exists M≥1 and δ>0 such that ‖U(t,s)‖≤Me-δ(t-s) for t≥s.

    Definition 1.1[19]A continuous function f:R→X is said to be almost automorphic if for every sequence of real numbers {sn}n∈N, there exists a subsequence {τn}n∈N such that g(t)=limn→∞ f(t+τn) is well defined for each t∈R and limn→∞ g(t-τn)=f(t) for each t∈R.

    The collection of all such functions will be denoted by AA(X).

    Definition 1.2[19]A continuous function f:R×X→X is said to be almost automorphic if f (t, x) is almost automorphic for each t∈R uniformly for all x∈B, where B is any bounded subset of X.

    The collection of all such functions will be denoted by AA(R×X,X).

    Lemma 1.3[1]Assume that f:R→X is almost automorphic, then f is bounded.

    Lemma 1.4[1](AA(X),‖·‖AA(X)) is a Banach space endowed with the supremum norm given by ‖f‖AA(X)=supt∈R‖f(t)‖.

    Lemma 1.5[20]Let f:R×X→X be almost automorphic in t∈R,x∈X and assume that f(t,x) satisfies a Lipschitz condition in x uniformly in t∈R Then x(t)∈AA(X) implies f(t, x(t))∈AA(X).

    The notation PAA0,PAA0(R×X,X) respectively, stand for the space of functions

    PAA0(X)={φ(t)∈BC(R,X):limr→∞∫r-r‖φ(t)‖dt=0},

    PAA0(R×X,X)=φ(t)∈BC(R×X,X):limr→∞∫r-r‖φ(t,x)‖dt=0

    uniformly for x in any bounded subset of X.

    Definition 1.6[8]A continuous function f:R→X(R×X→X) is said to be pseudo almost automorphic if it can be decomposed as f=g+φ, where g∈AA(X)(AA(R×X,X)) and φ∈PAA0(X)(PAA0(R×X,X)).

    Denote by PAA(X)(PAA(R×X, X)) the set of all such functions.

    Now for ρ∈U∞, we define

    PAA0(R,ρ):={φ(t)∈BC(R,X):limr→∞1m(r,ρ)∫r-r‖φ(t)‖ρ(t)dt=0},

    PAA0(R×X,ρ)=φ(t,x)∈BC(R×X,X):limr→∞1m(r,ρ)∫r-r‖φ(t,x)‖ρ(t)dt=0

    uniformly for x∈X.

    Definition 1.7[15]A bounded continuous function f:R→X(R×X→X) is said to be weighted pseudo almost automorphic if it can be decomposed as f=g+φ, where

    g∈AA(X)(AA(R×X,X)) and φ∈PAA0(R,ρ)(PAA0(R×X,ρ)).

    Denote by WPAA(R,ρ)(WPAA(R×X,ρ)) the set of all such functions.

    Lemma 1.8[15]The decomposition of a weighted pseudo almost automorphic function is unique for any ρ∈UB.

    Lemma 1.9[15]If ρ∈UB,(WPAA(R,ρ),‖·‖WPAA(R,ρ)) is a Banach space endowed with the supremum norm given by ‖f‖WPAA(R,ρ)=supt∈R‖f(t)‖.

    Lemma 1.10[15]Let f=g+φ∈WPAA(R,ρ) where ρ∈U∞,g∈AA(R×X,X) and φ∈PAA0(R×X,ρ). Assume both f and g are Lipschitzian in x∈X uniformly in t∈R Then x(t)∈WPAA(R,ρ) implies f(t, x(t))∈WPAA(R,ρ).

    Lemma 1.11[16]Let ∑θ={z∈C:|arg z|≤θ}∪{0}ρ(A(t)),θ∈(-π/2,π), if there exist a constant K0 and a set of real numbers α1,α2,…,αk,β1,…,βk with 0≤βi<αi≤2,(i=1,2,…,k) such that

    ‖A(t)(λ-A(t))-1(A(t)-1-A(s)-1)‖≤K0∑ki=1(t-s)αi|λ|βi-1,

    for t,s∈R,λ∈∑θ\{0} and there exists a constant M≥0 such that

    ‖(λ-A(t))-1‖≤M1+λ,λ∈∑θ.

    Then there exists a unique evolution family {U(t,s),t≥s>-∞}.

    Definition 1.12A continuous function x(t):R→X is called weighted pseudo almost automorphic mild solution to equation (1) if it satisfies

    x(t)=F1(t,x(a(t)))+U(t,s)[x(s)-F1(s,x(a(s)))]+∫tsU(t,r)F2(r,x(b(r)))dr,(2)

    for t≥s and s∈R.

    2The Main Results

    To show our main results, we assume that the following conditions are satisfied.

    (H1) F1(t,·)∈WPAA(R×X,X),(i=1,2) and there exist two positive constants Li(i=1,2) such that ‖F(xiàn)i(t,x)-Fi(t,y)‖≤Li‖x-y‖WPAA(R×X,ρ) for all t∈R and x,y∈WPAA(R,ρ), ρ∈U∞.

    (H2) a,b∈C(R,R),a(R)=R,b(R)=R and there exist two positive constants Ki(i=1,2) such that ‖x(a)-y(a)‖≤K1‖x-y‖WPAA(R,ρ),‖x(b)-y(b)‖≤K2‖x-y‖WPAA(R,ρ), with a,b∈WPAA(R,ρ) whenever x,y∈WPAA(R,ρ).

    (H3) {A(t),t∈R} satisfies Lemma 1.11 and {U (t,s),t≥s} is exponentially stable.

    (H4) For every sequence of real numbers {sn}n∈N, there exists a subsequence {τn}n∈N and for any fixed s∈R,ε>0, there exists an N∈N such that, for all n>N, it follows that

    ‖U(t+τn,s+τn)-U(t,s)‖≤εe-δ(t-s)/2,

    for all t≥s∈R. Moreover

    ‖U(t-τn,s-τn)-U(t,s)‖≤εe-δ(t-s)/2, for all t≥s∈R.

    Lemma 2.1If h(s) is almost automorphic, the function v(t)=∫t-∞U(t,s)h(s)ds is almost automorphic.

    ProofFirst we observe that v(t) is bounded. By Lemma 1.3, h(s) is bounded, we assume that there exists M1>0, such that ‖h(·)‖AA(X)≤M1. So

    ‖v(t)‖≤∫t-∞‖U(t,s)‖·‖h(s)‖ds≤MM1∫t-∞e-δ(t-s)ds≤MM1δ<∞.

    Hence v(t) is bounded. Now we show that v(t) is almost automorphic with respect to t∈R. Let {sn}n∈N be an arbitrary sequence of real numbers. Since h(t)∈AA(X), there exist a subsequence {τn}n∈N such that

    (A1) g(t)=limn→∞ h(t+τn) is well defined for each t∈R;

    (A2) limn→∞ g(t-τn)=h(t) for each t∈R.

    Now we consider

    v(t+τn)=∫t+τn-∞U(t+τn,s)h(s)ds=∫t-∞U(t+τn,s+τn)h(s+τn)ds.

    Obviously, v(t+τn) is bounded for all n=1,2,….

    For (A1), for any fixed s∈R and ε>0, there exists an N0∈N such that, for all n>N0, which follows that ‖h(s+τn)-g(s)‖<ε. In addition, by condition (H4), for s and ε above, there exists an N1∈N such that, for all n>N1, it follows that ‖U(t+τn,s+τn)-U(t,s)‖≤εe-δ(t-s)/2.

    Now taking N=max{N0,N1}, for all n>N,

    ‖U(t+τn,s+τn)h(s+τn)-U(t,s)g(s)‖≤

    ‖U(t,s)‖‖h(s+τn)-g(s)‖+‖U(t+τn,s+τn)-U(t,s)‖‖h(s+τn)‖≤

    Mεe-δ(t-s)+M1εe-δ(t-s)/2

    As n→∞, for each s∈R fixed and any t≥s, we have

    U(t+τn,s+τn)h(s+τn)→U(t,s)g(s).

    If we let u(t)=∫t-∞U(t,s)g(s)ds, we observe that the integral is absolutely convergent for each t. So, by Lebesgues dominated convergent theorem, v(t+τn)→u(t) as n→∞ for each t∈R. We can show a similar way that u(t-τn)→v(t) as n→∞ for each t∈R. Hence v(t) is almost automorphic with respect to t∈R. This completes the proof.

    We define a mapping T by

    (Tx)(t)=F1(t,x(a(t)))+∫t-∞U(t,s)F2(s,x(b(s)))ds,t∈R.

    Theorem 2.2F1(t,·),F(xiàn)2(t,·)∈WPAA(R×X,ρ) and U(t,s) satisfies the conditions (H1)(H4). If x(t) is weighted pseudo almost automorphic, then G(t)=∫t-∞U(t,s)F2(s,x(b(s)))ds and H(t)=F1(t,x(a(t))) are weighted pseudo almost automorphic. Moreover, the function Tx is weighted pseudo almost automorphic.

    ProofLet x∈WPAA(R,ρ). Obviously, the function x(a(t)), x(b(t)) are weighted pseudo almost automorphic. By the composition theorem of weighted almost automorphic functions in [14] or Lemma 1.10, it follows that H(t)=F1(t,x(a(t))),F(xiàn)2(t,x(b(t)))∈WPAA(R×X,X).

    Let

    F2(t,x(b(t)))=h(t)+(t), where h∈AA(X), ∈PAA0(R,ρ).

    Then

    G(t)=∫t-∞U(t,s)h(s)ds+∫t-∞U(t,s)(s)ds:=G1(t)+G2(t).

    By Lemma 2.1, we know that G1∈AA(X), so G1(t) is almost automorphic.

    Next, in order to show that G(t) is weighted pseudo almost automorphic, we need to show G2(t)∈PAA0(R,ρ). Let Γ(ρ)=1m(r,ρ)∫r-r‖G2(t)‖ρ(t)dt, we will show limr→∞ Γ(ρ)=0. It is obvious that Γ(ρ)≥0.

    By using the Fubini theorem, we have

    Γ(ρ)≤limr→∞1m(r,ρ)∫r-rdt∫-r-∞Me-δ(t-s)‖(s)‖ρ(s)ds+limr→∞1m(r,ρ)∫r-rdt∫t-rMe-δ(t-s)‖(s)‖ρ(s)ds=

    limr→∞1m(r,ρ)∫-r-∞eδs‖(s)‖ds∫r-rMe-δtρ(t)dt+limr→∞1m(r,ρ)∫r-r‖(s)‖ρ(t)dt∫t-rMe-δ(t-s)ds≤

    limr→∞1m(r,ρ)supt∈R‖(t)‖‖ρ‖L1loc(R)Mδ2[1-e-2δr]+

    limr→∞1m(r,ρ)Mδ2[1-e-δ(t+r)]∫r-r‖(t)‖ρ(t)dt:=Γ1(ρ)+Γ2(ρ).

    Since (t) is bounded and limr→∞ m(r,ρ)=∞, then Γ1(ρ)=0. In addition, we know the fact that δ>0,-r≤t≤r and ∈PAA0(R,ρ), so Γ2(ρ)=0.

    Furthermore, Tx is weighted pseudo almost automorphic. The proof is completed.

    Theorem 2.3Let F1(T,·),F(xiàn)2(t,·) and U (t,s) satisfy all the conditions of (H1), (H2), (H3), (H4), and 0

    ProofBy Theorem 2.2, we can see T maps WPAA(R,ρ) into WPAA(R,ρ) .

    Let x,y∈WPAA(R,ρ), and notice that

    ‖(Tx)(t)-(Ty)(t)‖≤‖F(xiàn)1(t,x(a(t)))-F1(t,y(a(t)))‖+

    ‖∫t-∞U(t,s)[F2(s,x(b(s)))-F2(s,y(b(s)))]ds‖≤

    L1‖x(a(t))-y(a(t))‖+L2∫t-∞‖U(t,s)‖·‖x(b(s))-y(b(s))‖ds≤

    L1K1‖x-y‖WPAA(R,ρ)+ML2K2‖x-y‖WPAA(R,ρ)∫t-∞e-δ(t-s)ds≤

    (L1K1+ML2K2δ)‖x-y‖WPAA(R,ρ).

    So we have

    ‖(Tx)(t)-(Ty)(t)‖WPAA(R,ρ)≤(L1K1+ML2K2δ)‖x-y‖WPAA(R,ρ).

    For 0

    Therefore, by the Banach fixed point theorem, T has a unique fixed point x∈WPAA(R,ρ) such that Tx=x.

    Fixing s∈R we have

    x(t)=F1(t,x(a(t)))+∫t-∞U(t,r)F2(r,x(b(r)))dr.

    Since U(t,s)=U(t,r)U(r,s), for t≥r≥s (see[21, Chapter 5, Theorem 5.2]),

    let x(τ)=F1(τ,x(a(τ)))+∫τ-∞U(τ,s)F2(s,x(b(s)))ds. So

    U(t,τ)x(τ)=U(t,τ)F1(τ,x(a(τ)))+∫τ-∞U(t,s)F2(s,x(b(s)))ds.

    For t≥τ,

    ∫τU(t,s)F2(s,x(b(s)))ds=∫t-∞U(t,s)F2(s,x(b(s)))ds-∫τ-∞U(t,s)F2(s,x(b(s)))ds=

    x(t)-F1(t,x(a(t)))-U(t,τ)x(τ)+U(t,τ)F1(τ,x(a(τ))).

    So that

    x(t)=F1(t,x(a(t)))+U(t,τ)[x(τ)-F1(τ,x(a(τ)))]+∫tτU(t,s)F2(s,x(b(s)))ds.

    It follows that x(t) satisfies equation (2). Hence x(t) is a mild solution to equation (1).

    In conclusion, x(t) is the unique mild solution to equation (1), which completes the proof.

    Remark 2.4When U (t,s)=T(t-s), we can deal with the existence and uniqueness of a weighted pseudo almost automorphic solution for

    dx(t)dt=Ax(t)+ddtF1(t,x(a(t)))+F2(t,x(b(t))), t∈R,x∈WPAA(X),

    where A is the infinitesimal generator of a C0semigroup {T(t)}t≥0. In this case we have the mild solution given by

    x(t)=F1(t,x(a(t)))+∫t-∞T(t-s)F2(s,x(b(s)))ds, for t∈R.

    Remark 2.5When ρ=1, we can deal with the existence and uniqueness of a pseudo almost automorphic solution for

    dx(t)dt=A(t)x(t)+ddtF1(t,x(a(t)))+F2(t,x(b(t))), t∈R,x∈PAA(X).

    In this case we have the mild solution given by

    x(t)=F1(t,x(a(t)))+∫t-∞U(t,s)F2(s,x(b(s)))ds, for t∈R.

    Remark 2.6When U(t,s)=T(t-s),ρ=1, we can also deal with the existence and uniqueness of a weighted pseudo almost automorphic solution for

    dx(t)dt=Ax(t)+ddtF1(t,x(a(t)))+F2(t,x(b(t))), t∈R,x∈PAA(X).

    In this case we have the weighted pseudo almost automorphic mild solution given by

    x(t)=F1(t,x(a(t)))+∫t-∞T(t-s)F2(s,x(b(s)))ds, for t∈R.

    References:

    [1]NGURKATA G M. Almost automorphic and almost periodic functions in abstract spaces [M].New York: Kluwer Academic, 2001.

    [2]NGURKATA G M. Topics in almost automorphy [M]. New York: SpringerVerlag, 2005.

    [3]NGURKATA G M. Existence and uniqueness of almost automorphic mild solutions to some semilinear abstract differential equations [J]. Semigroup Forum, 2004,69(1):8086.

    [4]NGURKATA G M. Almost automorphic solutions to secondorder semilinear evolution equations [J].Nonlinear Anal, 2009,71(2):432435.

    [5]EZZINBI K, NGURKATA G M. Almost automorphic solutions for some partial functional differential equations [J]. J Math Anal Appl, 2007,328(1):344358.

    [6]EZZINBI K, NELSON V, NGURKATA G M. C(n)almost automorphic solutions of some nonautonomous differential equations [J]. Cubo Math J, 2008,6(3):6174.

    [7]GOLDSTEIN J A, NGURKATA G M. Almost automorphic solutions of semilinear evolution equations [J].Proc Am Math Soc, 2005,133(8):24012408.

    [8]LIANG J, ZHANG J, XIAO T J. Composition of pseudo almost automorphic and asymptotically almost automorphic functions [J]. J Math Anal Appl, 2008,340(2):14931499.

    [9]DIAGANA T. Weighted pseudo almost periodic functions and applications [J]. C R Acad Sci, 2006,343(10):643646.

    [10]DIAGANA T. Weighted pseudoalmost periodic solutions to some differential equations [J]. Nonlinear Anal, 2008,68(8):22502260.

    [11]DIAGANA T. Weighted pseudoalmost periodic solutions to a neutral delay integral equation of advanced type [J]. Nonlinear Anal, 2009,70(1):298304.

    [12]HACENE N B, EZZINBI K. Weighted pseudo almost periodic solutions for some partial functional differential equations [J]. Nonlinear Anal, 2009,71(9):36123621.

    [13]HACENE N B, EZZINBI K. Weighted pseudoalmost automorphic solutions for some partial functional differential equations [J]. Nonlinear Anal, 2011,12(1):562570.

    [14]DING H S, LONGA W, NGURKATA G M. A composition theorem for weighted pseudoalmost automorphic functions and applications [J]. Nonlinear Anal, 2010,73(8):26442650.

    [15]BLOT J, MOPHOU G M, NGURKATA G M, et al. Weighted pseudo almost automorphic functions and applications to abstract differential equations [J]. Nonlinear Anal, 2009,71(3):903909.

    [16]LIU J H, SONG X Q. Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equations [J]. J Funct Anal, 2010,258(1):196207.

    [17]LIU J H, SONG X Q, ZHANG P. Weighted pseudo almost periodic mild solutions of semilinear evolution equations with nonlocal conditions [J]. Appl Math Comput, 2009,215(5):16471652.

    [18]WANG Q, WANG Z J, DING M M, et al. Weighted pseudo almost periodic solutions for abstract functional differential equations [J]. Math Appl, 2011,24(3):587592.

    [19]BOCHNER S. Continuous mappings of almost automorphic and almost automorphic functions [J]. Proc Nati Acad Sci USA, 1964,52(4):907910.

    [20]DIAGANA T, HENRIQUEZ H R, HERNNDEZ E M. Almost automorphic mild solutions to some partial neutral functionaldifferential equations and applications [J]. Nonlinear Anal, 2008,69(5):14851493.

    [21]PAZY A. Semigroups of linear operators and applications to partial differential equations [M]. New York: SpringerVerlag, 1983.

    (編輯胡文杰)

    久久鲁丝午夜福利片| www.av在线官网国产| 国产一区二区三区综合在线观看 | 人妻人人澡人人爽人人| 国产精品伦人一区二区| 国产午夜精品一二区理论片| 日本黄大片高清| 精品国产乱码久久久久久小说| 多毛熟女@视频| 91久久精品国产一区二区成人| 亚洲国产精品成人久久小说| 免费黄网站久久成人精品| 成年女人在线观看亚洲视频| 国产成人午夜福利电影在线观看| 亚洲av欧美aⅴ国产| 成年女人在线观看亚洲视频| 久久久久久久久久久免费av| 精品熟女少妇av免费看| 街头女战士在线观看网站| 亚洲国产av新网站| 国产亚洲欧美精品永久| 日日撸夜夜添| 日本猛色少妇xxxxx猛交久久| 国国产精品蜜臀av免费| 国产精品三级大全| av卡一久久| 欧美日韩国产mv在线观看视频| 最近手机中文字幕大全| 五月天丁香电影| 嘟嘟电影网在线观看| 少妇精品久久久久久久| 中国美白少妇内射xxxbb| 精品国产一区二区三区久久久樱花| 国产黄片美女视频| 久久99一区二区三区| 熟女电影av网| av在线观看视频网站免费| 久久精品国产自在天天线| 亚洲精品乱久久久久久| 日韩中文字幕视频在线看片| 有码 亚洲区| 国产精品免费大片| 夫妻午夜视频| 偷拍熟女少妇极品色| 91久久精品国产一区二区三区| 一本色道久久久久久精品综合| 久久免费观看电影| 久久久久国产网址| 免费观看在线日韩| 国产午夜精品久久久久久一区二区三区| 婷婷色麻豆天堂久久| 最新中文字幕久久久久| 成人毛片a级毛片在线播放| 精品国产一区二区三区久久久樱花| 亚洲美女黄色视频免费看| 亚洲综合色惰| 777米奇影视久久| 午夜免费鲁丝| 人妻人人澡人人爽人人| 免费看日本二区| 国产在线男女| www.av在线官网国产| 国产精品一区二区性色av| 搡女人真爽免费视频火全软件| 国产伦精品一区二区三区视频9| 街头女战士在线观看网站| 国产精品不卡视频一区二区| 亚洲第一av免费看| 80岁老熟妇乱子伦牲交| 日韩电影二区| 国产免费又黄又爽又色| 大香蕉97超碰在线| 麻豆精品久久久久久蜜桃| 国产黄色视频一区二区在线观看| 午夜激情福利司机影院| 亚洲欧美清纯卡通| av女优亚洲男人天堂| av在线播放精品| av国产精品久久久久影院| 国产精品欧美亚洲77777| 99久久中文字幕三级久久日本| xxx大片免费视频| 在线观看av片永久免费下载| 97在线人人人人妻| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品成人久久小说| 日韩亚洲欧美综合| 桃花免费在线播放| 亚洲av欧美aⅴ国产| 18+在线观看网站| 熟妇人妻不卡中文字幕| videos熟女内射| 大香蕉97超碰在线| 精品少妇内射三级| 中文字幕av电影在线播放| 久久久久久久精品精品| 啦啦啦中文免费视频观看日本| 亚洲欧美日韩卡通动漫| 插阴视频在线观看视频| 大香蕉97超碰在线| 国产黄色视频一区二区在线观看| 久久精品国产鲁丝片午夜精品| 久久久国产欧美日韩av| 亚洲三级黄色毛片| 亚洲人成网站在线观看播放| 久久亚洲国产成人精品v| 亚洲无线观看免费| 全区人妻精品视频| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区黑人 | 夜夜骑夜夜射夜夜干| 国内精品宾馆在线| 国产精品蜜桃在线观看| av黄色大香蕉| 国产一区有黄有色的免费视频| 日韩精品免费视频一区二区三区 | www.色视频.com| 女人精品久久久久毛片| 亚洲av福利一区| 校园人妻丝袜中文字幕| 夫妻午夜视频| 午夜免费鲁丝| 成人影院久久| 欧美国产精品一级二级三级 | 天堂俺去俺来也www色官网| 三级国产精品片| 国产亚洲精品久久久com| 久久韩国三级中文字幕| 在现免费观看毛片| 综合色丁香网| 国产成人精品婷婷| 久久久久视频综合| 美女内射精品一级片tv| 日韩欧美精品免费久久| 美女福利国产在线| 国产精品熟女久久久久浪| 中文字幕免费在线视频6| 韩国av在线不卡| 成人二区视频| 特大巨黑吊av在线直播| 久久人人爽人人片av| 亚洲三级黄色毛片| 三级国产精品欧美在线观看| 日韩中文字幕视频在线看片| 少妇人妻精品综合一区二区| 日本欧美视频一区| 亚洲精品日韩av片在线观看| 少妇裸体淫交视频免费看高清| 久久久久精品性色| 岛国毛片在线播放| 91aial.com中文字幕在线观看| 免费av中文字幕在线| 久久国内精品自在自线图片| 99re6热这里在线精品视频| 国产免费福利视频在线观看| 美女国产视频在线观看| 人妻系列 视频| 国产av一区二区精品久久| 亚洲精品乱码久久久久久按摩| 大片电影免费在线观看免费| 一区二区三区免费毛片| 黄色欧美视频在线观看| 亚洲成色77777| 你懂的网址亚洲精品在线观看| 国产亚洲91精品色在线| 中文字幕精品免费在线观看视频 | 亚洲国产精品一区三区| 久久久久网色| a级一级毛片免费在线观看| 大陆偷拍与自拍| 亚洲天堂av无毛| 青春草亚洲视频在线观看| 在线观看免费高清a一片| 丝袜脚勾引网站| 欧美性感艳星| 久久久久久久国产电影| 高清视频免费观看一区二区| 中国三级夫妇交换| 国模一区二区三区四区视频| 国产高清三级在线| 人体艺术视频欧美日本| 9色porny在线观看| 美女福利国产在线| 日日啪夜夜爽| 欧美日韩综合久久久久久| 亚洲av成人精品一二三区| 亚洲精品日本国产第一区| 老女人水多毛片| av有码第一页| 夫妻午夜视频| 美女视频免费永久观看网站| 在线看a的网站| 色婷婷av一区二区三区视频| 亚洲精品日本国产第一区| 国产欧美日韩精品一区二区| 日韩av在线免费看完整版不卡| 91精品国产国语对白视频| 极品教师在线视频| 91久久精品电影网| 国产精品一区二区在线观看99| 中文精品一卡2卡3卡4更新| 国产亚洲一区二区精品| 精品一区二区三卡| 亚洲精品乱码久久久久久按摩| 国国产精品蜜臀av免费| 亚洲av在线观看美女高潮| 国产精品.久久久| 国产一区二区在线观看日韩| 天堂8中文在线网| 亚洲人与动物交配视频| 亚洲在久久综合| 五月伊人婷婷丁香| 18禁在线无遮挡免费观看视频| 免费黄网站久久成人精品| 成人毛片60女人毛片免费| 久久久久视频综合| 亚洲成人一二三区av| 日日摸夜夜添夜夜添av毛片| 观看av在线不卡| 亚洲,一卡二卡三卡| 亚洲国产毛片av蜜桃av| 日韩一本色道免费dvd| 大片电影免费在线观看免费| 精品99又大又爽又粗少妇毛片| 五月开心婷婷网| 国产精品秋霞免费鲁丝片| 日韩 亚洲 欧美在线| 久久久欧美国产精品| 美女国产视频在线观看| videossex国产| 赤兔流量卡办理| 精品国产一区二区三区久久久樱花| 中国三级夫妇交换| 在线免费观看不下载黄p国产| av天堂中文字幕网| 日韩三级伦理在线观看| 特大巨黑吊av在线直播| 在线天堂最新版资源| 午夜免费鲁丝| 国产91av在线免费观看| 亚洲欧美一区二区三区黑人 | 国产成人免费无遮挡视频| 极品教师在线视频| 高清午夜精品一区二区三区| 国产精品女同一区二区软件| 女的被弄到高潮叫床怎么办| 最新的欧美精品一区二区| 中国国产av一级| 久久精品国产亚洲av天美| 人人妻人人澡人人爽人人夜夜| 极品人妻少妇av视频| 久久精品夜色国产| av有码第一页| 一级二级三级毛片免费看| 性色av一级| 欧美区成人在线视频| 97超视频在线观看视频| 在现免费观看毛片| 人妻制服诱惑在线中文字幕| 欧美精品国产亚洲| 内地一区二区视频在线| 色94色欧美一区二区| 中国国产av一级| 亚洲国产精品成人久久小说| 国产精品人妻久久久久久| 日韩制服骚丝袜av| 水蜜桃什么品种好| 三级国产精品欧美在线观看| 偷拍熟女少妇极品色| 美女中出高潮动态图| 这个男人来自地球电影免费观看 | 伦理电影免费视频| 精品人妻熟女av久视频| 日本免费在线观看一区| 夫妻午夜视频| 久久婷婷青草| 欧美日韩视频精品一区| 亚洲欧美日韩另类电影网站| 久久久国产精品麻豆| 成人影院久久| 99热这里只有精品一区| av免费观看日本| 午夜老司机福利剧场| 久久鲁丝午夜福利片| 又大又黄又爽视频免费| 一级毛片我不卡| 少妇精品久久久久久久| 国产成人精品久久久久久| 高清av免费在线| 中文在线观看免费www的网站| 蜜臀久久99精品久久宅男| 国产黄片视频在线免费观看| 欧美成人午夜免费资源| 少妇丰满av| 美女cb高潮喷水在线观看| 免费看光身美女| 少妇人妻 视频| 啦啦啦啦在线视频资源| 黑丝袜美女国产一区| 免费大片18禁| 国产色爽女视频免费观看| 一级毛片黄色毛片免费观看视频| 丰满迷人的少妇在线观看| a级毛色黄片| 国产永久视频网站| 美女福利国产在线| 国产一区二区三区综合在线观看 | 午夜免费鲁丝| 亚洲精品456在线播放app| 91午夜精品亚洲一区二区三区| 久久影院123| 国产精品麻豆人妻色哟哟久久| 亚洲精品久久久久久婷婷小说| 日韩制服骚丝袜av| 久久久久久久大尺度免费视频| 九草在线视频观看| 综合色丁香网| 国产免费又黄又爽又色| 桃花免费在线播放| 丰满饥渴人妻一区二区三| 日韩av在线免费看完整版不卡| 天美传媒精品一区二区| 久久久国产欧美日韩av| 18禁裸乳无遮挡动漫免费视频| 国产精品99久久99久久久不卡 | 少妇被粗大的猛进出69影院 | av专区在线播放| av在线观看视频网站免费| 精品人妻熟女av久视频| 亚洲经典国产精华液单| 卡戴珊不雅视频在线播放| 伊人久久国产一区二区| 久久久久久久久久人人人人人人| 日韩强制内射视频| 午夜免费男女啪啪视频观看| 亚洲综合色惰| 亚洲精品一区蜜桃| 亚洲欧美精品自产自拍| 99久久精品国产国产毛片| av天堂中文字幕网| 午夜福利影视在线免费观看| 国产日韩欧美在线精品| 国产男人的电影天堂91| 国产一区有黄有色的免费视频| 欧美日韩在线观看h| 国产精品一区www在线观看| 伦理电影大哥的女人| 日韩三级伦理在线观看| 韩国高清视频一区二区三区| 欧美日韩综合久久久久久| 欧美精品国产亚洲| 特大巨黑吊av在线直播| 91久久精品电影网| 91精品国产国语对白视频| h视频一区二区三区| 五月玫瑰六月丁香| 一级av片app| 午夜av观看不卡| 夜夜骑夜夜射夜夜干| 熟女电影av网| 日本爱情动作片www.在线观看| 亚洲性久久影院| 99久久精品热视频| 久久精品国产a三级三级三级| 成人毛片a级毛片在线播放| 国产淫片久久久久久久久| 亚洲欧美日韩东京热| 综合色丁香网| 欧美97在线视频| 国产一区亚洲一区在线观看| 免费黄色在线免费观看| 日韩av不卡免费在线播放| 91精品伊人久久大香线蕉| 国产欧美亚洲国产| 夫妻午夜视频| 亚洲人成网站在线观看播放| 99久久精品热视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲av国产av综合av卡| 建设人人有责人人尽责人人享有的| 色94色欧美一区二区| 日日摸夜夜添夜夜爱| 久热这里只有精品99| 亚洲国产精品专区欧美| 如何舔出高潮| 欧美精品一区二区免费开放| 在线观看免费高清a一片| 中文在线观看免费www的网站| 久久久久久久久大av| 韩国高清视频一区二区三区| 一区在线观看完整版| 黄色毛片三级朝国网站 | 男的添女的下面高潮视频| 中文乱码字字幕精品一区二区三区| 亚洲精品一二三| 久久久精品94久久精品| videos熟女内射| 国产一区亚洲一区在线观看| 欧美成人午夜免费资源| 我的女老师完整版在线观看| 国产精品蜜桃在线观看| 亚洲国产av新网站| 少妇熟女欧美另类| 亚洲精品久久久久久婷婷小说| av不卡在线播放| 老司机影院毛片| 久久人人爽av亚洲精品天堂| 欧美精品高潮呻吟av久久| 国产真实伦视频高清在线观看| 成人特级av手机在线观看| 国产精品嫩草影院av在线观看| 精品亚洲乱码少妇综合久久| 在现免费观看毛片| 日本与韩国留学比较| 色吧在线观看| 亚洲欧美清纯卡通| 51国产日韩欧美| 三级经典国产精品| 视频区图区小说| 国产视频首页在线观看| 久久精品国产鲁丝片午夜精品| a级毛片在线看网站| 亚洲图色成人| 在线观看av片永久免费下载| av国产久精品久网站免费入址| 国产乱人偷精品视频| .国产精品久久| 色视频在线一区二区三区| av国产久精品久网站免费入址| 精品一品国产午夜福利视频| 亚洲av成人精品一二三区| 一区二区三区乱码不卡18| 老女人水多毛片| 永久免费av网站大全| videossex国产| 一个人免费看片子| 欧美日韩一区二区视频在线观看视频在线| 色视频在线一区二区三区| 国产91av在线免费观看| 亚洲av国产av综合av卡| 天堂8中文在线网| 丁香六月天网| 观看av在线不卡| 成人无遮挡网站| 十八禁高潮呻吟视频 | 国产精品成人在线| 男女国产视频网站| 日本欧美视频一区| 亚洲精品日韩在线中文字幕| 黄色毛片三级朝国网站 | 在线观看免费日韩欧美大片 | 亚洲欧美精品自产自拍| 国产在线视频一区二区| .国产精品久久| 色婷婷av一区二区三区视频| 久久精品国产亚洲av天美| 国产精品三级大全| 高清毛片免费看| 免费观看在线日韩| 丰满乱子伦码专区| 国产美女午夜福利| 人妻一区二区av| 啦啦啦在线观看免费高清www| 99久国产av精品国产电影| 91精品一卡2卡3卡4卡| 久久久国产一区二区| 高清欧美精品videossex| 国产成人午夜福利电影在线观看| 中文精品一卡2卡3卡4更新| 99热6这里只有精品| 国产精品一区二区在线观看99| 大片电影免费在线观看免费| 人人妻人人添人人爽欧美一区卜| 国产免费视频播放在线视频| 又黄又爽又刺激的免费视频.| 国产熟女欧美一区二区| 91aial.com中文字幕在线观看| a级毛色黄片| 亚洲精品一二三| 又大又黄又爽视频免费| 国产日韩欧美视频二区| 男女边摸边吃奶| 成人18禁高潮啪啪吃奶动态图 | .国产精品久久| 18禁在线播放成人免费| 99热6这里只有精品| 日韩欧美 国产精品| 免费av中文字幕在线| 久久这里有精品视频免费| 我的老师免费观看完整版| 嫩草影院入口| 国产av一区二区精品久久| 国产男人的电影天堂91| 中文字幕av电影在线播放| 秋霞伦理黄片| 亚洲自偷自拍三级| 男人爽女人下面视频在线观看| 免费av不卡在线播放| 亚洲精品久久午夜乱码| 欧美一级a爱片免费观看看| av免费在线看不卡| 99热6这里只有精品| 亚洲精品乱码久久久久久按摩| 国产视频首页在线观看| 亚洲国产精品国产精品| 91久久精品电影网| 狂野欧美激情性xxxx在线观看| 丝袜在线中文字幕| 少妇人妻一区二区三区视频| 97精品久久久久久久久久精品| 国产男女超爽视频在线观看| 校园人妻丝袜中文字幕| 观看免费一级毛片| 美女主播在线视频| 91精品伊人久久大香线蕉| 不卡视频在线观看欧美| 99久久精品热视频| 亚洲欧美中文字幕日韩二区| 大香蕉久久网| 天堂8中文在线网| 久久久久久久久久久丰满| 肉色欧美久久久久久久蜜桃| 亚洲情色 制服丝袜| 乱人伦中国视频| 边亲边吃奶的免费视频| a 毛片基地| 全区人妻精品视频| 久久久久久久精品精品| 国产成人精品一,二区| 男女边吃奶边做爰视频| 日韩电影二区| 丰满乱子伦码专区| 国产精品99久久久久久久久| 亚洲情色 制服丝袜| 最近中文字幕2019免费版| 精品卡一卡二卡四卡免费| 岛国毛片在线播放| 中文乱码字字幕精品一区二区三区| 成年美女黄网站色视频大全免费 | 午夜免费鲁丝| 国产av一区二区精品久久| 高清av免费在线| 青春草亚洲视频在线观看| 99热全是精品| 国产色婷婷99| 中文欧美无线码| 色婷婷久久久亚洲欧美| 国产成人freesex在线| 一级二级三级毛片免费看| 91在线精品国自产拍蜜月| 欧美 日韩 精品 国产| 亚洲成色77777| 黄色毛片三级朝国网站 | 国产男女超爽视频在线观看| 爱豆传媒免费全集在线观看| 成人二区视频| 久久国产精品大桥未久av | 亚洲欧美日韩另类电影网站| 免费av不卡在线播放| 六月丁香七月| 久久久欧美国产精品| 国产男女内射视频| 热re99久久精品国产66热6| 人妻夜夜爽99麻豆av| 国模一区二区三区四区视频| 丝袜在线中文字幕| 国产永久视频网站| 热99国产精品久久久久久7| 国产亚洲一区二区精品| 高清午夜精品一区二区三区| 亚洲婷婷狠狠爱综合网| av专区在线播放| 日本wwww免费看| 欧美 日韩 精品 国产| 天堂中文最新版在线下载| 国产片特级美女逼逼视频| 亚洲成色77777| 亚洲综合精品二区| 熟女av电影| 久久久久久久精品精品| 另类亚洲欧美激情| 亚洲真实伦在线观看| 水蜜桃什么品种好| av在线观看视频网站免费| 久久久国产欧美日韩av| 大片电影免费在线观看免费| 亚洲久久久国产精品| 国产老妇伦熟女老妇高清| 永久网站在线| 成年av动漫网址| 美女主播在线视频| 国产午夜精品一二区理论片| 色视频在线一区二区三区| 两个人的视频大全免费| 免费在线观看成人毛片| 婷婷色麻豆天堂久久| 精品亚洲成国产av| 亚洲国产欧美在线一区| 国产精品99久久久久久久久| 毛片一级片免费看久久久久| 国产精品一区二区性色av| 日本黄色片子视频| 2022亚洲国产成人精品| 一个人免费看片子| 国国产精品蜜臀av免费| 日本免费在线观看一区| 男人和女人高潮做爰伦理| 永久免费av网站大全| 国产深夜福利视频在线观看| 桃花免费在线播放| 精品人妻熟女毛片av久久网站| 精品一区二区免费观看| 丝袜脚勾引网站| 中文字幕亚洲精品专区| 日本黄色片子视频|