朱 強,唐榮霞,林 瀟,田 雪
(重慶師范大學(xué)化學(xué)學(xué)院綠色合成與應(yīng)用重點實驗室,重慶400047)
在臨床分析中,同時測定一組腫瘤標(biāo)志物對于癌癥篩查和診斷具有重要的應(yīng)用價值。在多分析物檢測中,為了使每個生物標(biāo)記物都能獲得獨立的響應(yīng)信號,研究人員已經(jīng)證實不同類型的材料可用作信號區(qū)分物質(zhì),包括納米線[1-2],條形碼[3-9],酶[10-12],量子點[13-15](QD),染料摻雜的納米顆粒[16],金屬離子[17]。近年來,以氧化還原探針為區(qū)分信號標(biāo)簽的策略令人關(guān)注,一些以氧化還原探針為標(biāo)簽的可同時檢測多種分析物的電化學(xué)傳感器已被提出。該文就對該類傳感器的研究現(xiàn)狀進行評述。按照傳感器檢測的界面數(shù)目可以被分為兩類:多檢測界面的陣列和單一檢測界面的傳感器。
多檢測界面主要是基于多通道分析,可以在一次分析中同時定量檢測一組生物標(biāo)志物,因此與傳統(tǒng)的單組分免疫分析相比,它不僅具有更高的分析效率,而且可以大大提高臨床診斷的特異性。此外,多通道分析還可以大大縮短分析時間,提高檢測通量,減小樣品用量和檢測成本。因此,基于不同測量技術(shù)的各種多通道免疫分析方法近年來得到了快速發(fā)展[18]。主要以各種空間分隔的陣列或芯片為主[19-23]。ávila等設(shè)計了一種一次性的免疫感器檢測氨基末端B型利鈉肽(NT-proBNP),如圖1所示,抗原被共價固定到羧酸改性的活化磁珠(HOOC-MBS)上,在混合溶液含有不同濃度的抗原和HRP標(biāo)記的檢測抗體,樣品中的目標(biāo)NT-proBNP和固定在MB的抗原競爭HRP標(biāo)記的第二抗體,再加入3,3,5,5-四甲基聯(lián)苯胺 (TMB)為電子轉(zhuǎn)移介體,檢測線性范圍0.12~42.9 ng/mL,檢測限為 0.02 ng/mL[24]。
圖1 磁力免疫傳感器的間接競爭檢測NT-proBNP的示意圖和在金/SPE上TMB還原過氧化氫用的原理[24]Fig.1 Schematic display of the indirect competitive NT-proBNP magnetoimmunosensor developed and the enzyme and electrode reactions involved in the amperometric detection of the mediated reduction of H2O2with TMB at the Au/SPE
Silva等利用基于胺基功能化的碳納米管的印刷電極無標(biāo)記免疫傳感器檢測肌鈣蛋白T(cardiactroponin T,一種急性心肌梗死的重要標(biāo)記物),通過差分脈沖伏安法在鐵氰化物存在的條件下檢測(如圖2所示),線性范圍是0.0025~0.5 ng/mL,檢測限為0.0035 ng/mL[25]。
圖2 免疫傳感器修飾(a)和檢測的電化學(xué)原理(b)的示意圖[25]Fig.2 Schematic representation of the(a)immunosensor fabrication and(b)electrochemical principle of detection
陣列類型的傳感器將不同的檢測生物活性材料分別固載在不同的工作電極單元上,為了避免鄰近的工作電極之間可能存在的互相干擾,各工作電極的檢測需要在各自單獨的反應(yīng)池中分別進行,使得操作相對繁雜,批間差異較大;另外,檢測用的芯片大多數(shù)都為一次性使用,成本較高,會帶來一些環(huán)境污染和資源浪費方面的問題。由此一些研究者將注意力轉(zhuǎn)向由單一介面進行多分析物檢測的電化學(xué)傳感器的研究中。
Wang等將不同的蛋白抗體采用不同的量子點ZnS,CdS,PbS和CuS分別進行標(biāo)記,結(jié)合酸洗檢測離子活度,構(gòu)建的夾心型電化學(xué)免疫傳感器成功實現(xiàn)了在同一敏感界面多組分的同時電化學(xué)檢測,同時檢測了微球蛋白、IgG、牛血清白蛋白和C-反應(yīng)蛋白四種蛋白質(zhì)[26]。 其原理如圖3所示。
Liu等以脫鐵蛋白為模板,通過合成不同的金屬磷酸鹽納米顆粒,用生物素對其進行功能化,含有不同金屬元素的納米顆粒分別標(biāo)記到不同的抗體上,通過酸解作用釋放出金屬離子,用方波溶出伏安法測定出不同的金屬離子的濃度,間接實現(xiàn)對抗原含量的檢測,其結(jié)合方式及檢測原理如圖4所示[27]。
圖3 根據(jù)不同的無機膠體納米晶體作為示蹤劑檢測多種蛋白質(zhì)的方法。(A)引入抗體修飾的磁珠;(B)磁性珠粒的抗體結(jié)合抗原;(C)捕獲的納米晶體標(biāo)記的第二抗體;(D)剝離納米晶體和電化學(xué)檢測[26]Fig.3 Multiprotein electrical detection protocol based on different inorganic colloid nanocrystal tracers.(A)Introduction of antibody-modified magnetic beads;(B)binding of the antigens to the antibodies on the magnetic beads;(C)capture of the nanocrystal-labeled secondary antibodies;(D)dissolution of nanocrystals and electrochemical stripping detection
圖4 制備金屬磷酸鹽納米粒子的標(biāo)簽和電化學(xué)免疫檢測的原理示意圖[27]Fig.4 Schematic representation of the preparation of metal phosphate nanoparticle labels and principle of electrochemical immunoassay protocol
氧化還原探針為信號標(biāo)簽可避免量子點標(biāo)記中復(fù)雜的合成過程和繁瑣的酸洗過程,此方法使用不同的峰位置區(qū)分相應(yīng)的檢測物,以氧化還原探針的峰信號強度來指明分析物濃度,此方法簡單快捷,具有較大的發(fā)展?jié)摿?。Song等以硫堇標(biāo)記的抗AFP和二茂鐵標(biāo)記的抗CEA作為示蹤劑,鉑納米粒子和辣根或氧化物酶(HRP)協(xié)同作用對過氧化氫還原效地放大的應(yīng)答信號,免疫傳 感器對 CEA 的線性范圍為 0.3~45.0 ng/mL,斜率為 0.3106,檢測下限為 0.05 ng/mL;對 AFP的線性范圍為 0.5~50.0 ng/mL, 檢測下限為 0.08 ng/mL[28]。如圖5所示。
圖5 免疫傳感器的制備過程和抗體-抗原的相互作用示意圖。Ab1和Ab2分別為代表一級抗體(捕獲抗體)和示蹤劑第二抗體(信號抗體)[28]Fig.5 Schematic illustration of the stepwise immunosensor fabrication process and interaction of antibody-antigen;Ab1 and Ab2 represent the primary antibody(capture antibody)and tracer secondary antibody(signal antibody),respectively
Bai等以石墨烯為載體分別標(biāo)記不同的電活性物質(zhì)硫堇和二茂鐵,構(gòu)建夾心型電化學(xué)適體傳感器,實現(xiàn)了同一敏感界面對于血小板源性生長因子(PDGF)和凝血酶的同時檢測。對前者的檢測范圍為0.01~35 nmol/L, 檢測限為 8 pmol/L,后者檢測范圍為 0.02~45 nmol/L, 檢測限為 11 pmol/L[29]。如圖6所示。
圖6 (A)雙酶和適體II功能化的納米鉑-氧化還原探針-石墨烯納米復(fù)合物的制備過程圖。(B)適體傳感器的構(gòu)建過程示意圖[29]Fig.6 (A)Preparation procedure of aptamers,GOD and HRP multi-labeled PtNPs-redox probes-rGS nanocomposites:(B)Schematic illustration of the stepwise aptasensor fabrication process
Xiang等采用目標(biāo)物引發(fā)的適體釋放和回填雜交得到帶有氧化還原探針的單鏈DNA進行檢測的方法,同時檢測溶菌酶和腺苷。檢測范圍分別為 1~200 nmol/L 和 0.1~200 mmol/L[30]。 如圖 7所示。
圖7 基于適體,信號增強和多復(fù)合物回填方法同時檢測溶菌酶和腺苷的示意圖[30]Fig.7 Illustration of the aptamer-based,signal-on and multiplexed back-filling protocol for one-spot simultaneous electronic detection of lysozyme and adenosine
Li等利用三種探針硫堇(Thi)、羧基二茂鐵(Fc-COOH)和聯(lián)吡啶鈷(Co(bpy)33+)分別標(biāo)記三種抗體作為信號標(biāo)簽,以納米金包覆碳納米管作為載體,通過夾心免疫法進行測定,免疫傳感器對 AFP 的線性范圍為 0.025~5.0 ng/mL, 檢測下限為 8.3 pg/mL; 對 AFP-L3的線性范圍為0.014~2.7 ng/mL,檢測下限為 4.7 pg/mL;對 APT的線性范圍為 0.018~3.6 ng/mL, 檢測下限為 6.0 pg/mL[31]。其檢測原理如圖8所示。
Zhu 等利用蒽醌-2-羧酸(Aq),硫堇(Thi),聯(lián)吡啶鈷(Co)羧基二茂鐵(Fc),作為信號標(biāo)簽,同時檢測四種生物標(biāo)志物,CEA,CA125,CA19-9和CA242,其中CEA的線性范圍 0.016~15 ng/mL;CA19-9 是 0.008~10 ng/mL;CA125 是0.012~12 ng/mL;CA242 是 0.010~10 ng/mL。 它們的檢測限分別為 4.2,2.8,3.3 和 3.8 pg/mL[32]。 如圖9所示。
圖8 (A)納米金/碳納米管抗體@氧化還原探針生物共軛物的制備方法;(B)免疫傳感器的制造過程[31]Fig.8 (A)The preparation procedure of the AuNPs/CNTs–antibody@redox probe bioconjugates.(B)The fabrication process of the immunosensor
圖9 免疫傳感器同時檢測CEA,CA19-9,CA125和CA242的定量分析性能[32]Fig.9 Quantitative analysis performance of the immunosensor for simultaneous detection of CEA,CA19-9,CA125 and CA242
Yang等利用含有三個檢測單元的免疫電極,以蒽醌-2-羧酸(Aq),硫堇(Thi)為信號探針,同時 檢 測 6 種 生 物 標(biāo) 志 物 ,AFP,AFP-L3,APT,AFU,DCP 和 c-GT, 檢測范圍 DCP 為 0.0320~3.20 AU/L,AFP-L3 為 0.0240~2.40 ng/mL,c-GT為 1.00~9.5 U/L,AFU 為 1.20~9.00 U/L,AFP 為0.0250~5.00 ng/mL,APT 為 0.0240~9.60 ng/mL,檢測限分別為 0.010 AU/L,0.0080 ng/mL,0.33 U/L,0.40 U/L,0.0080 ng/mL,0.0082 ng/mL[33]。 如圖 10所示。
圖10 免疫傳感器同時檢測AFP,AFP-L3,APT,AFU,DCP和c-GT的定量分析性能[33]Fig.10 Quantitative analysis performance of the immunosensor for simultaneous detection of AFP,AFP-L3,APT,AFU,DCP and c-GT
氧化還原探針標(biāo)記多分析物技術(shù)輸出效率高,方法簡便,引起越來越多的關(guān)注。隨著這個方法的發(fā)展,一些問題被提出來:一是認(rèn)為由于同一電極界面存在多個生物反應(yīng),相比傳統(tǒng)的單分析物檢測,反應(yīng)空間不足,可能導(dǎo)致較低的信號強度和檢測限;二是如何避免幾個反應(yīng)相互干擾;三是較陣列傳感器其優(yōu)勢何在;四是如何將這種技術(shù)應(yīng)用于芯片或陣列中,在不增加檢測單元或增加設(shè)備的情況下提高每個檢測單元的檢測效能。總的來說,氧化還原探針標(biāo)記的多分析物研究目前較少,仍處于早期發(fā)展的階段,有待進一步的完善和提高。
[1]Walton I D,Norton S M,Balasingham A,et al.Particles for multiplexed analysis in solution:detection and identification of striped metallic particles using optical microscopy[J].Anal.Chem.,2002,74(10):2240-2247.
[2]Tok J B,Chuang F Y,Kao M C,et al.Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection[J].Angew.Chem.Int.Ed.,2006,45(41):6900-6904.
[3]Nicewarner-Pe?a S R,Freeman R G,Reiss B D,et al.Submicrometer metallic barcodes[J].Science,2001,294(5540):137-141.
[4]Sha M,Walton I,Norton S,et al.Multiplexed SNP genotyping using nanobarcode particle technology[J].Anal.Bioanal.Chem.,2006,384(3):658-666.
[5]Stoeva S I,Lee J S,Smith J E,et al.Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes[J].J.Am.Chem.Soc.,2006,128(26):8378-8379.
[6]Pregibon D C,Toner M,Doyle P S.Multifunctional en-coded particles for high th-roughput biomolecule analysis[J].Science,2007,315(5817):1393-1396.
[7]Stoeva S I,Lee J S,Thaxton C S,et al.Multiplexed DNA detection with biobarcoded nanoparticle probes[J].Angew.Chem.Intern.Edit.,2006,45(20):3303-3306.
[8]Thaxton C S,Hill H D,Georganopoulou D G,et al.A Bio-barcode assay based upon dithiothreitol-induced oligonucleotide release[J].Anal.Chem.,2005,77:8174-8178.
[9]Taton T A,Mirkin C A,Letsinger R L.Scanometric DNA array detection with nanoparticle probes[J].Science,2000,289:1757-1760.
[10]Wilson M,Nie W.Electrochemical Multianalyte immunoassays using an array-based sensor[J].Anal.Chem.,2006,78(8):2507-2513.
[11]Wilson M,Nie W.Multiplex measurement of seven tumor markers using an electro-chemical protein chip[J].Anal.Chem.,2006,78(18):6476-6483.
[12]Fu Z F,Yang Z J,Tang J H,et al.Channel and substrate zone two-dimensional resolution for chemiluminescent multiplex immunoassay[J].Anal.Chem.,2007,79(19):7376-7382.
[13]Han M,Gao X,Su J Z,et al.Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J].Nat.Biotech.,2001,19(7):631-635.
[14]Allen C N,Lequeux N,Chassenieux C,et al.Optical analysis of beads encoded with quantum dotscoated with a cationic polymer[J].Adv.Mater.,2007,19(24):4420-4425.
[15]Liu J W,Lee J H,Lu Y.Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes[J].Anal.Chem.,2007,79(11):4120-4125.
[16]Yan J,Estévez M C,Smith J E,et al.Dye-doped nanoparticles for bioanalysis[J].Nano Today,2007,2(3):44-50.
[17]Hayes F J,Halsall H B,Heineman W R.Simultaneous immunoassay using electro-chemical detection of metal ion labels[J].Anal.Chem.,1994,66(11):1860-1865.
[18]Wu J,Fu Z F,Yan F,et al.Biomedical and clinical applications of immunoassays and immunosensors for tumor markers[J].TrAC,Trends Anal.Chem.,2007,26(7):679-688.
[19]Meyerhoff M E,Duan C M,Markus M.Novel nonseparation sandwich-type electro-chemical enzyme immunoassay system for detecting marker proteins in undiluted blood[J].Clin.Chem.,1995,41:1378-1384.
[20]Song S P,Li B,Hu J,et al.Simultaneous multianalysis for tumor markers by antibody fragments microarray system[J].Anal.Chim.Acta,2004,510:147-152.
[21]Petrou P S,Kakabakos S E,Christofidis I,et al.Multianalyte capillary immunosensor for the determination of hormones in human serum samples[J].Biosens.Bioelectron.,2002,17(4):261-268.
[22]Malhotra R,Patel V,Chikkaveeraiah B V,et al.Ultrasensitive detection of cancer biomarkers in the clinic by use of a nanostructured microfluidic array[J].Anal.Chem.,2012,84(14):6249-6255.
[23]Yurkovetsky Z R,Kirkwood J M,Edington H D,et al.Cancer therapy:Clinical multiplex analysis of serum cytokines in melanoma patients reated with interferon-A2b[J].Clin.Cancer Resea.,2007,13(10):2422-2428.
[24]ávila B E,Escamilla-Gómez V,Campuzano S,et al.Disposable amperometric magnetoimmunosensor for the sensitive detection of the cardiac biomarker amino-terminal pro-B-type natriuretic peptide in human serum[J].Ana.Chim.Acta,2013,784:18-24.
[25]Silva B V,Cavalcanti I T,Silva M M,et al.A carbon nanotube screen-printed electrode for label-free detection of the human cardiac troponin T[J].Talanta,2013,117:431-437.
[26]Liu G D,Wang J,Kim J,et al.Electrochemical coding for multiplexed immunoassays of proteins[J].Anal.Chem.,2004,76(23):7126-7130.
[27]Liu G D,Wu H,Wang J,et al.Apoferritin templated synthesis of metal phosphate nanoparticle labels for electrochemical immunoassay[J].Small,2006,2(10):1139-1143.
[28]Song Z J,Yuan R,Chai Y Q,et al.Horseradish peroxidase-functionalized Pt hollow nanospheres and multiple redox probes as trace labels for a sensitive simultaneous multianalyte electrochemical immunoassay[J].Chem.Commun.,2010,46(36):6750-6752.
[29]Bai L J,Yuan R,Chai Y Q,et al.Simultaneous electro chemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets[J].Biomaterials,2012,33(4):1090-1096.
[30]Xiang Y,Qian X Q,Jiang B Y,et al.An aptamer-based signal-on and multiplexed sensing platform for one-spot simultaneous electronic detection of proteins and small molecules[J].Chem.Commun.,2011,47(16):4733-4735.
[31]Li Y,Zhong Z Y,Chai Y Q,et al.Simultaneous electrochemical immunoassay of three liver cancer biomarkers using distinguishable redox probes as signal tags and gold nanoparticles coated carbon nanotubes as signal enhancers[J].Chem.Commun.,2012,48(4):537-539.
[32]Zhu Q,Chai,Y Q,Yuan R,et al.Simultaneous detection of four biomarkers with one sensing surface based on redox probe tagging strategy[J].Anal.Chim.Acta,2013,800:22-28.
[33]Yang Z H,Zhuo Y,Chai Y Q,et al.High throughput immunosenor based on multi-label strategy and a novel array electrode[J].Sci.Rep.,2014,4:4747-4753