趙志鋒,杜謙,趙廣播,高建民,董鶴鳴,曹陽(yáng),韓強(qiáng),蘇利鵬,苑鵬飛
?
燃煤電廠煤粉爐及CFB鍋爐PM2.5產(chǎn)生及排放特性的現(xiàn)場(chǎng)實(shí)驗(yàn)研究
趙志鋒1,杜謙1,趙廣播1,高建民1,董鶴鳴1,曹陽(yáng)2,韓強(qiáng)3,蘇利鵬1,苑鵬飛1
(1哈爾濱工業(yè)大學(xué)能源科學(xué)與工程學(xué)院,黑龍江哈爾濱 150001;2東北電力科學(xué)研究院有限公司,遼寧沈陽(yáng) 110000;3華電電力科學(xué)研究院,浙江杭州 310030)
采用稀釋采樣方法對(duì)一臺(tái)220 MW煤粉爐(鍋爐A)及一臺(tái)300 MW的CFB鍋爐(鍋爐B)電袋復(fù)合式除塵器前后PM2.5進(jìn)行現(xiàn)場(chǎng)采樣。通過ELPI測(cè)定PM2.5的粒徑分布;采用SEM分析PM2.5的顯微結(jié)構(gòu);采用EDX及ICP-OES分別對(duì)分級(jí)PM2.5中次量及痕量元素含量進(jìn)行了檢測(cè)。結(jié)果表明,鍋爐A和B除塵前后對(duì)應(yīng)的PM2.5粒數(shù)及質(zhì)量濃度分布均不同;鍋爐A和B產(chǎn)生的PM2.5分別以較為光滑球形和不規(guī)則形狀為主,鍋爐A除塵后PM2.5呈表面粗糙球形,鍋爐B除塵后PM2.5單顆粒形貌特征不變;鍋爐A和鍋爐B產(chǎn)生的PM2.5除塵前后在各粒徑段中Si、Al、Fe、Ca和Mg含量基本一致,As、Cd和Se含量隨著粒徑的減小而增大;除塵后鍋爐A產(chǎn)生PM2.5中As和Se含量增加,且在亞微米PM2.5中As和Se含量的增加更明顯,鍋爐B除塵后PM2.5中As和Se含量基本不變。
PM2.5;煤粉爐;CFB;粒徑分布;電袋復(fù)合式除塵器;顯微結(jié)構(gòu);次量及痕量元素
引 言
PM2.5是空氣動(dòng)力學(xué)直徑小于或等于2.5mm的大氣顆粒物,其對(duì)人體健康存在嚴(yán)重危害[1-2],對(duì)自然環(huán)境也存在一定影響[3]。我國(guó)若干城市大氣中PM2.5源解析結(jié)果顯示[4-7],有14.4 %~18.8 %的PM2.5來(lái)源于燃煤。我國(guó)煤炭消費(fèi)量80 %源于原煤直接燃燒,直接燃燒的原煤中又以燃煤電廠耗煤為主[8]。因此,有效控制燃煤電廠鍋爐PM2.5排放對(duì)大氣PM2.5濃度的有效控制是必要的。根據(jù)已有的研究結(jié)果可知[9-16],國(guó)內(nèi)外已有燃煤電廠鍋爐PM2.5排放特性現(xiàn)場(chǎng)實(shí)驗(yàn)相關(guān)研究對(duì)象多為飛灰或PM10,PM2.5的排放特性的研究多包含于其中,針對(duì)PM2.5的研究并未很好展開;已有燃煤電廠多采用靜電或布袋除塵器,采用電袋復(fù)合式除塵器的較少?;谏鲜銮闆r,本文針對(duì)裝配電袋復(fù)合式除塵器的煤粉爐和CFB鍋爐除塵前后煙氣中PM2.5的產(chǎn)排特性進(jìn)行系統(tǒng)的現(xiàn)場(chǎng)實(shí)驗(yàn)研究,為燃煤電廠PM2.5排放的治理提供數(shù)據(jù)參考。
1 實(shí)驗(yàn)部分
1.1 實(shí)驗(yàn)對(duì)象
鍋爐及除塵器概況如表1所示,鍋爐A和鍋爐B所裝配的均為串聯(lián)式電袋復(fù)合式除塵器。采樣點(diǎn)布置如圖1所示。鍋爐A和鍋爐B均燃用雜煤,燃煤工業(yè)及元素分析如表2所示;煤灰成分分析見表3。
表1 鍋爐及除塵器概況Table 1 General situations of boilers and precipitators
① COHPAC = compact hybrid particulate collector.
表2 燃煤工業(yè)及元素分析
表3 煤灰成分分析Table 3 Ash analysis of fuel coal/%(mass)
1.2 采樣系統(tǒng)及方法
PM2.5采樣測(cè)試系統(tǒng)如圖2所示。本采樣系統(tǒng)依據(jù)預(yù)測(cè)速等速采樣原則,根據(jù)煙道煙氣流速、溫度、壓力及濕度選取合適的等速采樣探頭。通過ELPI和兩臺(tái)PM2.5采樣器并聯(lián)于二級(jí)稀釋器(精度為5%)后進(jìn)行采樣。
采用TH-880F型自動(dòng)煙塵煙氣分析儀測(cè)定煙氣流速、溫度、壓力及濕度,除塵器A和B前后煙氣參數(shù)如表4所示。
表4 除塵器A和除塵器B前后煙氣參數(shù)Table 4 Parameters of flue gas before and after COHPAC-A and COHPAC-B
ELPI可分級(jí)采集空氣動(dòng)力學(xué)直徑為0.03~10mm的氣溶膠顆粒,每一級(jí)對(duì)應(yīng)的顆粒粒徑如表5所示。
表5 ELPI的分級(jí)測(cè)試范圍Table 5 Particle size range of ELPI
1.3 分析測(cè)試
PM2.5的分析測(cè)試項(xiàng)目如表6所示。
表6 測(cè)試儀器數(shù)據(jù)分析Table 6 Analytical testing apparatuses
① AL — aluminum foil, aluminum foils were coated with a thin layer of Apiezon-L grease.
② PC — polycarbonate membrane.
③ PTFE — polytetrafluoroethylene membrane.
1.4 實(shí)驗(yàn)數(shù)據(jù)的可重現(xiàn)性
為檢驗(yàn)本PM2.5采樣系統(tǒng)采樣結(jié)果的可重現(xiàn)性,選取鍋爐A出口處為取樣點(diǎn),在鍋爐負(fù)荷、煤種、給煤量基本相同且鍋爐本身燃燒狀況穩(wěn)定的情況下,采用該系統(tǒng)進(jìn)行20、30、35 min的連續(xù)測(cè)試,所得結(jié)果見圖3,可見采樣測(cè)試結(jié)果的可重現(xiàn)性可以滿足現(xiàn)場(chǎng)實(shí)驗(yàn)要求。
2 實(shí)驗(yàn)結(jié)果及分析
2.1 除塵前后PM2.5粒數(shù)及質(zhì)量濃度分布特性
由圖4知,除塵器A前PM2.5粒數(shù)濃度呈雙模態(tài)分布,兩個(gè)模態(tài)所對(duì)應(yīng)峰值分別在0.12mm和0.76mm處。根據(jù)已有理論[8],細(xì)模態(tài)通過氣化凝結(jié)機(jī)理形成,粗模態(tài)通過焦炭的破碎、表面灰的凝結(jié)及外在礦物質(zhì)破碎機(jī)理形成。除塵器B出口PM2.5粒數(shù)呈單模態(tài)分布,在0.48mm處存在一個(gè)峰值。除塵器A前PM2.5質(zhì)量濃度呈單模態(tài)分布,在0.2mm處存在一個(gè)峰值,除塵器B前PM2.5質(zhì)量濃度分布無(wú)明顯峰值存在。除塵器A和B前PM2.5粒數(shù)及質(zhì)量濃度分布特征存在明顯差異是由不同的燃燒溫度和燃燒方式造成的[17]。
除塵器A和B后PM2.5的粒數(shù)及質(zhì)量濃度明顯下降,但分布趨勢(shì)并沒有顯著變化,說明除塵過程對(duì)PM2.5整體具有顯著的脫除作用,但并未對(duì)PM2.5的濃度分布趨勢(shì)有顯著影響。
2.2 PM2.5分級(jí)除塵效率
如圖5所示,除塵器A和B對(duì)PM2.5的分級(jí)除塵效率均高于99.6%,說明電袋復(fù)合式除塵器可以有效脫除PM2.5;PM2.5的分級(jí)除塵效率在0.1~1mm之間相對(duì)較低,這與已有實(shí)驗(yàn)研究結(jié)論是一致的[18]。在電袋復(fù)合式除塵器中,顆粒物會(huì)在電場(chǎng)力、慣性碰撞、攔截、布朗擴(kuò)散、重力及鏡像力作用機(jī)制下表現(xiàn)出不同的動(dòng)力學(xué)特征而被除塵器捕集,各種機(jī)制單獨(dú)作用時(shí)單纖維除塵效率分別記為ESP、I、R、D、G和E。根據(jù)已有理論研究[19-24],結(jié)合除塵器運(yùn)行及設(shè)計(jì)參數(shù),通過理論計(jì)算得到除塵器對(duì)應(yīng)的ESP、I、R、D、G和E。根據(jù)Tien[25]的黏結(jié)效率理論,計(jì)算得到在多種機(jī)制共同作用下單纖維對(duì)PM2.5分級(jí)脫除效率S。由于除塵器A和B呈現(xiàn)相似規(guī)律,故僅列出除塵器A中各種作用機(jī)理對(duì)PM2.5的分級(jí)脫除效率,見圖6。由圖6可知,當(dāng)p>1mm時(shí),I和R?D、G和E,說明PM2.5中的超微米顆粒的脫除主要靠慣性碰撞和攔截兩種作用;p<0.1mm時(shí),D、R和E?G和I,說明PM2.5中的超細(xì)顆粒的脫除主要靠布朗擴(kuò)散、攔截和鏡像力3種作用;0.1mm
S較小,說明多種脫除機(jī)制對(duì)此粒徑范圍的PM2.5的脫除效果都相對(duì)較弱。
2.3 PM2.5的形貌特征
如圖7所示,除塵器A前后和除塵器B前后PM2.5的單顆粒形貌總體分別呈現(xiàn)球形和不規(guī)則形狀。
除塵器A前后超微米和亞微米PM2.5單顆粒形貌存在差異,說明電袋復(fù)合除塵過程對(duì)煤粉爐產(chǎn)生的PM2.5形貌是存在一定影響的。煤粉爐燃燒過程中溫度較高,顆粒會(huì)熔融,在表面張力作用下呈現(xiàn)球形;煙氣中含有較多氣相元素成分,這些成分隨煙氣經(jīng)過鍋爐煙道及除塵器過程中會(huì)發(fā)生成核及團(tuán)聚,成核及團(tuán)聚作用產(chǎn)生的超細(xì)顆粒會(huì)通過自身較強(qiáng)的布朗擴(kuò)散及鏡像力作用在除塵過程中被已有的顆粒捕集,呈現(xiàn)出除塵后超微米顆粒表面粘連許多細(xì)小顆粒的形貌特征。亞微米顆粒由于其自身具有更大比表面積,對(duì)超細(xì)顆粒吸附能力更強(qiáng),在除塵前表面就有超細(xì)顆粒存在;除塵過程中,鏡像力作用加劇了超細(xì)顆粒向亞微米顆粒的表面沉積,同時(shí)氣相元素被亞微米顆粒表面吸附,將亞微米顆粒表面捕集的超細(xì)顆粒覆蓋后形成粗糙態(tài)。
除塵器B前后超微米和亞微米PM2.5總體形貌特征相似。這是因?yàn)镃FB鍋爐爐膛溫度一般為800~900℃,灰中無(wú)機(jī)組分不會(huì)熔融,顆?;颈3制扑楹笤螒B(tài);金屬元素絕大部分不會(huì)蒸發(fā)。CFB鍋爐出口煙氣中只含有少量氣相元素成分,因此煙氣經(jīng)過鍋爐出口煙道及除塵器過程中氣相元素成分向顆粒相的轉(zhuǎn)化作用被抑制。
2.4 PM2.5的元素組成
如圖8所示,除塵器A前PM2.5中元素可以被分為兩類:①濃度與粒徑無(wú)關(guān)(Si、Al、Fe、Ca和Mg);②隨粒徑減小濃度增大(As、Cd、Se)。Si、Al、Fe、Ca和Mg在PM2.5中不同粒徑顆粒上的濃度基本均一,無(wú)明顯富集現(xiàn)象,說明在燃燒溫度約為1400℃的爐膛中,這些元素只有少量蒸發(fā),主要經(jīng)過了煤焦破碎和表面礦物熔融聚合的物理過程[26];元素As、Cd和Se在PM2.5中不同粒徑顆粒上的濃度隨著粒徑的減小而增加,在小顆粒上有明顯的富集趨勢(shì),說明這些元素為揮發(fā)性元素,在燃燒過程中一部分進(jìn)入氣相,這部分元素會(huì)有一部分在燃燒后區(qū)的降溫過程中通過成核、凝結(jié)、凝聚過程形成亞微米顆粒,或是通過異相凝結(jié)、表面反應(yīng)被已存在顆粒吸附[27]。
除塵器A前后大多數(shù)元素在PM2.5中不同粒徑顆粒上的濃度基本一致,除As和Se外,這是因?yàn)锳s和Se均為易揮發(fā)性元素,在除塵器后煙氣中仍有As和Se以氣相存在,經(jīng)過除塵器及其尾部煙道進(jìn)一步的降溫過程,這部分氣相As和Se被已存在顆粒吸附,由于越小的顆粒其比表面積越大,更容易吸附這些揮發(fā)性元素[8],因此在除塵器A出口亞微米顆粒中隨顆粒粒徑變小,顆粒中As和Se的含量較除塵器A入口有更明顯的增加,富集趨勢(shì)更加顯著。
如圖9所示,除塵器B前PM2.5中元素可以被分為3類:①元素濃度與粒徑無(wú)關(guān)(Si、Al、Fe、Mg);②隨粒徑減小元素濃度減小(Ca);③隨粒徑減小元素濃度增大(As、Cd、Se)。Si、Al、Fe、Mg、As、Cd、Se的濃度分布規(guī)律與除塵器A前PM2.5中對(duì)應(yīng)元素分布規(guī)律相似;Ca分布規(guī)律與除塵器A入口處Ca分布規(guī)律明顯不同,在0.029~0.154mm顆粒中Ca濃度隨粒徑減小而減小,其余各級(jí)顆粒中Ca的濃度分布較為均一,說明鍋爐B燃燒產(chǎn)生的PM2.5中Ca在較大顆粒區(qū)間存在富集,這可能是鍋爐B采用的石灰石干式脫硫工藝所使用石灰石在爐內(nèi)破碎后進(jìn)入PM2.5所致。
除塵器B出口處PM2.5中As和Se的濃度分布與入口處一致,在各粒徑范圍均無(wú)明顯差異,這是因?yàn)镃FB鍋爐爐膛溫度較低。As和Se在燃燒過程中不能充分氣化進(jìn)入氣相,因此煙氣中氣相As和Se的含量少,在經(jīng)過除塵器及尾部煙道的降溫過程中,As和Se的異相凝結(jié)作用受到抑制,導(dǎo)致As和Se在除塵器B出口處亞微米顆粒中的富集趨勢(shì)不變。
3 結(jié) 論
鍋爐A和B出口PM2.5粒數(shù)及質(zhì)量濃度分布特征的明顯差異是由于不同的燃燒溫度和燃燒方式造成的。電袋復(fù)合式除塵器除塵過程對(duì)PM2.5具有明顯的脫除作用,但對(duì)PM2.5的濃度分布趨勢(shì)無(wú)顯著影響。
電袋復(fù)合式除塵器對(duì)0.1~1mm的顆粒的分級(jí)除塵效率相對(duì)較弱,與理論計(jì)算結(jié)果一致。
鍋爐A和B產(chǎn)生的PM2.5典型形貌分別為球形和不規(guī)則形狀。相比于除塵前PM2.5,除塵器A后PM2.5顆粒表面由于吸附了氣相元素及超細(xì)顆粒變得粗糙;除塵器B前后PM2.5的形貌特征基本相同。
除塵器A和B前后,Si、Al、Fe和Mg在PM2.5中不同粒徑顆粒上的濃度基本均一;As、Cd和Se在較小顆粒中存在富集趨勢(shì);由于鍋爐B采用石灰石干式脫硫,PM2.5中較大顆粒Ca含量增加。除塵器A后PM2.5中As、Cd和Se濃度增加,且增加趨勢(shì)隨粒徑減小而增大;除塵器B后則無(wú)此現(xiàn)象。
References
[1] Morawska L, Zhang J. Combustion sources of particles: health relevance and source signatures [J]., 2002, 49(9): 1045-1058
[2] Yue Min(岳敏), Gu Xuexin(谷學(xué)新), Zou Hong(鄒紅), Zhu Ruohua(朱若華), Su Wenbin(蘇文斌). Killer of health—polycyclic aromatic hydrocarbons [J].(首都師范大學(xué)學(xué)報(bào)), 2003, 24(3): 40-44
[3] Edgerton S A, Bian X, Doran J C. Particulate air pollution in Mexico City: a collaborative research project [J]., 1999, 49(10): 1221-1229
[4] Zhu Xianlei(朱先磊), Zhang Yuanhang(張遠(yuǎn)航), Zeng Limin(曾立民), Wang Wei(王瑋). Source identification of ambient PM2.5in Beijing [J].(環(huán)境科學(xué)研究), 2005, 18(5):1-5
[5] Dai Li(戴莉), Xue Yonghua(薛永華), Feng Yinchang(馮銀廠), Wu Jianhui(吳建會(huì)). Research on source indentification of ambient particulate matter in Chengdu//Academic Essays of China Environmental Science Society [C]. Beijing, China, 2009:805-811
[6] Xiao Zhimei(肖致美), Bi Xiaohui(畢曉輝), Feng Yinchang(馮銀廠), Wang Yuqiu(王玉秋), Zhou Jun(周軍), Fu Xiaoqin(傅曉欽), Weng Yanbo(翁燕波). Source identification of ambient PM10and PM2.5in Ningbo [J].(環(huán)境科學(xué)研究), 2012, 25(5):549-555
[7] Bao Zhen(包貞), Feng Yinchang(馮銀廠), Jiao Li(焦荔), Hong Shengmao(洪盛茂), Liu Wengao(劉文高). Characterization and source apportionment of PM2.5and PM10in Hangzhou [J].(中國(guó)環(huán)境監(jiān)測(cè)), 2010, 26(2):44-48
[8] Hao Jiming(郝吉明), Duan Lei(段雷), Yi Honghong(易紅宏), Li Xinghua(李興華), Hu Jingnan (胡京南). Physical and Chemical Characteristics of Particulate Matter Combustion Sources(燃燒源可吸入顆粒物的物理化學(xué)特性) [M]. Beijing: Science Press, 2008
[9] McElroy M W, Carr R C, Ensor D S, Markowski G R. Size distribution of fine particles from coal combustion [J]., 1982, 215(4528):13-19
[10] Wu H, Pedersen A J, Glarborg P, Frandsen F J, Dam-Johansen K, Sander B. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station [J]., 2011, 33(2):2845-2852
[11] Goodarzi F. Morphology and chemistry of fine particles emitted from a Canadian coal-fired power plant [J]., 2006,85(3):273-280
[12] Goodarzi F. The rates of emissions of fine particles from some Canadian coal-fired power plants [J]., 2006, 85(4):425-433
[13] Lee S W, Herage T, Dureau R, Young B. Measurement of PM2.5and ultra-fine particulate emissions from coal-fired utility boilers [J]., 2013, 108(1):60-66
[14] Guo Xingming(郭興明), Hao Jiming(郝吉明), Duan Lei(段雷), Yi Honghong(易紅宏), Li Xinghua(李興華). Characteristics of water soluble ions emitted from large coal-fired power plant boilers [J].:( 清華大學(xué)學(xué)報(bào):自然科學(xué)版), 2006, 26(12): 1991-1994
[15] Yi Honghong(易紅宏), Hao Jiming(郝吉明), Duan Lei(段雷), Li Xinghua(李興華), Guo Xingming(郭興明). Influence of dust catchers on PM10emission characteristics of power plants [J].(環(huán)境科學(xué)), 2007, 27(10):1921-1927
[16] Wang Chao(王超), Liu Xiaowei(劉小偉), Xu Yishu(徐義書), Wu Jianqun(吳建群), Wang Jianpei(王建培), Xu Minghou(徐明厚), Lin Xianmin(林顯敏), Li Haishan(李海山), Xia Yongjun(夏永俊). Distribution characteristics of minor and trace elements in fine particulate matters from a 660MW coal-fired boiler [J].(化工學(xué)報(bào)), 2013, 64(8): 2975-2981
[17] Yi H H, Guo X M, Hao J M, Duan L, Li X H. Characteristics of inhalable particulate matter concentration and size distribution from power plants in China [J]., 2006, 56(9): 1243-1251
[18] Zhao Haibo(趙海波), Zheng Chuguang(鄭楚光). Simulation of Particle Population Balance of Dynamic Evolution of Discrete Systems(離散系統(tǒng)動(dòng)力學(xué)演變過程的顆粒群平衡模擬) [M]. Beijing:Science Press, 2008
[19] Zhang Dianyin(張殿印), Wang Chun(王純). Handbook of Deduster(除塵器手冊(cè)) [M]. Beijing: Chemical Industry Press, 2005
[20] Lee K W, Liu B Y. Theoretical study of filtration by fibrous filters [J]., 1982, 1(2): 147-161
[21] Payet S, Boulaud D, Madelaine G, Renoux A. Penetration and pressure drop of a HEPA filter during loading with submicron liquid particles [J]., 1992, 23(7): 723-735
[22] Landahl H D, Herrmann R G. Sampling of liquid aerosols by wires, cylinders and slides and the efficiency of impaction of the droplets [J]., 1949, 4(2):103-136
[23] Tardos G I, Pfeffer R. Interceptional and gravitational deposition of inertialess particles on a single sphere and in a granular bed [J]., 1980, 26(4): 698-701
[24] Pich J, Shaw D T. Fundamentals of Aerosol Science [M]. New York: Wiley, 1978
[25] Tien C. Granular Filtration of Aerosols and Hydrosols [M]. Boston: Butterworth Publishers, 1989
[26] Yue Yong(岳勇). Studies on characteristics of PM10and trace elements enrichment in emissions of stationary combustion sources [D]. Beijing:Tsinghua University, 2007
[27] Yue Yong(岳勇), Yao Qiang(姚強(qiáng)), Song Qiang(宋薔), Li Shuiqing(李水清), Wang Hui(王琿). Comparative study on PM10microstructure and heavy metals distribution in emissions of coal combustion sources [J].(中國(guó)電機(jī)工程學(xué)報(bào)), 2008, 27(35): 33-38
Field experimental research on PM2.5generation and emission characteristics of pulverized coal and CFB boilers in power plants
ZHAO Zhifeng1,DU Qian1,ZHAO Guangbo1,GAO Jianmin1,DONG Heming1,CAO Yang2,HAN Qiang3,SU Lipeng1,YUAN Pengfei1
(School of Energy Science and EngineeringHarbin Institute of TechnologyHarbinHeilongjiangChina;Northeast Electric Power Research Institute CoLtd.ShenyangLiaoningChina;Huadian Electric Power Research InstituteHangzhouZhejiangChina
A dilution sampling method was used to collect PM2.5before and after COHPACs (compact hybrid particulate collector) generated by a pulverized coal boiler (boiler A) and a circulating fluidized bed boiler (boiler B) with installed capacities of 220 MW and 300 MW, respectively. Particle size distributions (PSDs) of PM2.5were analyzed by ELPI; individual microstructures of PM2.5were analyzed by SEM (scanning electron microscopy); concentrations of minor elements in PM2.5were analyzed by EDX (energy-dispersive X-ray analysis) and concentrations of trace elements in PM2.5were analyzed by ICP-OES (inductively coupled plasma optical emission spectroscopy). The distribution characteristics of number and mass concentration of PM2.5at the corresponding sampling positions of two boilers were different. Most of the PM2.5before and after COHPAC-A (boiler A’s) were spherical; most of the PM2.5before and after COHPAC-B (boiler B’s) were irregular in shape; the PM2.5after COHPAC-A were with relatively uneven surface, PM2.5microstructures before and after COHPAC-B were similar; mass fraction size distributions of Si, Al, Fe, Ca and Mg in PM2.5before and after the two COHPACs were similar; mass fraction size distributions of As, Cd and Se in PM2.5before and after the two COHPACs increased with decreasing size; mass fraction size distributions of As and Se in submicron PM2.5after COHPAC-A were higher than those before COHPAC-A, but mass fraction size distributions of As and Se in PM2.5before and after COHPAC-B were correspondingly nearly the same.
PM2.5; pulverized coal boiler; CFB; particle size distribution; COHPAC; microstructure; minor and trace elements
date:2014-08-20.
ZHAO Zhifeng,zhaozhifeng198211@163. com
10.11949/j.issn.0438-1157.20141262
X 513
A
0438—1157(2015)03—1163—08
國(guó)家環(huán)保公益性行業(yè)科研經(jīng)費(fèi)專項(xiàng)項(xiàng)目(201009006)。
聯(lián)系人及第一作者:趙志鋒(1982—),男,博士研究生。
supported by the Special Fund for Environmental Protection Research in Public Interest(201009006).
2014-08-20收到初稿,2014-11-19收到修改稿。