• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrothermal Synthesis and High Activity of Bi2S3/BiOCl Com posite Photocatalysts

    2015-10-14 07:07:54LIHuiquanZHULiangjunSUNQianWANGGaoMIAOHuiCUIYuminJIAQingfeng
    發(fā)光學報 2015年2期
    關(guān)鍵詞:水熱法阜陽光催化劑

    LIHui-quan,ZHU Liang-jun,SUN Qian,WANG Gao,MIAO Hui,CUIYu-min*,JIA Qing-feng

    (1.College of Chemistry and Materials Engineering,F(xiàn)uyang Normal College,F(xiàn)uyang 236037,China;

    2.Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of The Environment,F(xiàn)uyang 236037,China)*Corresponding Author,E-mail:cuiyumin0908@163.com

    Hydrothermal Synthesis and High Activity of Bi2S3/BiOCl Com posite Photocatalysts

    LIHui-quan1,2,ZHU Liang-jun1,2,SUN Qian1,WANG Gao1,MIAO Hui1,2,CUIYu-min1,2*,JIA Qing-feng1

    (1.College of Chemistry and Materials Engineering,F(xiàn)uyang Normal College,F(xiàn)uyang 236037,China;

    2.Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of The Environment,F(xiàn)uyang 236037,China)*Corresponding Author,E-mail:cuiyumin0908@163.com

    Bi2S3/BiOCl composite photocatalysts with variousmass fractions of Bi2S3were successfully synthesized by a facile hydrothermal process at433 K,characterized by various techniques,and evaluated by the photo-degradation ofmethyl orange(MO)in an aqueous solution under the irradiation of ultraviolet(UV)light.The results showed that the photocatalytic activity of Bi2S3/BiOCl catalysts was greatly enhanced,compared with that of pure Bi2S3and BiOCl.Especially,the photocatalytic activity of the 26.5%Bi2S3/BiOCl sample is very close to that of commercial Degussa P-25(TiO2),which has been generally recognized as an efficient photocatalyst under UV light irradiation.The remarkably enhanced photocatalytic activity could bemainly attributed to the effective transfer of the photo-generated electrons and holes at the heterojunction interface of Bi2S3and BiOCl,which reduced the recombination of electron-hole pairs.

    hydrothermalmethod;Bi2S3/BiOCl;composite photocatalysts;methyl orange

    1 Introduction

    The photocatalyticmaterial has been an exciting and rapidly growing research area owing to its great potential applications in solar energy utilization,photocatalytic hydrogen evolution,organic wastewater treatment and air purification[1-8].Bismuth oxychloride(BiOCl),as one of the bestnanomaterials,has recently attracted intensive attention in the degradation of environmental pollutants due to its interesting chemical and physical properties[9-11],such as electrical and optical performances,band gaps,and special micro/nanostructures.However,the low quantum efficiency of photocatalytic reactions resulting from the high rate of electron-hole recombination,impair its applications to great extent.As a result,in order to overcome this disadvantage,many attempts have been done,including doping or composition tuning,controlling the morphologies,and forming heterojunctions or composite structures[12-14].

    Bi2S3has a narrow band-gap energy of~1.3 eV[15],therefore,itmay be a potential sensitizer to sensitize BiOClwith a wide band-gap energy(3.19-3.60 eV)[10].In 2012,Kang et al.[16]reported that the production of hydrogen of Bi2S3-loaded TiO2(Bi2S3/TiO2)was higher than that of pure TiO2and Bi2S3under identical experiment conditions.The improved performance could be attributed to the fact that Bi2S3-loaded TiO2facilitated the separation of photo-generated carriers.Hence,Bi2S3/BiOCl compositemay be an ideal system to enhance the separation efficiency of photo-generated charge carriers,and then achieve a high photocatalytic activity.Recent studies have also showed that Bi2S3-sensitized BiOCl photocatalyst[17],Bi2S3/BiOCl composites[18]and Bi2S3nanocrystals/BiOCl hybrid architectures[19]synthesized by an ion exchange method had higher visible light photocatalytic activities than single Bi2S3and BiOCl.However,to the best of our knowledge,the researches on the UV light photocatalytic activity and mechanism in the Bi2S3/BiOCl system prepared by a hydrothermalmethod have not been reported.

    In thiswork,Bi2S3/BiOCl composite photocatalystswith differentmass fraction of Bi2S3were successfully synthesized by a facile hydrothermal process at 433 K,and the obtained samples were characterized by various techniques.As a representative of organic dyes released in the textile effluents,methyl orange(MO)was used to evaluate the photocatalytic activity of Bi2S3/BiOCl catalysts under UV light irradiation,and the photocatalytic mechanism of Bi2S3/BiOCl catalysts was discussed.The facile preparation of Bi2S3/BiOCl with high activity could be hopefully applied in the near future.

    2 Experiments

    2.1 M aterials

    All of the reagentswere provided by Sinopharm Chemical Reagent Co.,Ltd.(China)except that TiO2powder(Degussa P-25)was purchased from Degussa Co.(Frankfurt,Germany),and P25 was used as the reference.Bismuth nitrate pentahydrate[Bi(NO3)3·5H2O],thiourea(CH4N2S),sodium hydroxide(NaOH),absolute ethanol(CH3CH2OH),nitric acid(HNO3),potassium chloride(KCl)and ethylene glycol(OH-CH2CH2-OH)were of analytical grade.

    2.2 Catalyst Preparation

    The Bi2S3/BiOCl catalysts were synthesized by a hydrothermal method.In a typical preparation,different stoichiometric amounts of Bi(NO3)3·5H2O and 0.27 g thioureawere dissolved in 20mL of0.10 mol/L HNO3solution.The mixture was stirred and sonicated until the Bi(NO3)3·5H2O was dissolved,and the pH value ofmixed solution was adjusted to 7.0 with a certain concentration of NaOH solution,followed by the addition of0.15 g KCl and 30 mL ethylene glycol solution.Then the mixture was transferred to a Teflon-lined stainless steel autoclave to perform hydrothermal process at 433 K for 24 h.After cooling down to room temperature,the obtained products were separated centrifugally,washed with absolute ethanol and de-ionized water and dried at 373 K in air.The final Bi2S3/BiOCl samples with various mass fractions of Bi2S3of 0,13.3%,26.5%and 39.8%,respectively,were denoted as 0,13.3%,26.5%and 39.8%Bi2S3/ BiOCl,respectively.For comparison,pure Bi2S3sample was also synthesized by adopting the same method at the absence of KCl and ethylene glycol.

    2.3 Catalyst Characterization

    X-ray diffraction(XRD)was performed on a Philips X’pert diffractometer equipped with Ni-filtered Cu Kαradiation source(λ=0.154 18 nm). X-ray photoelectron spectroscopy(XPS)measurementswere carried out by using Multilab 2000 XPS system with a monochromatic Mg Kαsource and a charge neutralizer.All binding energies were calibrated using C 1s peak at284.6 eV.The Brunauer-Emmett-Teller(BET)surface areas and pore volume of samples were determined from N2adsorption isotherms at77 K using a Micromeritics ASAP 2020 instrument with a computer-controlled measurement system.High-resolution transmission electron microscopy(HR-TEM)images were taken using a JEM-2100 electron microscope.The photoluminescence(PL)spectra,obtained at room temperature with an excitation wavelength of 280 nm,were recorded on a CARY Eclipse(America)fluorescence spectrophotometer.UV-Vis diffuse reflection spectroscopy of the catalysts was determined with a Shimadzu UV-3600 spectrophotometer(Japan).

    2.4 Photocatalytic Reaction

    The photocatalytic activities of Bi2S3/BiOCl catalystswere evaluated by the degradation of MO in an aqueous solution.UV lightwas obtained by a 300 W high-pressure mercury lamp(λmax=365 nm). For each UV light test,40 mL MO(6.11×10-5mol/L)aqueous solution and 0.05 g catalyst sample were used.A general procedure was carried out as follows.First,MO aqueous solution was placed into a water-jacketed reactor maintained at 298 K,and then the catalyst sampleswere suspended in the solution.The suspension was stirred vigorously for60min in the dark to establish the adsorption-desorption equilibrium of MO,then irradiated under UV light. About2.5 mL solution was withdrawn from the reactor periodically and centrifuged and analyzed for the degradation ofMO using a TU-1901 spectrophotometer.

    For the detection of·OH,catalyst samples(0.05 g)were dispersed in a 10 mL of terephthalic acid(TA)solution whose concentration was set at 5×10-4mol/L in 2×10-3mol/L NaOH solution. At a fixed time intervals,the suspension solution was sampled,centrifuged and measured on a Varian Cary Eclipse type fluorescence spectrophotometer. The excitation wavelength was 315 nm.

    In order to study the effect of·OH,isopropanol(IPA)quencher(5.0μL),as an·OH scavenger,was introduced into the photocatalytic degradation process of MO in amanner similar to the photo-degradation experiment.

    3 Results and Discussion

    3.1 Catalyst Structure

    Fig.1 shows the XRD patterns of Bi2S3/BiOCl samples with different Bi2S3mass fraction.Five main diffraction peaks of Bi2S3were found and could be respectively indexed to the(130),(211),(221),(431)and(351)planes of orthorhombic Bi2S3(JCPDS card No.17-0320).The characteristic diffraction peaks of BiOCl including(101),(110),(112),(200),(211)and(212)are in good accordance with the standard card of tetragonal BiOCl(JCPDS card No.06-0249).For the Bi2S3/ BiOCl samples,the intensities of corresponding diffraction peaks of Bi2S3strengthened gradually along with the increase of the Bi2S3contents in the Bi2S3/ BiOCl composites,while those of BiOCl weakened simultaneously for its depletion.No other characteristic peaks of impurity were detected,indicating that Bi2S3/BiOCl composites are only composed of Bi2S3and BiOCl phases at the same time.

    Fig.1 XRD patterns of Bi2 S3/BiOCl samples with different Bi2 S3 mass fraction:(a)0.00,(b)13.3,(c)26.5,(d)39.8,(e)100.

    The average crystallite sizes of Bi2S3and BiOCl in the Bi2S3/BiOCl samples were calculated by the Scherrer formula(Eq.(1))[20],respectively,as shown in Table 1.

    Where L is taken as average crystallite size,K is a constant equalling to 0.89,λis0.154 nm,βis the full-width of half-maximum measured in radians on the 2θscale,θis the Bragg angle for the diffraction peaks.

    Table 1 Average crystallite size(L),BET surface areas(S BET),pore volumes(V BJH)and photocatalytic activity of different catalyst(reaction for the first one hour)

    Fig.2 presents the HR-TEM image of 26.5% Bi2S3/BiOCl sample,in which the interface of Bi2S3and BiOCl can be observed.Moreover,clear fringe with an interval of 0.360 nm can be indexed to(130)lattice plane of orthorhombic Bi2S3and that of 0.275 nm agreed with the(110)lattice plane of tetragonal BiOCl,which further demonstrates the existence of the heterojunction formed between Bi2S3and BiOCl.

    Fig.2 HR-TEM image of 26.5%Bi2 S3/BiOCl sample

    The chemical state of as-prepared 26.5%Bi2S3/ BiOCl samplewas investigated by using X-ray photoelectron spectroscopy(XPS),and the results are shown in Fig.3.The typical XPSsurvey spectrum in Fig.3(a)shows that 26.5%Bi2S3/BiOCl was composed of Bi,Cl,S and O elements(C 1s peak can be ascribed to the adventitious hydrocarbon from XPS instrument itself).The Bi4f peaks of the sample appeared at164.5 and 159.2 eV in Fig.3(b),and the Cl 2p peaks of the sample appeared at 198.0 and 199.4 eV in Fig.3(c).The binding energies of both Bi4f and Cl 2p were in agreementwith the reported values in the literature[21].In Fig.3(d),the O 1s binding energy of530.1 eV could be attributed to the lattice oxygen in crystalline BiOCl[22].

    Fig.4(a),(b)and(c)display the UV-Vis diffuse reflectances spectroscopy of Bi2S3,BiOCl and 26.5%Bi2S3/BiOCl samples.It can be seen that the absorption edge of BiOCl is located at about 378 nm,while Bi2S3has strong absorption over the whole visible light region.As for 26.5%Bi2S3/ BiOCl sample,its absorption edge(~370 nm)shifts to shorter wavelengths compared to that of BiOCl,which may be attributed to small particle sizes of 26.5%Bi2S3/BiOCl.

    As a crystalline semiconductor,the optical absorption near the band edge follows the formulaαhv= A(hv-Eg)n/2,whereα,v,Eg,and A are the absorption coefficient,light frequency,band-gap energy,and a constant,respectively[23].As reported previously,the n values of Bi2S3[17]and BiOCl[24]are 1 and 4,respectively.The band-gap energies(Eg)of BiOCl and Bi2S3can be thus estimated from a plot of(αhv)1/2and(αhv)2vs.photon energy(hv),respectively.As shown in Fig.4(d),the intercept of the tangent to the x-axis will give a good approximation of the band-gap energies for the BiOCl and Bi2S3powders,respectively.The estimated Egvalues are about 3.28 and 1.28 eV for pure BiOCl and Bi2S3,respectively,which are very close to the values reported in the literatures[10,25].

    Fig.3 XPS survey spectra of26.5%Bi2 S3/BiOCl(a)and the corresponding high-resolution XPS spectra of Bi4f(b),Cl 2p(c)and O 1s(d).

    Fig.4 UV-Vis diffuse reflectance spectra of Bi2 S3,BiOCl and 26.5%Bi2 S3/BiOCl samples(a-c),and plot of(αhv)2/n vs. energy(hv)for the band-gap energy of Bi2 S3 and BiOCl(d).

    The data related to BET surface areas and pore volumes obtained from N2adsorption-desorption analysis are also summarized in Table 1.It can be seen that with Bi2S3content increasing,the BET surface areas and pore volumes of Bi2S3/BiOCl catalysts first increase,reaching themaximums at Bi2S3mass fraction of 26.5%,respectively,and then decrease with further increasing Bi2S3contents.The BET surface areas and pore volumes of Bi2S3/BiOCl catalysts are obviously higher than those of pure Bi2S3and BiOCl,but the corresponding BET surface areas of 13.3%,26.5%and 39.8%Bi2S3/BiOCl catalysts did not have obvious difference,which demonstrates that the BET surface area is not themain influencing factor for the photocatalytic activity of different Bi2S3/BiOCl catalysts.

    3.2 Photocatalytic Activity

    The effect of Bi2S3mass fraction on the photocatalytic activity of Bi2S3/BiOCl catalysts has been investigated by MO degradation in an aqueous solution under UV light irradiation.Fig.5(a)shows the UV light photocatalytic activity of Bi2S3/BiOCl catalystswith different Bi2S3content.It can be seen that the self-degradation of MO is very low under UV light irradiation,indicating that the photolysis can be ignored.While Bi2S3,BiOCl and Bi2S3/BiOCl catalysts exhibit obviously the photo-degradation of MO,and Bi2S3content in BiOCl exerts great influences on the photocatalytic activity of Bi2S3/BiOCl catalysts.With the increasing of Bi2S3mass fraction,the photocatalytic activity of Bi2S3/BiOCl catalysts first increases,reaching a maximum at Bi2S3mass fraction of 26.5%,then decreases,and under 60 min UV light irradiation,themaximum MO degradation ratio reaches to 94.0%,being very close to that of commercial Degussa P-25,which has been generally recognized as an efficient photocatalyst under UV light irradiation.

    In generally,the photocatalytic activity of composite catalyst is related to its BET surface areas,component contents,band structure matching and heterojunction interface,etc.But the corresponding BET surface areas(Table 1)of 13.3%,26.5%,39.8% Bi2S3/BiOCl catalysts do not have obvious difference,which demonstrates that the main influencing factor for the enhanced photocatalytic performance of Bi2S3/BiOCl catalysts is more likely to be the heterojunction structure rather than both BET surface areas.With the increasing of Bi2S3mass fraction from 13.3%to 26.5%,the more Bi2S3-BiOCl heterojunction interface will be formed,which facilitates the efficient separation of photo-induced electrons and holes,leading to the enhanced photocatalytic performance.However,if themass fraction of Bi2S3increases continuously to excess,more Bi2S3and Bi2S3contacts will be established,which dominates the Bi2S3and BiOCl contacts.The Bi2S3and Bi2S3contacts are not as effective as Bi2S3and BiOCl contacts for an effective charge separation.Moreover,the excessive Bi2S3with narrow band gap can act as the recombination center of electrons and holes,impeding the photocatalytic activity on the contrary[15-16,21,25].Thus,26.5%Bi2S3/BiOCl exhibits the highest photocatalytic activity.

    Fig.5 Effects of Bi2 S3 mass fraction in the Bi2 S3/BiOCl catalysts on the degradation of MO under UV light irradiation(a),and UV-Vis spectra of the MO aqueous solution under UV light irradiation in the presence of BiOCl(b)and 26.5%Bi2 S3/BiOCl(c)catalysts.

    In order to confirm the advantage of heterojunction between Bi2S3and BiOCl,26.5%Bi2S3/BiOCl is compared with the mechanical mixture of Bi2S3and BiOClwith the similar composition under identical photocatalytic degradation conditions,as shown in Fig.5(a).Obviously,the UV light photocatalytic activity ofmechanically mixed 26.5%Bi2S3/BiOCl are lower than that of 26.5%Bi2S3/BiOCl prepared by hydrothermal method.This is mainly because Bi2S3and BiOCl behave as independent photocatalysts rather than a coupled system in themechanical mixture of Bi2S3and BiOCl,which is unfavorable to the transfer of charge carriers from one phase to another.However,the photocatalytic activity of mechanical mixture of Bi2S3and BiOCl is enhanced compared with that of pure Bi2S3and BiOCl,even themathematical sum of them.Thismight be owing to the inevitable partial contact between Bi2S3and BiOCl in the mechanical mixture of Bi2S3and BiOCl,which is in favor of the photocatalytic activity to some extent but is still far inferior to the effect of Bi2S3/BiOCl heterostructure[25].The results show that the Bi2S3and BiOCl heterojunction fabricated in the Bi2S3/BiOCl catalysts can improve the photocatalytic activity greatly.

    UV-Vis spectra of MO aqueous solution as a function of UV light irradiation time in the presence of pure BiOCl and 26.5%Bi2S3/BiOCl catalysts are illustrated in Fig.5(b)and Fig.5(c),respectively.It can be seen that the visible region peak intensities in the photo-degradation of MO by the 26.5% Bi2S3/BiOCl catalyst decrease more obviously than those of pure BiOCl catalystafter60min UV light irradiation,which is in agreement with the results of Fig.5(a).Since no new peak appears,the loss of absorbance can bemainly attributed to the degradation reaction.

    3.3 Discussion of The Photocatalytic Mechanism

    3.3.1 Hydroxyl Radical(·OH)Involved in The Photocatalytic Process

    Hydroxyl radical(·OH)has been considered to be an important species in the photocatalytic degradation ofmany hazardous chemical compounds owing to its high reaction ability to attack organicmolecule.The formation of·OH on the surface of Bi2S3,BiOCl and 26.5%Bi2S3/BiOCl catalysts was detected by a photoluminescence(PL)techniquewith terephthalic acid as a probe molecule.Terephthalic acid reacted with·OH readily to produce a highly fluorescent product,2-hydroxy terephthalic acid,whose PL peak intensity was in proportion to the amount of·OH radicals produced in water,which was reported in the literature[26].After UV light irradiation for a fixed time,the reaction solution was filtrated tomeasure the PL intensity at425 nm of 2-hydroxyterephthalic acid.

    Fig.6 Changes of PL spectra over 26.5%Bi2 S3/BiOCl(a),linear transform of PL spectra over different catalyst recorded during UV light illumination in terephthalic acid solution(5×10-4 mol/L,excitation at315 nm)(b),and the kinetics of photocatalytic degradation of MO using different catalyst under UV light illumination(c).

    Fig.6(a)indicates the changes of PL spectra of 26.5%Bi2S3/BiOCl catalyst in a 5×10-4mol/L terephthalic acid solution with UV irradiation time. It can be seen that no PL signal is observed in the absence of irradiation.The fluorescence intensity at 425 nm gradually increase with the irradiation time,which elucidates that·OH on 26.5%Bi2S3/BiOCl have been really produced under UV light irradiation.

    As shown in Fig.6(b),the PL peak of26.5% Bi2S3/BiOCl is higher than that of pure BiOCl and Bi2S3under UV light irradiation,and it suggests that the formation rate of OH radicals on its surface is much higher than that of pure BiOCl and Bi2S3,which implies the photocatalytic activity of the 26.5% Bi2S3/BiOCl catalyst is much higher than that of pure BiOCl and Bi2S3.This result is also verified in the Fig.5(a).

    In order to identify the role of·OH in the MO degradation,IPA,an efficient·OH quencher[27]was added into BiOCl and 26.5%Bi2S3/BiOCl reaction systems.The results are shown in Fig.6(c).It can be seen that the degradation efficiency(kapp)of MO decreases significantly after the addition of IPA under UV light irradiation.That is to say,the·OH species plays an important role in the degradation of MO under UV light irradiation.

    3.3.2 Origin of·OH

    Taking the kinds of·OH species involved in the photocatalysis into account,the photocatalytic process of Bi2S3/BiOCl catalysts can be described as the following Eqs.(2)-(6):

    In the above process,electron-hole pairs are directly produced by catalyst after UV light illumination.Then,the photo-generated electrons transfer to CB bottom of the catalyst and react with the adsorbed O2and H+on the surface of catalyst to form ·OH.Meanwhile,the holes are left on the VB top,reacting with the adsorbed H2O or OH-on the surface of catalyst to form·OH.After that,the·OH species oxidized MO.

    3.3.3 Mechanism of Photocatalytic Activity Enhancement of Bi2S3/BiOCl

    It is well known that the energy level and the band gap of semiconductors play important roles in determining their photocatalytic activities.Using two semiconductors in contactwith different redox energy levels of conduction band(CB)and valence band(VB)can be used to improve photo-generated carriers separation and enhance the efficiency of the interfacial charge transfer[28].In the light of the experiment results and by referring to the literatures[13-17,25],the transfer behaviors of the photogenerated electrons and holes in Bi2S3/BiOCl catalysts are illustrated in Fig.7.As shown,the CB and VB of Bi2S3lie above those of BiOCl.Clearly,the difference between energy bands of BiOCl and Bi2S3(Fig.7)allows the efficient transfer of electron and hole between them.When the Bi2S3/BiOCl catalyst is irradiated by UV light,BiOCl and Bi2S3are both excited;then,a large number of electrons and holes are produced in the system.Electrons will transfer from Bi2S3to CB of BiOCl and holes shift from BiOCl to VB of Bi2S3at the same time.In thisway,the photo-generated electron-hole pairs are effectively separated,and the better separation of electrons and holes in the Bi2S3/BiOCl catalysts can be confirmed by photoluminescence(PL)emission spectra in Fig.8.

    Fig.7 Diagrams of photo-generated electron-hole pairs transfer of Bi2 S3 and BiOCl

    PL emission spectra have been widely used to investigate the separation efficiency of the photo-generated charge carriers in a semiconductor[29].The comparison of PL spectra(excited by 280 nm)of pure BiOCl and 26.5%Bi2S3/BiOCl at room temperature is shown in Fig.8.It can be seen that the two catalysts have a broad emission peak,and the strongest emitting peaks are similar,while PL emission intensity of the 26.5%Bi2S3/BiOCl sample isdramatically weakened compared with thatof pure BiOCl,indicating that the recombination of photo-generated charge carriers is greatly inhibited by the Bi2S3introduction.In other words,a proper content of Bi2S3in the BiOCl is helpful to separate the photo-generated charge carriers and increase the lifetime of charge carriers,and then enhance the photocatalytic activity of Bi2S3/BiOCl catalysts.

    Fig.8 Photoluminescence(PL)spectra of pure Bi2 S3 and 26.5%Bi2 S3/BiOCl samples recorded at room temperature with the excitation wavelength of 280 nm

    4 Conclusion

    In summary,we have successfully synthesized the Bi2S3/BiOCl composite photocatalysts with different Bi2S3mas fraction by a facile hydrothermal process at 433 K.The photocatalytic activity of Bi2S3/BiOCl catalyst is greatly enhanced,compared with that of pure Bi2S3and BiOCl.Especially,the UV light photocatalytic activity of 26.5%Bi2S3/BiOCl catalyst is very close to that of commercial Degussa P-25.The remarkably enhanced photocatalytic performance can be mainly attributed to the effective transfer of the photo-generated electrons and holes at the heterojunction interface of Bi2S3and BiOCl,which can reduce the recombination of electron-hole pairs.In this study,the simple and low-cost preparation route can not only reduce the energy consumption for the fabrication of Bi2S3/BiOCl catalysts but also might extend the utilization of Bi2S3/BiOCl at low temperature in the near future.

    [1]Chen X B,Liu L,Yu P Y,et al.Increasing solar absorption for photocatalysis with blank hydrogenated titanium dioxide nanocrystals[J].Science,2011,331:746-750.

    [2]Schwinghammer K,Mesch M B,Duppel V,et al.Crystalline carbon nitride nanosheets for improved visible-lighthydrogen evolution[J].J.Am.Chem.Soc.,2014,136(5):1730-1733.

    [3]Li H Q,HongW S,Cui Y M,etal.Enhancementof the visible light photocatalytic activity of Cu2O/BiVO4catalysts synthesized by ultrasonic dispersion method at room temperature[J].Mater.Sci.Eng.B,2014,181:1-8.

    [4]Oncescu T,Stefan M I,Oancea P.Photocatalytic degradation of dichlorvos in aqueous TiO2suspensions[J].Environment.Sci.Technol.,2010,17(3):1158-1166.

    [5]Li H Q,Cui Y M,HongW S,et al.Photodegradation ofmethyl orange by BiOI-sensitized TiO2[J].RareMetals(稀有金屬),2012,31(6):604-610(in English).

    [6]Chen SF,Hu Y F,Meng SG,et al.Study on the separationmechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3[J].Appl.Catal.B:Environ.,2014,150-151:564-573.

    [7]Chen SF,Zhang S J,Liu W,et al.Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2[J].J. Hazard.Mater.,2008,155(1-2):320-326.

    [8]Li H Q,Hong W S,Cui Y M,et al.High photocatalytic activity of C-ZnSn(OH)6catalysts prepared by hydrothermal method[J].J.Mol.Catal.A:Chem.,2013,378:164-173.

    [9]Shenawi-Khalil S,Uvarov V,Menes E,et al.New efficient visible light photocatalyst based on heterojunction of BiOClbismuth oxyhydrate[J].Appl.Catal.A:General,2012,413-414:1-9.

    [10]Mu Q H,Zhang Q H,Wang H Z,et al.Facile growth of vertically aligned BiOCl nanosheet arrays on conductive glass substrate with high photocatalytic properties[J].J.Mater.Chem.,2012,22(33):16851-16857.

    [11]Ye L Q,Deng K J,Xu F,etal.Increasing visible-lightabsorption for photocatalysiswith black BiOCl[J].Phys.Chem. Chem.Phys.,2012,14(1):82-85.

    [12]Li T B,Chen G,Zhou C,et al.New photocatalyst BiOCl/BiOIcompositeswith highly enhanced visible light photocatalytic performances[J].Dalton Trans.,2011,40(25):6751-6758.

    [13]XiongW,Zhao Q D,Li X Y,et al.One-step synthesis of flower-like Ag/AgCl/BiOCl composite with enhanced visiblelight photocatalytic activity[J].Catal.Commun.,2011,16(1):229-233.

    [14]Shamaila S,Sajjad A K L,Chen F,et al.WO3/BiOCl,a novel heterojunction as visible light photocatalyst[J].J. Colloid Interf.Sci.,2011,356(2):465-472.

    [15]Bessekhouad Y,Robert D,Weber JV.Bi2S3/TiO2and CdS/TiO2heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J].J.Photochem.Photobio.A:Chem.,2004,163(3):569-580.

    [16]Kim J,Kang M.Photocatalytic hydrogen production over the band gap-tuned urchin-like Bi2S3-loaded TiO2composites system[J].Int.J.Hydrogen Energy,2012,37:8249-8256.

    [17]Cao J,Xu B Y,Lin H L,etal.Novel Bi2S3-sensitized BiOClwith highly visible lightphotocatalytic activity for the removal of rhodamine B[J].Catal.Commun.,2012,26:204-208.

    [18]Jiang SH,Zhou K Q,Shi Y Q,et al.Laser-assisted implantation of gold nanoparticles,formed under surface plasmonpolariton resonant conditions in polymer layer[J].Appl.Surf.Sci.,2014,290:313-319.

    [19]Cheng H F,Huang B B,Qin X Y,et al.A controlled anion exchange strategy to synthesize Bi2S3nanocrystals/BiOCl hybrid architectureswith efficient visible light photoactivity[J].Chem.Commun.,2012,48(1):97-99.

    [20]Sarwan B,Pare B,Acharya A D,et al.Mineralization and toxicity reduction of textile dye neutral red in aqueous phase using BiOCl photocatalysis[J].J.Photochem.Photobio.B:Bio.,2012,116:48-55.

    [21]Li H Q,Hong W S,Cui Y M,et al.Effect of Mo2C content on the structure and photocatalytic property of Mo2C/TiO2catalysts[J].J.Alloys Compd.,2013,569:45-51.

    [22]Zhang X,Ai ZH,Jia F L,et al.Generalized one-pot synthesis,characterization,and photocatalytic activity of hierarchical BiO X(X=Cl,Br,I)nanoplatemicrospheres[J].J.Phys.Chem.C,2008,112(3):747-753.

    [23]Cao J,Xu B Y,Lin H L,etal.Novel heterostructured Bi2S3/BiOIphotocatalyst:Acile preparation,characterization and visible light photocatalytic performance[J].Dalton Trans.,2012,41(37):11482-11490.

    [24]Pare B,Sarwan B,Jonnalagadda SB.Photocatalytic mineralization study ofmalachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition[J].Appl.Surf.Sci.,2011,258(1):247-253.

    [25]Yang LX,SunW S,Luo SL,etal.White fungus-likemesoporous Bi2S3ball/TiO2heterojunction with high photocatalytic efficiency in purifying 2,4-dichlorophenoxyacetic acid/Cr(Ⅵ)contaminated water[J].Appl.Catal.B:Environ.,2014,156-157:25-34.

    [26]Chen SF,Yang Y G,Liu W.Preparation,characterization and activity evaluation of TiN/F-TiO2photocatalyst[J].J. Hazard.Mater.,2011,186(2-3):1560-1567.

    [27]Cao J,Xu BY,Lin H L,etal.Chemical etching preparation of BiOI/BiOBr heterostructureswith enhanced photocatalytic properties for organic dye removal[J].Chem.Eng.J.,2012,185-186:91-99.

    [28]Zhao D,Chen CC,Yu C L,etal.Photoinduced electron storage in WO3/TiO2nanohybridmaterial in the presence of oxygen and postirradiated reduction of heavymetal ions[J].J.Phys.Chem.C,2009,113(30):13160-13165.

    [29]Li H Q,Cui Y M,Hong W S.High photocatalytic performance of BiOI/Bi2WO6toward toluene and reactive brilliant red[J].Appl.Surf.Sci.,2013,264:581-588.

    李慧泉(1973-),男,江西萍鄉(xiāng)人,博士,教授,2012年于南京大學獲得博士學位,主要從事光催化納米材料的設計與制備、結(jié)構(gòu)與性能調(diào)控、光解水和水溶液中有機污染物的光催化降解等方面的研究。

    E-mail:huiquanli0908@163.com

    崔玉民(1963-),男,安徽毫州人,教授,1990年于延邊大學獲得碩士學位,主要從事光催化方面的研究。

    E-mail:cuiyumin0908@163.com

    Bi2S3/BiOCl復合光催化劑的水熱合成及其高活性

    李慧泉1,2,朱良俊1,2,孫 倩1,王 高1,苗 慧1,2,崔玉民1,2*,郟青峰1
    (1.阜陽師范學院化學與材料工程學院,安徽阜陽 236037;2.安徽環(huán)境污染物降解與監(jiān)測省級實驗室,安徽阜陽 236037)

    采用一種簡便的水熱法在433 K的溫度下成功合成了具有不同Bi2S3質(zhì)量分數(shù)的Bi2S3/BiOCl復合光催化劑,利用各種技術(shù)對其進行了表征。在紫外光照射下,以甲基橙水溶液的光催化降解為模型反應,評價了Bi2S3/BiOCl復合光催化劑的活性。研究結(jié)果表明:與純Bi2S3和純BiOCl相比,Bi2S3/BiOCl樣品明顯具有更高的光催化性能,尤其當Bi2S3在Bi2S3/BiOCl中的質(zhì)量分數(shù)為26.5%時,Bi2S3/BiOCl復合催化劑的光催化活性與商業(yè)P25(TiO2)的活性非常接近,而這種商業(yè)P25在紫外光照射下是公認的高效光催化劑。這種明顯提高的光催化活性主要歸功于光生電子和空穴在Bi2S3和BiOCl形成異質(zhì)結(jié)界面上的有效轉(zhuǎn)移,降低了電子-空穴對的復合。

    水熱法;Bi2S3/BiOCl;復合光催化劑;甲基橙

    2014-11-03;

    2014-12-02

    國家自然科學基金(21201037);安徽省高校自然科學基金(kj2014a191);安徽省自然科學基金(1408085mb35);安徽省高校青年人才基金(2013sqrl058zd);功能性分子固體省部共建教育部重點實驗室項目(14010);阜陽師范學院和安徽環(huán)境污染物降解與監(jiān)測省級實驗室項目(fsb201401003,2014kjfh01)資助

    1000-7032(2015)02-0176-10

    O634 Document code:A

    10.3788/fgxb20153602.0176

    猜你喜歡
    水熱法阜陽光催化劑
    水熱法原位合成β-AgVO3/BiVO4復合光催化劑及其催化性能
    陶瓷學報(2021年5期)2021-11-22 06:35:00
    第二屆淮河文化論壇在阜陽舉行
    可見光響應的ZnO/ZnFe2O4復合光催化劑的合成及磁性研究
    陶瓷學報(2019年6期)2019-10-27 01:18:18
    合肥至霍邱至阜陽高速公路今年開建
    安徽阜陽潁上:“產(chǎn)業(yè)花”結(jié)出“脫貧果”
    Pr3+/TiO2光催化劑的制備及性能研究
    關(guān)于把阜陽建成區(qū)域中心城市的思考
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    BiVO4光催化劑的改性及其在水處理中的應用研究進展
    應用化工(2014年11期)2014-08-16 15:59:13
    水熱法制備BiVO4及其光催化性能研究
    應用化工(2014年4期)2014-08-16 13:23:09
    少妇人妻一区二区三区视频| 国产精品美女特级片免费视频播放器| 观看免费一级毛片| 成人美女网站在线观看视频| 亚洲av成人精品一区久久| 极品教师在线视频| 日本黄色片子视频| 如何舔出高潮| 老女人水多毛片| 午夜久久久久精精品| 蜜桃久久精品国产亚洲av| 亚洲人与动物交配视频| 日本a在线网址| 高清日韩中文字幕在线| 久久99热这里只有精品18| 久久热精品热| 亚洲一区二区三区色噜噜| 日韩欧美 国产精品| 麻豆一二三区av精品| 一级av片app| 最后的刺客免费高清国语| 青草久久国产| 一本一本综合久久| 别揉我奶头~嗯~啊~动态视频| 欧美乱妇无乱码| 国产精品女同一区二区软件 | 精品福利观看| 在线播放无遮挡| 国产欧美日韩精品一区二区| 极品教师在线视频| 久99久视频精品免费| 51午夜福利影视在线观看| 少妇的逼好多水| 久久久久久久久久黄片| 97超视频在线观看视频| 天堂动漫精品| 热99在线观看视频| 精华霜和精华液先用哪个| eeuss影院久久| 一二三四社区在线视频社区8| 亚洲精品久久国产高清桃花| 国产在线精品亚洲第一网站| 一进一出抽搐gif免费好疼| 欧美黄色片欧美黄色片| 国产人妻一区二区三区在| 国产高清三级在线| 免费在线观看影片大全网站| 亚洲av电影在线进入| 好男人在线观看高清免费视频| 又爽又黄a免费视频| 激情在线观看视频在线高清| 久久精品国产清高在天天线| 1024手机看黄色片| 久久久精品大字幕| 久久精品人妻少妇| 亚洲最大成人av| 美女 人体艺术 gogo| 欧美潮喷喷水| 最好的美女福利视频网| 亚洲av熟女| 极品教师在线视频| 99视频精品全部免费 在线| 婷婷六月久久综合丁香| 亚洲五月婷婷丁香| 日日摸夜夜添夜夜添小说| 91久久精品电影网| 亚洲性夜色夜夜综合| 亚洲成a人片在线一区二区| 在线国产一区二区在线| 亚洲精品成人久久久久久| 69人妻影院| 亚洲欧美精品综合久久99| 亚洲va日本ⅴa欧美va伊人久久| 美女免费视频网站| 午夜福利在线观看吧| 国内久久婷婷六月综合欲色啪| 在线观看66精品国产| 久久久久久久久大av| 国产成人影院久久av| 中文字幕人妻熟人妻熟丝袜美| 黄色日韩在线| 国产欧美日韩精品亚洲av| 性色avwww在线观看| 蜜桃亚洲精品一区二区三区| 国产成人a区在线观看| netflix在线观看网站| 国产精品亚洲一级av第二区| 国产野战对白在线观看| 精品乱码久久久久久99久播| 一个人免费在线观看电影| 亚洲国产精品成人综合色| 亚洲av第一区精品v没综合| 中国美女看黄片| 国产美女午夜福利| 如何舔出高潮| 国产精品久久久久久久久免 | 免费人成在线观看视频色| 看片在线看免费视频| 天堂网av新在线| 欧美一级a爱片免费观看看| 中文字幕免费在线视频6| av专区在线播放| 国产白丝娇喘喷水9色精品| 久久热精品热| 久久久久国产精品人妻aⅴ院| 国产精品1区2区在线观看.| 日本熟妇午夜| 国产精品乱码一区二三区的特点| 91九色精品人成在线观看| 伊人久久精品亚洲午夜| 国产成+人综合+亚洲专区| 在线国产一区二区在线| 免费av观看视频| 欧美日韩国产亚洲二区| 欧美高清成人免费视频www| 窝窝影院91人妻| 精品久久久久久久久久免费视频| 别揉我奶头 嗯啊视频| 十八禁国产超污无遮挡网站| 99热这里只有精品一区| 精品99又大又爽又粗少妇毛片 | 俺也久久电影网| a在线观看视频网站| 成年人黄色毛片网站| 最近最新免费中文字幕在线| 亚洲欧美日韩卡通动漫| 美女xxoo啪啪120秒动态图 | 亚洲三级黄色毛片| 国产精品野战在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久久久精品国产欧美久久久| 欧美高清性xxxxhd video| 成年女人毛片免费观看观看9| 一级黄片播放器| 少妇人妻精品综合一区二区 | 亚洲激情在线av| 亚洲精品成人久久久久久| 99国产极品粉嫩在线观看| 亚洲精品在线观看二区| 日韩欧美国产一区二区入口| 在线观看av片永久免费下载| 91av网一区二区| 免费av毛片视频| 国产成年人精品一区二区| 色综合站精品国产| 天美传媒精品一区二区| 一区二区三区免费毛片| 十八禁人妻一区二区| aaaaa片日本免费| 国内精品久久久久精免费| 亚洲国产精品合色在线| 男人舔奶头视频| 国产精品,欧美在线| 一个人免费在线观看电影| 亚洲成人久久爱视频| 丰满人妻熟妇乱又伦精品不卡| 韩国av一区二区三区四区| 中文亚洲av片在线观看爽| 亚洲美女视频黄频| 一级毛片久久久久久久久女| 99在线视频只有这里精品首页| 直男gayav资源| 久久久久免费精品人妻一区二区| 久久欧美精品欧美久久欧美| 国产一区二区激情短视频| 给我免费播放毛片高清在线观看| 国产精品永久免费网站| www.www免费av| 最近在线观看免费完整版| 欧美最黄视频在线播放免费| 婷婷亚洲欧美| 精品国产三级普通话版| 中亚洲国语对白在线视频| 国产v大片淫在线免费观看| 搡老熟女国产l中国老女人| 99国产极品粉嫩在线观看| 久久精品影院6| 久久天躁狠狠躁夜夜2o2o| 首页视频小说图片口味搜索| 午夜视频国产福利| av在线蜜桃| 国产欧美日韩一区二区三| av视频在线观看入口| 国产视频内射| 国产欧美日韩精品一区二区| 亚洲中文字幕日韩| 中文字幕人成人乱码亚洲影| 亚洲性夜色夜夜综合| 国产麻豆成人av免费视频| 脱女人内裤的视频| 日本 av在线| 精品一区二区三区视频在线| 成人国产综合亚洲| 欧美性猛交黑人性爽| 99热这里只有精品一区| 最好的美女福利视频网| 国产淫片久久久久久久久 | 老司机深夜福利视频在线观看| 亚洲avbb在线观看| 国产伦在线观看视频一区| 夜夜看夜夜爽夜夜摸| 午夜免费成人在线视频| 久久久久久国产a免费观看| 嫁个100分男人电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 老熟妇仑乱视频hdxx| av视频在线观看入口| 高潮久久久久久久久久久不卡| 日韩成人在线观看一区二区三区| 别揉我奶头~嗯~啊~动态视频| 少妇熟女aⅴ在线视频| 88av欧美| 欧美国产日韩亚洲一区| 波多野结衣高清无吗| 在线观看午夜福利视频| 男人舔奶头视频| 啪啪无遮挡十八禁网站| 欧美乱色亚洲激情| 久久中文看片网| 两人在一起打扑克的视频| 一区二区三区激情视频| 毛片一级片免费看久久久久 | 精品人妻一区二区三区麻豆 | 看黄色毛片网站| 男人舔女人下体高潮全视频| 亚洲欧美激情综合另类| 不卡一级毛片| 啪啪无遮挡十八禁网站| 国产在线精品亚洲第一网站| 午夜两性在线视频| 少妇人妻一区二区三区视频| 亚洲最大成人av| 在线看三级毛片| 国产伦一二天堂av在线观看| 神马国产精品三级电影在线观看| 久久久久久大精品| 国产淫片久久久久久久久 | 波多野结衣巨乳人妻| h日本视频在线播放| 成人毛片a级毛片在线播放| 18禁黄网站禁片免费观看直播| 俄罗斯特黄特色一大片| 亚洲av电影不卡..在线观看| 午夜两性在线视频| 久久精品综合一区二区三区| 美女高潮的动态| 99久久九九国产精品国产免费| 婷婷精品国产亚洲av在线| 久久久久久大精品| 麻豆成人午夜福利视频| 又黄又爽又刺激的免费视频.| 又紧又爽又黄一区二区| 久久这里只有精品中国| 在线观看美女被高潮喷水网站 | 色尼玛亚洲综合影院| 欧美+日韩+精品| 成人国产一区最新在线观看| 亚洲国产欧洲综合997久久,| 一夜夜www| 成人性生交大片免费视频hd| 成年女人毛片免费观看观看9| 啦啦啦观看免费观看视频高清| 老司机深夜福利视频在线观看| 亚洲精品在线美女| 免费av毛片视频| 欧美性猛交黑人性爽| 男插女下体视频免费在线播放| 久久草成人影院| 亚洲欧美日韩高清在线视频| 亚洲一区二区三区不卡视频| 97碰自拍视频| 少妇被粗大猛烈的视频| 国产一区二区在线av高清观看| 免费搜索国产男女视频| 能在线免费观看的黄片| 国产精品久久电影中文字幕| 久久这里只有精品中国| 国产免费一级a男人的天堂| 精品一区二区三区视频在线观看免费| 精品久久久久久久人妻蜜臀av| 国产av在哪里看| 成人午夜高清在线视频| 国产aⅴ精品一区二区三区波| 男人舔奶头视频| 国产精品久久久久久人妻精品电影| 看片在线看免费视频| 最新中文字幕久久久久| 1024手机看黄色片| 国产白丝娇喘喷水9色精品| 亚洲精品色激情综合| 99久国产av精品| 国产老妇女一区| 超碰av人人做人人爽久久| 精品一区二区三区av网在线观看| 97人妻精品一区二区三区麻豆| 嫁个100分男人电影在线观看| 亚洲,欧美,日韩| 国产高清视频在线观看网站| 高清在线国产一区| 欧美在线黄色| 色视频www国产| 亚洲第一区二区三区不卡| 制服丝袜大香蕉在线| 亚洲av成人精品一区久久| 男人舔女人下体高潮全视频| 欧美3d第一页| 此物有八面人人有两片| 最近在线观看免费完整版| 成年版毛片免费区| 性色av乱码一区二区三区2| 99精品在免费线老司机午夜| 国产精品,欧美在线| 99久国产av精品| 久久久久亚洲av毛片大全| 性色avwww在线观看| 特级一级黄色大片| or卡值多少钱| 看片在线看免费视频| 99热只有精品国产| 亚洲第一电影网av| av欧美777| 国产视频内射| 亚洲精品亚洲一区二区| 麻豆国产av国片精品| 国产精品1区2区在线观看.| av在线天堂中文字幕| 看免费av毛片| 97超视频在线观看视频| 高清在线国产一区| 黄色女人牲交| 国产精品久久电影中文字幕| 精华霜和精华液先用哪个| 少妇人妻精品综合一区二区 | 国产视频内射| 婷婷精品国产亚洲av在线| 好男人在线观看高清免费视频| 看十八女毛片水多多多| 狠狠狠狠99中文字幕| 午夜日韩欧美国产| 哪里可以看免费的av片| 久久人妻av系列| 日本 av在线| 国产精品亚洲av一区麻豆| 久久精品人妻少妇| bbb黄色大片| 午夜福利在线观看免费完整高清在 | 午夜老司机福利剧场| 国产精品乱码一区二三区的特点| 免费看美女性在线毛片视频| 亚洲国产日韩欧美精品在线观看| 色哟哟·www| 在线播放国产精品三级| 国产伦精品一区二区三区视频9| 首页视频小说图片口味搜索| 国产野战对白在线观看| 国产精华一区二区三区| 亚洲美女搞黄在线观看 | 丰满人妻熟妇乱又伦精品不卡| av专区在线播放| 国产老妇女一区| 国产一区二区亚洲精品在线观看| 国产精品亚洲av一区麻豆| av天堂中文字幕网| 18禁黄网站禁片免费观看直播| 欧美黑人欧美精品刺激| 女人十人毛片免费观看3o分钟| 狂野欧美白嫩少妇大欣赏| 国产成人a区在线观看| 天天一区二区日本电影三级| 亚洲 国产 在线| 国产一区二区三区在线臀色熟女| 别揉我奶头~嗯~啊~动态视频| 十八禁网站免费在线| 超碰av人人做人人爽久久| 国产亚洲精品久久久com| 赤兔流量卡办理| 国产欧美日韩精品亚洲av| 观看免费一级毛片| 国产精品免费一区二区三区在线| 中文在线观看免费www的网站| 久久亚洲精品不卡| 亚洲精品乱码久久久v下载方式| 97人妻精品一区二区三区麻豆| 欧美中文日本在线观看视频| 亚洲精品日韩av片在线观看| 校园春色视频在线观看| 亚洲片人在线观看| 久久精品国产亚洲av天美| 少妇丰满av| 如何舔出高潮| 久久精品久久久久久噜噜老黄 | 欧美日本视频| 深爱激情五月婷婷| 欧美乱色亚洲激情| 99国产精品一区二区蜜桃av| 成人国产综合亚洲| 天天躁日日操中文字幕| 老熟妇乱子伦视频在线观看| 性插视频无遮挡在线免费观看| 国产精品国产高清国产av| 免费人成视频x8x8入口观看| 婷婷精品国产亚洲av| 夜夜爽天天搞| 欧美区成人在线视频| 欧美xxxx黑人xx丫x性爽| 婷婷精品国产亚洲av| 一边摸一边抽搐一进一小说| 午夜两性在线视频| 毛片女人毛片| 悠悠久久av| 国产精品美女特级片免费视频播放器| 亚洲 国产 在线| 免费在线观看成人毛片| 亚洲成人精品中文字幕电影| 婷婷丁香在线五月| 搡女人真爽免费视频火全软件 | 18美女黄网站色大片免费观看| 欧美最新免费一区二区三区 | 一个人看视频在线观看www免费| 亚洲av第一区精品v没综合| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av熟女| 欧美不卡视频在线免费观看| 高清毛片免费观看视频网站| 三级国产精品欧美在线观看| 精品熟女少妇八av免费久了| 国产精品久久久久久亚洲av鲁大| 欧美丝袜亚洲另类 | 国产精品日韩av在线免费观看| 免费一级毛片在线播放高清视频| 欧美性感艳星| 日韩欧美在线乱码| 免费观看人在逋| 99国产精品一区二区三区| 日日干狠狠操夜夜爽| 欧美不卡视频在线免费观看| 亚洲五月婷婷丁香| 国产高潮美女av| bbb黄色大片| 日本与韩国留学比较| 特大巨黑吊av在线直播| 99久久精品热视频| 精品久久久久久久久久免费视频| 九色成人免费人妻av| 看片在线看免费视频| 国产亚洲欧美在线一区二区| 男人和女人高潮做爰伦理| 三级男女做爰猛烈吃奶摸视频| 久久久久国内视频| 欧美一区二区精品小视频在线| 国产美女午夜福利| 成人三级黄色视频| 亚洲av不卡在线观看| 草草在线视频免费看| 级片在线观看| 哪里可以看免费的av片| 国产成+人综合+亚洲专区| 免费搜索国产男女视频| 日韩中文字幕欧美一区二区| 欧美日韩福利视频一区二区| 亚洲国产精品sss在线观看| 亚洲国产精品久久男人天堂| 欧美黄色片欧美黄色片| 免费一级毛片在线播放高清视频| 一个人免费在线观看电影| 婷婷亚洲欧美| 免费观看的影片在线观看| 12—13女人毛片做爰片一| 欧美色欧美亚洲另类二区| 美女大奶头视频| 亚洲精品乱码久久久v下载方式| 美女高潮喷水抽搐中文字幕| 日日夜夜操网爽| 久久久精品欧美日韩精品| 亚洲国产精品合色在线| 国产成人影院久久av| 一区二区三区高清视频在线| 久久99热6这里只有精品| 搡老岳熟女国产| 精品人妻一区二区三区麻豆 | 日韩欧美 国产精品| x7x7x7水蜜桃| 国产不卡一卡二| 午夜久久久久精精品| 国产欧美日韩精品亚洲av| 中文资源天堂在线| 国产精品久久久久久人妻精品电影| 亚洲电影在线观看av| 精品人妻熟女av久视频| 精品久久久久久,| 欧洲精品卡2卡3卡4卡5卡区| 亚洲18禁久久av| 亚洲中文日韩欧美视频| 69人妻影院| 小说图片视频综合网站| 精品熟女少妇八av免费久了| 精品久久久久久久久亚洲 | 亚洲国产高清在线一区二区三| 三级毛片av免费| eeuss影院久久| 国产aⅴ精品一区二区三区波| 成年女人永久免费观看视频| 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 日本撒尿小便嘘嘘汇集6| 1000部很黄的大片| 午夜福利在线观看吧| 国产欧美日韩精品一区二区| 亚洲精品一区av在线观看| 丝袜美腿在线中文| 淫妇啪啪啪对白视频| 人人妻人人澡欧美一区二区| 青草久久国产| 少妇熟女aⅴ在线视频| 变态另类丝袜制服| 精品人妻一区二区三区麻豆 | 最后的刺客免费高清国语| 91狼人影院| 亚洲国产欧洲综合997久久,| 免费黄网站久久成人精品 | bbb黄色大片| 亚洲电影在线观看av| 国产精品久久久久久人妻精品电影| 欧美日本视频| 欧美日韩乱码在线| 久久精品91蜜桃| 最新在线观看一区二区三区| 男人舔女人下体高潮全视频| 日日夜夜操网爽| 亚洲欧美日韩卡通动漫| 国产午夜福利久久久久久| 免费在线观看成人毛片| 在线观看美女被高潮喷水网站 | 超碰av人人做人人爽久久| 女同久久另类99精品国产91| 热99re8久久精品国产| 精品久久久久久久久亚洲 | 国产精品综合久久久久久久免费| 男人狂女人下面高潮的视频| 精品乱码久久久久久99久播| 在线播放无遮挡| 中亚洲国语对白在线视频| 一进一出抽搐gif免费好疼| 又爽又黄无遮挡网站| 国产成年人精品一区二区| 特级一级黄色大片| 男人和女人高潮做爰伦理| 美女大奶头视频| 国产色婷婷99| 亚洲aⅴ乱码一区二区在线播放| 亚洲成人久久性| 欧美极品一区二区三区四区| 国产高清视频在线观看网站| 少妇熟女aⅴ在线视频| 久9热在线精品视频| 久久国产乱子免费精品| 精品一区二区三区av网在线观看| 性色av乱码一区二区三区2| 色哟哟哟哟哟哟| 成年女人毛片免费观看观看9| 久久久久久久久久黄片| 国产精品亚洲美女久久久| 十八禁人妻一区二区| 精品人妻1区二区| av黄色大香蕉| 超碰av人人做人人爽久久| 亚洲中文字幕一区二区三区有码在线看| 麻豆av噜噜一区二区三区| 色吧在线观看| 午夜日韩欧美国产| 桃红色精品国产亚洲av| 美女大奶头视频| 成人一区二区视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 日韩人妻高清精品专区| 日韩欧美在线二视频| 90打野战视频偷拍视频| 在线a可以看的网站| 免费在线观看亚洲国产| 香蕉av资源在线| 91在线观看av| a在线观看视频网站| 欧美日本亚洲视频在线播放| 午夜精品一区二区三区免费看| 久久6这里有精品| 成人国产一区最新在线观看| www.熟女人妻精品国产| 久久久精品欧美日韩精品| 成年女人看的毛片在线观看| 蜜桃亚洲精品一区二区三区| 久久人人爽人人爽人人片va | 极品教师在线免费播放| 欧美日韩黄片免| 婷婷丁香在线五月| 色综合站精品国产| av天堂中文字幕网| 国产精品亚洲av一区麻豆| 国产av不卡久久| 亚洲专区国产一区二区| 日韩有码中文字幕| 久久婷婷人人爽人人干人人爱| 国产亚洲精品综合一区在线观看| 18禁裸乳无遮挡免费网站照片| 村上凉子中文字幕在线| 国内精品久久久久精免费| 性插视频无遮挡在线免费观看| 日本与韩国留学比较| 啦啦啦韩国在线观看视频| 啪啪无遮挡十八禁网站| 亚洲av成人不卡在线观看播放网| 真实男女啪啪啪动态图| 最近中文字幕高清免费大全6 | 97人妻精品一区二区三区麻豆| 国产伦精品一区二区三区四那| 一区二区三区免费毛片|