• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interference-Cancellation Scheme for Multilayer Cellular Systems

    2015-10-11 01:37:49WeiLiYueZhangandLiKeHuang
    ZTE Communications 2015年1期

    Wei Li,Yue Zhang,and Li-Ke Huang

    (1.University of Bedfordshire,Luton,LU1 3JU,UK;2.Aeroflex UK,Stevenage,SG1 2AN,UK)

    Interference-Cancellation Scheme for Multilayer Cellular Systems

    Wei Li1,Yue Zhang1,and Li-Ke Huang2

    (1.University of Bedfordshire,Luton,LU1 3JU,UK;2.Aeroflex UK,Stevenage,SG1 2AN,UK)

    A 5G network must be heterogeneous and support the co-existence of multilayer cells,multiple standards,and multiple application systems.This greatly improves link performance and increases link capacity.A network with co-existing macro and pico cells can alleviate traffic congestion caused by multicast or unicast subscribers,help satisfy huge traffic demands,and further extend converge.In order to practically implement advanced 5G technology,a number of technical problems have to be solved,one of which is inter-cell interference.A method called Almost Blank Subframe(ABS)has been proposed to mitigate interference;however,the

    ignal in ABS still causes interference.This paper describes how interference can be cancelled by using the information in the ABS.First,the interference-signal model,which takes into account channel effect,time and frequency error,is presented.Then,an interference-cancellation scheme based on this model is studied.The timing and carrier frequency offset of the interference signal is compensated.Afterwards,the reference signal of the interfering cell is generated locally and the channel response is estimated using channel statistics.Then,the interference signal is reconstructed according to previous estimation of channel,timing,and carrier frequency offset.The interference is mitigated by subtracting the estimated interference signal.Computer simulation shows that this interference-cancellation algorithm significantly improves performance under different channel conditions.

    5G;cell edge interference;almost-blank subframe;eICIC

    1 Introduction

    With the rapid development of 5G wireless networks,heterogeneous links,which support the co-existence of multilayer cells,multiple standards,and multiple applications,are playing an important role in increasing capacity and coverage and satisfying huge traffic demand[1].This paper discusses technical issues,in particular,interference cancellation,in a heterogeneous network with macro and pico cell.In the topology of a network with macro and pico cells,the high-power 1~40 W macro cell provides basic coverage and the low power 250 mW pico cell is the complementary cell.The pico cell extends network coverage and offloads data traffic of the macro-cell.This reduces cost and increases frequency efficiency.However,the user equipment(UE)served by the pico cell also receives RF signals from neighboring high-power macro cells.This interference is even more severe when users in the pico cell stay within the coverage area of macro cells with range-extension enabled[2].

    Enhanced inter-cell interference coordination(eICIC)addresses this issue[2].eICIC involves two techniques.First,the signal strength is biased to the pico cell,which reduces the interference power.Second,the macro cell remains silent for a certain period,called Almost-Blank Subframe(ABS)[2].In the ABS,the physical downlink shared channel(PDSCH)is emptied.Therefore,UE does not receive PDSCH during the ABS,and interference can be alleviated.However,users may still receive the cell-specific reference signal(CRS),paging channel(PCH),physical broadcast channel(PBCH),and synchronization channels(PSS/SSS),all of which degrade performance. Further eICIC(FeICIC)has been proposed to eliminate CRS interference.

    Some research has been done on CRS interference cancellation(IC).The authors of[3]and[4]investigate direct IC and log -likelihood ratio(LLR)puncturing methods.The simulation results show that direct IC results in better performance.The authors of[5]propose a receiver algorithm that combines IC with a direct-decision channel estimation(CE)algorithm for colliding CRS.The authors of[6]propose a space-alternating gener-alized expectation-maximization(SAGE)with a maximum aposteriori(MAP)method for estimating the interfering channel. This method involves reduced computation complexity compared with the linear minimum mean square error(LMMSE)method.However,timing error and frequency offsets can severely degrade performance.

    In this paper,we theoretically analyze and run simulations on the CRS interference-cancellation algorithm in a non-colliding scenario where channel statistics are taken into consideration.First,we analyze and model the interference signal and then discuss the interference-cancellation algorithm based on this model.The algorithm makes use of the primary synchronization signal(PSS)and secondary synchronization signal(SSS)to obtain the timing offset(TO)and carrier frequency offset(CFO).Then,the channel response is estimated using channel statistics.Then,the interference signal is reconstructed taking into account the channel effect,TO and CFO.Interference is alleviated by subtracting the interference signal from the received signal.

    The rest of this paper is organized as follows.In section 2,the interference is analyzed and modeled.In section 3,we discuss IC algorithms.In section 4,results of the computer simulation are presented.In section 5,we sum up.

    2 Interference Analysis and Model

    Fig.1 shows typical non-colliding inter-cell interference between macro and pico cells.The wireless data service is delivered to the subscriber via pico cell,and the downlink signal from the macro cell interferes with the subscriber at the edge of the pico cell.To alleviate the inter-cell interference,the ABS is transmitted by the macro cell.During the ABS,only certain control signals,such as CRS,are transmitted.

    However,the CRS still causes interference for the subscriber.Fig.2 shows the received signal of one resource block(RB)with one interference cell.The CRS from a neighboring macro cell overlaps the resource elements(REs)from a serving cell(SC).The SC RE can be divided into data RE and CRS RE.Because of the TO and CFO between the interfering cell and subscriber,the received interfering signal suffers TO and CFO(Fig.2).

    ▲Figure 1.Inter-cell interference between macro and pico cells.

    ▲Figure 2.Received signal in time and frequency grid.

    Four modulation schemes are being considered for 5G:generalized frequency-division multiplexing(GFDM),filter bank multicarrier(FBMC),universal filtered multicarrier(UFMC),and biorthogonal frequency-division multiplexing(BFDM). However,these four schemes are all generalizations of OFDM,so we address the original OFDM modulation in the following way(for simplicity's sake).

    In the downlink side of OFDM modulation,the frequencydomain signal of theithsymbol is transferred to time domain signalxi(n)via N-point Inverse Fast Fourier Transform(IFFT):

    wheredi,kandpi,kare the data and pilot,respectively.

    Then the signal is transmitted over a multipath propagation channel that takes into account additive white Gaussian noise(AWGN).At the receiver side,the received signal is given by where hlandτlare the gain and delay of the lth path,respectively;andω(n)is the AWGN.Because of the TO and CFO,the corrupted receiver signal in the case of inter-cell interference is

    According to(5),the relative timing offsetdbetween interfering and serving cells causes phase shifton the kth subcarrier.The termsΦnin(5)arises from the CFO termfΔ,which results in intercarrier interference(ICI).Therefore,the CFO and TO need to be compensated.In addition,this model shows the case of single-input single-output(SISO)antenna only.The case of multiple-input multiple-output(MIMO)antenna can be easily derived from(5).However,the number of REs increases because the number of interference CRSs increases with number of antenna ports,which results in more severe interference[8].These problems will be addressed in section 3.

    3 IC Algorithm

    The proposed inter-cell IC algorithm is shown in Fig.3. This algorithm includes estimation of CFO and TO,estimation of the interfering channel,modeling of the interfering cell,and reconstruction and reduction of the interfering signal.With CFO and TO estimation,the relative frequency offset and timing offset between the interfering cell and serving cell is estimated using the PSS or SSS generated by modeling the interfering cell.Next,the interfering channel is estimated according to the compensated signal.The interfering signal is then reconstructed according to the previous estimation and subtracted from the received signal.

    ▲Figure 3.IC receiver architecture.

    3.1 CFO and TO Estimation

    The objective of this module is to retrieve OFDM symbol timing and estimate the CFO of the interfering cell.Many timing-and frequency-synchronization algorithms have been developed.Most of these exploit the periodic nature of the timedomain signal by using cyclic prefix(CP)[9]-[11]or pilot data[12]-[13].However,there are no data REs in an ABS,which severely reduces the power of the CP.The low SNR of the CP makes both timing and frequency synchronization difficult. Apart from the CP and pilot,there are still the PSS and SSS,which are dedicated to timing and frequency synchronization in the downlink.The PSS and SSS are located at the last and second-last symbol in the time slot 0 and 10.The PSSpss(n)and SSSsss(n)are given by

    and

    whereμis 25,29 or 34 and corresponds to the physical layer identity;andm0andm1are derived from the physical layer cell identity group,c0(n),c1(n),z1(m0) andz1(m1)are defined in[8].The timing and frequency offset can be estimated using the cross-correlation of PSS/SSS[14]:

    where

    The generation of PSS/SSS is based on the assumption of an ideal cell search.The cell-search algorithm in the case of intercell interference is beyond the scope of this paper.After the timing and frequency synchronization of the interfering signal,the interfering-channel response can be estimated.

    3.2 Interfering-Channel Estimation

    Before interference cancellation,it is essential to estimate the interfering-channel response.The channel estimation can be based on least squares(LS)or minimum mean-square error(MMSE)[15],[16].The MMSE algorithm gives 10-15 dB gainin signal-to-noise ratio(SNR)for the same mean-square error of CE over LS estimation[15].However,the MMSE is more complex than the LS algorithm.After timing and frequency offset compensation,(5)can be rewritten as

    From(10),the interfering CRS sequence p(1)can be expressed as

    wherec(n)is generated by Gold Sequence with a length of 31,the state of which is initialized according to the cell ID,slot number,and antenna port.Assuming that the user conducts ideal cell research,the interfering CRScan be generated locally.Applying LS CE,the interfering channel can be estimated with

    According to(11),the data RE of serving cellb-ecomes interference with relatively high power.Thus,the estimation in(11)is inaccurate.Numerical studies in[17]show that the distribution of the interference signal is close to Gaussian for a larger RB and non-Gaussian for a smaller.However,the mean of the distribution converges to 0.Therefore,the expectation of(11)can be derived:

    Equation(12)provides a good estimation of mean value of the interfering channel.This value can be estimated by using a moving-average window in the time dimension(Fig.4).If the moving-average window of length M is within the coherence time of the channel,could be approximated by. The procedure of the interfering-channel estimation is show in Fig.4.

    ▲Figure 4.Interfering-channel estimation.

    The IC algorithm should set the correct antenna number and bandwidth of the interfering cell for interfering-cell CE and interference modelling block.Usually this information is not available at the UE unless the UE decides to hand over to that cell.Therefore,the antenna number and bandwidth of the interfering cell need to be estimated at the UE.

    A straightforward method for interfering-cell CE is to enable the IC control block to always set the maximum possible bandwidth and number of antennas,i.e.,20 MHz and 4 antennas,so that the interfering-cell CE and interference modelling block estimates the channel accordingly.If the actual bandwidth is less than 20 MHz,the power of the pilots outside the signal band will be zero.In the mathematical form,the estimation of the channel that is out of the signal bandwidth is

    Equation(13)indicates that the estimation of the neighbouring cell channel could filter out the interference and noise by moving average.Therefore,the power derived from the channel estimation is reliable way of detecting the signal bandwidth.A similar approach could be taken for detecting the number of antennas as well.

    3.3 Interfering-Signal Reconstruction and Reduction

    After estimating CFO,TO,and the channel response,the estimated interference signal can be reconstructed on the basis of the local time-domain CRS.The relative timing offsetdis potentially larger than the duration of CP,which causes ISI within the OFDM window of a desired signal.Thus,reconstructing a frequency-domain interference signal symbol by symbol could result in inaccurate IC.This algorithm reconstructs the interference signal in the time domain and subtracts it from the received signal in time domain:

    4 Simulation Results

    In this section,we evaluate the performance of the IC algorithm using Monte Carlo simulation.We simulate a typical twocell interference scenario(Fig.1).The serving cell is set to work in MBSFN mode with 10 MHz bandwidth and different modulation and coding schemes to deliver the service.The interfering cell transmits a normal ABS with a bandwidth of 5 MHz.During the ABS,the CRS overlaps the data RE of desired signal,which causes inter-cell interference.The desired and interfering signal both pass through the time-varying channel with a delay spread smaller than the duration of CP.In the simulation,the WINNER II C2(EVA)[18]channel model is used with different Doppler frequency determine the effective-ness of IC under different channel conditions.The arrival time of desired and interfering signal is adjusted to determine the effect of relative timing offset.In addition,different CFOs are applied to the interfering signal to evaluate the effect of CFO.To generate the correct PSS,SSS,and CRS for IC,the user is assumed to conduct an ideal cell search.

    Figs.5a to d show BLER versus SNR for different IC scenarios.MCS 8 and MCS 16 are used.The signal is transmitted via EVA channel with 5 Hz Doppler frequency and with different SNRs.The antenna multiplex mode is set to SIMO and MIMO. The block error rate(BLER)is a performance criteria and is calculated on the basis of 10,000 block transmissions.The BLER of transmission without interference is used as the reference.Fig.5 also shows the performance with and without IC(red and grey curves,respectively).The inter-cell interference degrades performance during the SNR range of interest.When the IC algorithm is used,BLER approaches that of transmission without interference.

    ?Figure 5. BLER performance vs. SNR in different IC scenarios:a)SIMO,MCS 8,b)SIMO,MCS 16,c)MIMO,MCS 8,d)MIMO,MCS 16.

    ?Figure 6. BLER of different Doppler frequency scenarios:a)5 Hz,b)70 Hz,c)150 Hz,d)200 Hz.

    Fig.6 shows the BLER in different Doppler frequency scenarios.SIMO MCS 18 modulation is used in this simulation,and the Doppler frequency varies from 5 Hz to 200 Hz.The BLER in the case of no interference is the reference(blue curve).The BLER in the case of interference and IC are shown by the grey and red curves,respectively.In Figs.6a-d,IC significantly improves the BLER for different SNR and Doppler frequencies.This proves the robustness of the IC algorithm.

    Fig.7 shows the effect of CFO on BLER when the proposed IC algorithm and combined IC(comIC)algorithm in[5]are used.The performance of the algorithm in[5]gradually degrades as CFO increases.On the contrary,there is no significant degradation in performance using the proposed algorithm. This proves the effectiveness of frequency synchronization when the CFO is large.

    ▲Figure 7.BLER performance versus frequency offset.

    ▲Figure 8.BLER performance versus timing offset.

    Fig.8 shows the effect of TO on BLER,when MCS 22 modulation is used.The channel is set at EVA 5Hz,and SNR is set at 16 dB.The performance of proposed IC algorithm is shown by the red curve,and the performance of the comIC algorithm in[5]is shown by the grey curve.The red curve shows that proposed IC algorithm greatly improves BLER when there is a short delay or a very long delay(the inference pilot almost overlaps the following symbol).When the delay is larger than half an OFDM symbol,the BLER for comIC increases,which means that timing synchronization is required.The red curve shows that IC with timing synchronization achieves results in robust performance within the TO range of interest.

    5 Conclusions

    This paper discusses cancellation of inter-cell interference caused by the CRS at the edge of a cell in a multilayer cellular network.This paper describes a signal model that takes into account the interfering signal from a neighboring cell,channel effect,and timing and frequency offset.Using this model,we estimate the TO,CFO,and interfering channel.The interfering signal is then reconstructed locally.Finally,the interference is alleviated by subtracting the reconstructed interference signal. The computer simulation shows this IC algorithm significantly improves performance in different channel conditions.In future work,we will generalize the proposed scheme to non-OFDM cells,such as sparse codebook multiple-access(SCMA)cells and non-orthogonal multiple-access(NOMA)cells,which will also be used in 5G networks.

    [1]H.Baligh,M.Hong,W.-C.Liao,et al.,“Cross layer provision of future cellular networks,”IEEE Signal Processing Magazine,vol.31,no.6,pp.56-68,Nov. 2014.

    [2]S.Deb,P.Monogioudis,J.Miernik,and J.P.Seymour,“Algorithms for enhanced inter-cell interference coordination(eICIC)in LTE HetNets,”IEEE/ ACM Transaction on Networking,vol.22,no.1,pp.137-150,F(xiàn)eb.2014.doi: 10.1109/TNET.2013.2246820.

    [3]Qualcomm Inc,“Enabling communication in harsh interference scenarios,”R4-102350,3GPP-RAN WG4 AH#10-03,Bratislava,Jul.2010.

    [4]Qualcomm Inc,“Link level simulations for FeICIC with 9dB cell range expansion,”R4-123313,3GPP-RAN WG4#63,Prague,May 2012.

    [5]M.Huang and W.Xu,“Macro-femto inter-cell interference mitigation for 3GPP LTE-A downlink,”in IEEE Wireless Communications and Networking Conference Workshops,Paris,F(xiàn)rance,Apr.2012,pp.75-80.doi:10.1109/ WCNCW.2012.6215544.

    [6]B.E.Priyanto,S.Kant,F(xiàn).Rusek,et al.,“Robust UE receiver with interference cancellation in LTE advanced heterogeneous network,”in IEEE 78th Vehicular Technology Conference,Las Vegas,USA,Sept.2013,pp.1-7.doi:10.1109/VTCFall.2013.6692396.

    [7]H.Nguyen-Le,T.Le-Ngoc,and C.C.Ko,“RLS-basedjoint estimation and tracking of channel response,sampling,and carrier frequency offsets for OFDM,”IEEE Transaction on Broadcasting,vol.55,no.1,pp.84-94,Mar.2009.doi: 10.1109/TBC.2008.2012361.

    [8]Evolved Universal Terrestrial Radio Access(E-UTRA);Physical Channels and Modulation,3GPP TS 36.211,F(xiàn)eb.2013.

    [9]J.-J.van de Beek,M.Sandell,and P.O.B?rjesson,“ML estimation of time and frequency offset in OFDM systems,”IEEE Transactions on Signal Processing,vol.45,no.7,pp.1800-1805,Jul.1997.doi:10.1109/78.599949.

    [10]M.Speth,D.Daecke,and H.Meyr,“Minimum overhead burst synchronization for OFDM based broadband transmission,”in IEEE Global Telecommunica-tions Conference,Sydney,Australia,Nov.1998,pp.2777-2782.doi:10.1109/ GLOCOM.1998.776494.

    [11]C.C.Ko,R.Mo,and M.Shi,“A new data rotation based CP synchronization scheme for OFDM systems,”IEEE Transaction on Broadcasting,vol.51,no.3,pp.315-321,Sept.2005.doi:10.1109/TBC.2005.851135.

    [12]J.-S.Baek and J.-S.Seo,“Effective symbol timing recovery based on pilot-aided channel estimation for MISO transmission mode of DVB-T2 system,”IEEE Transaction on Broadcasting,vol.56,no.2,pp.193-200,Jun.2010.doi: 10.1109/TBC.2010.2049054.

    [13]X.Wang,T.T.Tjhung,Y.Wu,and B.Caron,“SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization,”IEEE Transaction on Broadcasting,vol.49,no.2,pp.170-177,Jun.2003.doi:10.1109/TGRS.2003.810271.

    [14]Y.-H.Tsai and T.-H.Sang,“A new timing synchronization and cell search procedure resistant to carrier frequency offsets for 3GPP-LTE downlink,”in First IEEE International Conference on Communications in China,Beijing,China,Aug.2012,pp.334-338.doi:10.1109/ICCChina.2012.6356903.

    [15]J.-J.van de Beek,O.Edfors,M.Sandell,et al.,“On channel estimation in OFDM systems,”in IEEE 45th Vehicular Technology Conference,Chicago,USA,Jul.1995,pp.815-819.doi:10.1109/VETEC.1995.504981.

    [16]V.Srivastava,C.Ho,P.Fung,and Sumei Sun,“Robust MMSE channel estimation in OFDM systems with practical timing synchronization,”in IEEE Wireless Communications and Networking Conference,Atlanta,USA,Mar.2004,pp.711-716.doi:10.1109/WCNC.2004.1311273.

    [17]C.Feng,H.Cui,M.Ma,and B.Jiao,“On statistical properties of co-channel interference in OFDM systems,”IEEE Communication Letters,vol.17,no.12,pp.2328-2331,Oct.2013.doi:10.1109/LCOMM.2013.101813.131297.

    [18]Evolved Universal Terrestrial Radio Access(E-UTRA),User Equipment(UE)Radio Transmission and Reception,3GPP TS 36.101,Jul.2013.

    Manuscript received:2014-09-18

    Biographiesphies

    Wei Li(wei.li@beds.ac.uk)received his BEng degree from the University of Electronic Science and Technology of China in 2010.He is currently working towards his PhD degree at the University of Bedfordshire,UK,and working with Aeroflex UK on a project looking at the baseband signal process problem in LTE networks. His research interests include signal processing for mobile communications,cognitive radio,OFDM channel estimation,and cooperative communications via relays.

    Yue Zhang(yue.zhang@beds.ac.uk)is currently senior lecturer in the Department of Computer Science and Technology,University of Bedfordshire.He is also on industry secondment from the Royal Academy of Engineering working with Aeroflex UK on a high-throughput wireless measurement platform project.He obtained his BEng and MEng degrees from Beijing University of Post and Telecommunications in 2001 and 2004.He received his PhD degree from Brunel University,UK,in 2008.He has worked as a research engineer for the EU IST FP6 project called PLUTO.He then worked as a signal processing design engineer at Anritsu.He was responsible for RF/IF,digital,and DSP design for various wireless communication systems.His research interests include signal processing,wireless communications systems,MIMO-OFDM systems,radio propagation model,and multimedia and wireless networks.He is a member of IEEE and IET.

    Li-Ke Huang(li-ke.huang@aeroflex.com)is a technical and research manager at Aeroflex UK.He develops testing and measurement technologies for wireless systems.He specializes in transceiver algorithms and architecture designs for all major wireless communication standards.He is responsible for products and technologies R&D.His research interests include communication system designs and signal processing algorithms and architectures.He received his BSc degree in electronic engineering at Shenzhen University,China,in 1998.He received his PhD degree in communication and signal processing from Imperial College London in 2003.

    Call for Papers ZTE Communications Special Issue on Recent Advances in Smart Grid

    The smart grid is the next generation electric grid that enables efficient,intelligent,and economical power generation,transmission,and distribution.It has attracted significant attentions and become a global trend due to the immense potential benefits including enhanced reliability and resilience,higher operational efficiency,more efficient energy consumption,and better power quality.

    This special issue expects to address smart grid issues related to data sensing,data communications and data networking,including high-level ideology/methodology,concrete smart grid inspired data communications and networking technologies,smart grid system architecture,QoS,energy-efficiency,and fault tolerance in smart grid systems,management of smart grid systems,and real-world deployment experiences.

    The goal of this SI is to highlight and systematically address the challenges arising from smart grid with particular focus on communications and network aspects.The SI will present original research articles that cover the following subjects(but are not limited to):

    ·Smart grid inspired data sensing technologies,modelling,algorithms and systems including energy-efficient sensors and actuators for smart grid

    ·Smart grid inspired data communication and networking technologies,modelling,algorithms

    ·Smart metering and advanced measurement infrastructure

    ·Demand response management(DRM)

    ·Energy-efficient smart grid systems

    ·Quality of Service assurance in smart grid systems

    ·Security and privacy in smart grid systems

    ·Reliability,robustness,fault-tolerance,and self-healing

    ·Smart grid system management and adaptation

    ·Application-layer service engineering for smart grid

    ·Testing and evaluation tools

    ·Prototype systems and real-world deployment experiences

    Manuscript Submission

    Please email your submission in pdf format to kunyang@essex.ac. uk,yingfei@hawaii.edu and niuzhs@tsinghua.edu.cn.The email subject shall contain“ZTE-SI-SG”.

    Important Date

    Manuscript Submission Due:25thApril 2015

    Acceptance Notification:15thMay 2015

    Final Manuscript Due:5thJune 2015

    Publication:September 2015

    Guest Editors

    Kun Yang,School of Computer Science&Electronic Engineering,University of Essex,United Kingdom,Email: kunyang@essex.ac.uk

    Yingfei Dong,Dept.of Electrical and Computer Engineering,University of Hawaii,USA,Email:yingfei@hawaii.edu

    Zhisheng Niu,Department of Electronic Engineering,Tsinghua University,China,Email:niuzhs@tsinghua.edu.cn

    99国产精品免费福利视频| 欧美亚洲日本最大视频资源| 中文字幕高清在线视频| 精品国产国语对白av| 韩国av一区二区三区四区| 国产激情欧美一区二区| 日韩大尺度精品在线看网址 | 丝袜在线中文字幕| 一区二区三区高清视频在线| 久久婷婷成人综合色麻豆| 大型黄色视频在线免费观看| 亚洲专区中文字幕在线| 亚洲精品一区av在线观看| 亚洲第一av免费看| 美女大奶头视频| 18禁国产床啪视频网站| 90打野战视频偷拍视频| 很黄的视频免费| 国产成人av激情在线播放| 色老头精品视频在线观看| 侵犯人妻中文字幕一二三四区| 丁香六月欧美| 亚洲在线自拍视频| 操美女的视频在线观看| 少妇的丰满在线观看| 国产精品久久电影中文字幕| 亚洲欧洲精品一区二区精品久久久| av天堂久久9| 亚洲在线自拍视频| 一级毛片精品| 啦啦啦韩国在线观看视频| 日日摸夜夜添夜夜添小说| 国产精品亚洲美女久久久| 国产精品1区2区在线观看.| 日本免费一区二区三区高清不卡 | 后天国语完整版免费观看| 午夜老司机福利片| 亚洲精品国产一区二区精华液| 亚洲欧美日韩高清在线视频| 韩国av一区二区三区四区| 一二三四在线观看免费中文在| 一进一出抽搐gif免费好疼| 在线视频色国产色| 深夜精品福利| 一夜夜www| av视频免费观看在线观看| 中文字幕人成人乱码亚洲影| 18禁国产床啪视频网站| 日韩三级视频一区二区三区| 亚洲性夜色夜夜综合| av视频在线观看入口| 1024视频免费在线观看| 久久亚洲真实| 亚洲色图 男人天堂 中文字幕| 久久久精品国产亚洲av高清涩受| 19禁男女啪啪无遮挡网站| 国产亚洲精品久久久久5区| bbb黄色大片| 成人欧美大片| 日韩欧美国产一区二区入口| 国产主播在线观看一区二区| 国产成人精品在线电影| 日韩大码丰满熟妇| 高清毛片免费观看视频网站| 女人精品久久久久毛片| 人人澡人人妻人| 99国产精品99久久久久| 国产精品免费视频内射| av天堂在线播放| 日韩 欧美 亚洲 中文字幕| 1024香蕉在线观看| 亚洲人成77777在线视频| 免费女性裸体啪啪无遮挡网站| av视频在线观看入口| 午夜免费激情av| 老司机午夜十八禁免费视频| 久久热在线av| 成年版毛片免费区| 国产男靠女视频免费网站| 国产不卡一卡二| 欧美日本中文国产一区发布| 免费不卡黄色视频| 女人爽到高潮嗷嗷叫在线视频| 女人高潮潮喷娇喘18禁视频| 久久亚洲真实| 国产日韩一区二区三区精品不卡| 丝袜在线中文字幕| 叶爱在线成人免费视频播放| www.精华液| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| www国产在线视频色| 国产精品乱码一区二三区的特点 | 熟女少妇亚洲综合色aaa.| 老熟妇乱子伦视频在线观看| 久久婷婷人人爽人人干人人爱 | 国产精品综合久久久久久久免费 | 久久热在线av| 男女午夜视频在线观看| 免费搜索国产男女视频| 国产欧美日韩一区二区三| 啦啦啦免费观看视频1| 性少妇av在线| 亚洲欧美日韩高清在线视频| 一区二区三区激情视频| 国产主播在线观看一区二区| 久久精品成人免费网站| 国产成人av教育| 精品第一国产精品| 法律面前人人平等表现在哪些方面| 国产成人免费无遮挡视频| 亚洲成人免费电影在线观看| 国产欧美日韩精品亚洲av| 亚洲五月婷婷丁香| 欧美大码av| 欧美日韩瑟瑟在线播放| 久久人人精品亚洲av| 国产一区二区在线av高清观看| 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| 999久久久国产精品视频| 99在线人妻在线中文字幕| 这个男人来自地球电影免费观看| 日韩欧美在线二视频| www日本在线高清视频| 男女午夜视频在线观看| 最近最新中文字幕大全免费视频| 欧洲精品卡2卡3卡4卡5卡区| 国产国语露脸激情在线看| 亚洲情色 制服丝袜| 一区二区三区激情视频| 久久久久久大精品| 成年女人毛片免费观看观看9| 精品国产国语对白av| 嫩草影视91久久| 久久香蕉国产精品| 日本vs欧美在线观看视频| 91在线观看av| 亚洲第一av免费看| 亚洲精品久久国产高清桃花| 欧美最黄视频在线播放免费| av中文乱码字幕在线| 成人亚洲精品一区在线观看| 女人精品久久久久毛片| 国产乱人伦免费视频| 午夜a级毛片| 一个人观看的视频www高清免费观看 | 精品熟女少妇八av免费久了| 中文字幕av电影在线播放| 咕卡用的链子| 国产成人系列免费观看| 日韩大码丰满熟妇| 麻豆一二三区av精品| 波多野结衣高清无吗| 欧美日韩中文字幕国产精品一区二区三区 | 久久人人爽av亚洲精品天堂| 亚洲 国产 在线| or卡值多少钱| 亚洲精品国产一区二区精华液| 97人妻天天添夜夜摸| 他把我摸到了高潮在线观看| 国产麻豆成人av免费视频| 色综合婷婷激情| 欧美+亚洲+日韩+国产| 香蕉丝袜av| 99久久综合精品五月天人人| 亚洲欧美激情在线| 久久久久久大精品| 多毛熟女@视频| 少妇 在线观看| 亚洲av美国av| 97超级碰碰碰精品色视频在线观看| 欧美国产精品va在线观看不卡| 久久人人精品亚洲av| 亚洲一码二码三码区别大吗| 国产精品一区二区免费欧美| 亚洲少妇的诱惑av| 色精品久久人妻99蜜桃| 日日摸夜夜添夜夜添小说| www.自偷自拍.com| 中亚洲国语对白在线视频| 久久人妻av系列| 老司机靠b影院| 午夜福利免费观看在线| 99久久综合精品五月天人人| 国产一级毛片七仙女欲春2 | 亚洲免费av在线视频| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜一区二区| 亚洲成a人片在线一区二区| 免费在线观看视频国产中文字幕亚洲| 免费女性裸体啪啪无遮挡网站| 午夜久久久久精精品| 极品教师在线免费播放| 在线天堂中文资源库| 国产午夜精品久久久久久| av有码第一页| 久久久精品欧美日韩精品| 精品久久久久久久毛片微露脸| 长腿黑丝高跟| or卡值多少钱| 欧美在线一区亚洲| 无遮挡黄片免费观看| 乱人伦中国视频| 一进一出抽搐gif免费好疼| 亚洲少妇的诱惑av| 在线观看免费视频网站a站| 国产av一区二区精品久久| 亚洲av成人av| 午夜亚洲福利在线播放| 久久久久久久精品吃奶| 久久天躁狠狠躁夜夜2o2o| 久久九九热精品免费| 别揉我奶头~嗯~啊~动态视频| 女警被强在线播放| 无人区码免费观看不卡| 欧美中文日本在线观看视频| 伦理电影免费视频| 黑人操中国人逼视频| 美女国产高潮福利片在线看| 欧美亚洲日本最大视频资源| 男女下面进入的视频免费午夜 | 国产高清视频在线播放一区| 久久亚洲精品不卡| 少妇裸体淫交视频免费看高清 | 国产亚洲欧美98| 国产高清videossex| 国产成人免费无遮挡视频| 激情在线观看视频在线高清| 日韩欧美国产一区二区入口| 午夜福利一区二区在线看| 亚洲狠狠婷婷综合久久图片| 欧美成人一区二区免费高清观看 | 日本vs欧美在线观看视频| 中文字幕色久视频| 欧美一级a爱片免费观看看 | 色播亚洲综合网| 国产成人一区二区三区免费视频网站| 亚洲国产精品久久男人天堂| 亚洲av成人一区二区三| 精品少妇一区二区三区视频日本电影| 成人国产一区最新在线观看| 国产真人三级小视频在线观看| 99热只有精品国产| 成人免费观看视频高清| 亚洲国产精品成人综合色| 国产色视频综合| www国产在线视频色| 国产在线精品亚洲第一网站| 国产高清videossex| 丁香六月欧美| 成人av一区二区三区在线看| 精品一品国产午夜福利视频| 亚洲av日韩精品久久久久久密| 18禁裸乳无遮挡免费网站照片 | 亚洲性夜色夜夜综合| 视频在线观看一区二区三区| 99久久精品国产亚洲精品| 午夜福利成人在线免费观看| 黄色a级毛片大全视频| 一边摸一边抽搐一进一出视频| 日韩中文字幕欧美一区二区| 亚洲国产精品sss在线观看| 在线观看免费视频网站a站| 美女高潮到喷水免费观看| 18禁美女被吸乳视频| 在线观看免费日韩欧美大片| 精品日产1卡2卡| 熟妇人妻久久中文字幕3abv| 国产99白浆流出| 在线永久观看黄色视频| 91成年电影在线观看| 女警被强在线播放| 国产激情欧美一区二区| 黄色 视频免费看| 一进一出好大好爽视频| 免费看美女性在线毛片视频| 免费在线观看黄色视频的| 黄色丝袜av网址大全| 国产亚洲精品综合一区在线观看 | 69av精品久久久久久| 久久九九热精品免费| 精品欧美一区二区三区在线| 午夜日韩欧美国产| 亚洲全国av大片| 精品乱码久久久久久99久播| 久久精品人人爽人人爽视色| 亚洲成av人片免费观看| 久久伊人香网站| 一本大道久久a久久精品| 一级黄色大片毛片| 国产高清激情床上av| 一级片免费观看大全| 中文字幕色久视频| 亚洲最大成人中文| 一级a爱片免费观看的视频| 中国美女看黄片| 久久人人爽av亚洲精品天堂| 黄色 视频免费看| 黄网站色视频无遮挡免费观看| 精品国产一区二区三区四区第35| 免费搜索国产男女视频| 可以免费在线观看a视频的电影网站| 人人澡人人妻人| 精品国产国语对白av| 在线观看www视频免费| 国产亚洲av高清不卡| 欧美+亚洲+日韩+国产| 久久久国产欧美日韩av| 国产成人系列免费观看| 精品乱码久久久久久99久播| 亚洲aⅴ乱码一区二区在线播放 | 天天一区二区日本电影三级 | or卡值多少钱| 精品欧美国产一区二区三| 精品一区二区三区四区五区乱码| 啦啦啦观看免费观看视频高清 | 国产av精品麻豆| 极品人妻少妇av视频| 99精品在免费线老司机午夜| 黄色 视频免费看| 99热只有精品国产| 18禁裸乳无遮挡免费网站照片 | 亚洲精品美女久久av网站| 18禁裸乳无遮挡免费网站照片 | 操出白浆在线播放| 动漫黄色视频在线观看| 国产xxxxx性猛交| 国产高清有码在线观看视频 | 免费在线观看日本一区| 变态另类成人亚洲欧美熟女 | 精品日产1卡2卡| 亚洲自偷自拍图片 自拍| 人人妻人人澡欧美一区二区 | 最新美女视频免费是黄的| 精品国产亚洲在线| 久久久国产精品麻豆| 99久久精品国产亚洲精品| 熟妇人妻久久中文字幕3abv| 在线观看免费视频网站a站| 国产成人影院久久av| 高潮久久久久久久久久久不卡| 悠悠久久av| 丝袜美腿诱惑在线| 精品午夜福利视频在线观看一区| 在线十欧美十亚洲十日本专区| 97人妻精品一区二区三区麻豆 | 欧美av亚洲av综合av国产av| 国内毛片毛片毛片毛片毛片| 国内精品久久久久久久电影| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品91蜜桃| 精品国产美女av久久久久小说| 久久久久久久久久久久大奶| svipshipincom国产片| 9热在线视频观看99| 亚洲国产看品久久| 国产精品 国内视频| 国产精品永久免费网站| 侵犯人妻中文字幕一二三四区| 色综合亚洲欧美另类图片| 老鸭窝网址在线观看| 亚洲欧美激情综合另类| 欧美 亚洲 国产 日韩一| 日韩成人在线观看一区二区三区| 女性生殖器流出的白浆| 丝袜人妻中文字幕| 国产精品一区二区在线不卡| 九色亚洲精品在线播放| 国产主播在线观看一区二区| 一边摸一边抽搐一进一小说| 成人18禁在线播放| 女同久久另类99精品国产91| 精品国产美女av久久久久小说| 久久久久国内视频| 人人澡人人妻人| 自线自在国产av| 极品教师在线免费播放| 女人被狂操c到高潮| 成人国产综合亚洲| 岛国视频午夜一区免费看| 18禁黄网站禁片午夜丰满| 国产精品野战在线观看| 最好的美女福利视频网| 亚洲九九香蕉| 黄色片一级片一级黄色片| 一级毛片高清免费大全| 天天躁夜夜躁狠狠躁躁| 亚洲狠狠婷婷综合久久图片| 国产成人欧美在线观看| 757午夜福利合集在线观看| 一a级毛片在线观看| 给我免费播放毛片高清在线观看| 一级毛片女人18水好多| 日韩精品青青久久久久久| 午夜亚洲福利在线播放| 免费在线观看日本一区| 巨乳人妻的诱惑在线观看| 国产精品久久视频播放| 多毛熟女@视频| 国产精品综合久久久久久久免费 | 亚洲无线在线观看| 中文字幕色久视频| 成年版毛片免费区| 久久精品国产清高在天天线| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 天堂√8在线中文| 精品熟女少妇八av免费久了| 在线国产一区二区在线| 97人妻精品一区二区三区麻豆 | 亚洲欧美日韩无卡精品| 久久久久国内视频| 脱女人内裤的视频| 国产亚洲精品第一综合不卡| 免费搜索国产男女视频| 国产人伦9x9x在线观看| 18禁观看日本| 色播亚洲综合网| 制服人妻中文乱码| 好男人电影高清在线观看| 日韩av在线大香蕉| 亚洲色图综合在线观看| 欧美在线黄色| 久久亚洲真实| 精品一区二区三区av网在线观看| 麻豆久久精品国产亚洲av| 色综合站精品国产| 欧美色欧美亚洲另类二区 | 国产黄a三级三级三级人| 热99re8久久精品国产| 国产精品乱码一区二三区的特点 | 成人亚洲精品av一区二区| 国产视频一区二区在线看| 丝袜美腿诱惑在线| 午夜免费鲁丝| 美女午夜性视频免费| 免费女性裸体啪啪无遮挡网站| 精品日产1卡2卡| 老熟妇仑乱视频hdxx| 琪琪午夜伦伦电影理论片6080| 亚洲av美国av| 国产一卡二卡三卡精品| 精品欧美国产一区二区三| 国产成人精品久久二区二区免费| 免费少妇av软件| 黄片大片在线免费观看| 亚洲国产日韩欧美精品在线观看 | 亚洲国产中文字幕在线视频| 12—13女人毛片做爰片一| 国产亚洲精品久久久久5区| 国产高清videossex| 国产精品久久久久久亚洲av鲁大| 香蕉国产在线看| 欧美精品啪啪一区二区三区| 长腿黑丝高跟| 黑人欧美特级aaaaaa片| 一级a爱片免费观看的视频| 91国产中文字幕| 超碰成人久久| 久久香蕉国产精品| 国产高清videossex| 美女免费视频网站| 制服诱惑二区| 欧美日本视频| 亚洲第一青青草原| 无人区码免费观看不卡| 一边摸一边做爽爽视频免费| 久久中文字幕一级| 多毛熟女@视频| 少妇粗大呻吟视频| 两个人视频免费观看高清| 亚洲天堂国产精品一区在线| 久久婷婷成人综合色麻豆| 极品教师在线免费播放| 亚洲精品国产色婷婷电影| 成人av一区二区三区在线看| 高清黄色对白视频在线免费看| 亚洲 欧美一区二区三区| 国产又爽黄色视频| 国内精品久久久久久久电影| 国产成人欧美| 日本a在线网址| 黑人操中国人逼视频| 国产一区二区在线av高清观看| av天堂久久9| 欧美在线黄色| 欧美色欧美亚洲另类二区 | 成人手机av| 亚洲精品一卡2卡三卡4卡5卡| 黄色视频,在线免费观看| 啦啦啦韩国在线观看视频| 国产精品香港三级国产av潘金莲| 日韩有码中文字幕| 国产视频一区二区在线看| 男女之事视频高清在线观看| 亚洲 欧美一区二区三区| av欧美777| 99久久精品国产亚洲精品| 黑人巨大精品欧美一区二区mp4| 国产av精品麻豆| 精品久久久久久久久久免费视频| 国产又爽黄色视频| 久99久视频精品免费| 精品福利观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av熟女| 精品国内亚洲2022精品成人| 国产精品久久久人人做人人爽| 欧美日韩一级在线毛片| 欧美精品啪啪一区二区三区| 国产一区二区三区综合在线观看| 91麻豆av在线| 久久久久久人人人人人| 久久天躁狠狠躁夜夜2o2o| 丝袜美足系列| 久久亚洲精品不卡| 久久这里只有精品19| 亚洲成人免费电影在线观看| 一级,二级,三级黄色视频| 精品高清国产在线一区| 久久精品国产亚洲av香蕉五月| 热99re8久久精品国产| 亚洲精品中文字幕在线视频| 日本a在线网址| 黄色毛片三级朝国网站| 男女做爰动态图高潮gif福利片 | 精品国内亚洲2022精品成人| 美女高潮喷水抽搐中文字幕| 亚洲第一电影网av| 嫩草影视91久久| 在线观看免费日韩欧美大片| 日韩精品中文字幕看吧| 久久久久久大精品| 人人澡人人妻人| 一区二区日韩欧美中文字幕| 欧美黄色淫秽网站| 国产精品一区二区精品视频观看| 亚洲国产精品sss在线观看| 欧美乱妇无乱码| 色综合婷婷激情| 美女大奶头视频| 日本一区二区免费在线视频| 亚洲熟女毛片儿| 夜夜爽天天搞| 美国免费a级毛片| 日韩三级视频一区二区三区| 久久精品国产99精品国产亚洲性色 | 免费在线观看视频国产中文字幕亚洲| 天天添夜夜摸| 国产精品野战在线观看| 亚洲男人天堂网一区| 午夜成年电影在线免费观看| 亚洲成人精品中文字幕电影| 国产精品秋霞免费鲁丝片| 不卡一级毛片| 制服诱惑二区| 女人被躁到高潮嗷嗷叫费观| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲一级av第二区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲中文日韩欧美视频| АⅤ资源中文在线天堂| 久久国产精品人妻蜜桃| 国产精品久久久久久精品电影 | 校园春色视频在线观看| 国产三级在线视频| 国产麻豆成人av免费视频| 亚洲成人久久性| 久久性视频一级片| 九色亚洲精品在线播放| 国产精品久久久久久人妻精品电影| 欧美激情久久久久久爽电影 | 国产aⅴ精品一区二区三区波| 啦啦啦免费观看视频1| 国产国语露脸激情在线看| 亚洲中文字幕一区二区三区有码在线看 | 成人亚洲精品av一区二区| 伊人久久大香线蕉亚洲五| 国产av又大| 中文亚洲av片在线观看爽| 国产成人精品无人区| 日日爽夜夜爽网站| 两性夫妻黄色片| 国产99白浆流出| 这个男人来自地球电影免费观看| 国产精品乱码一区二三区的特点 | www.熟女人妻精品国产| 精品一品国产午夜福利视频| 亚洲国产中文字幕在线视频| 亚洲第一av免费看| 婷婷丁香在线五月| 国产真人三级小视频在线观看| 成人国语在线视频| 日本免费一区二区三区高清不卡 | 少妇 在线观看| 色播亚洲综合网| 午夜激情av网站| 啪啪无遮挡十八禁网站| 亚洲欧美精品综合一区二区三区| 日本 欧美在线| 少妇 在线观看| 一区在线观看完整版| 女人被躁到高潮嗷嗷叫费观| www.www免费av| 精品不卡国产一区二区三区| 亚洲黑人精品在线| 精品福利观看| 久久久久久久精品吃奶| 777久久人妻少妇嫩草av网站| 一个人观看的视频www高清免费观看 | 亚洲精品一区av在线观看| 欧美色欧美亚洲另类二区 | 99香蕉大伊视频| 久久人人97超碰香蕉20202|