• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy-Efficient Large-Scale Antenna Systems with Hybrid Digital-Analog Beamforming Structure

    2015-10-11 01:37:46ShuangfengHanChihLinZhikunXuQiSunandHaibinLi
    ZTE Communications 2015年1期

    Shuangfeng Han,Chih-Lin I,Zhikun Xu,Qi Sun,and Haibin Li

    (1.Green Communication Research Center,China Mobile Research Institute,Beijing 100053,China;2.Department of Planning and Construction,China Mobile,Beijing 100053,China)

    Energy-Efficient Large-Scale Antenna Systems with Hybrid Digital-Analog Beamforming Structure

    Shuangfeng Han1,Chih-Lin I1,Zhikun Xu1,Qi Sun1,and Haibin Li2

    (1.Green Communication Research Center,China Mobile Research Institute,Beijing 100053,China;2.Department of Planning and Construction,China Mobile,Beijing 100053,China)

    A large-scale antenna system(LSAS)with digital beamforming is expected to significantly increase energy efficiency(EE)and spectral efficiency(SE)in a wireless communication system.However,there are many challenging issues related to calibration,energy consumption,and cost in implementing a digital beamforming structure in an LSAS.In a practical LSAS deployment,hybrid digital-analog beamforming structures with active antennas can be used.In this paper,we investigate the optimal antenna configuration in anN×Mbeamforming structure,where N is the number of transceivers,Mis the number of active antennas per transceiver,where analog beamforming is introduced for individual transceivers and digital beamforming is introduced across allN transceivers.We analyze the green point,which is the point of maximum EE on the EE-SE curve,and show that the log-scale EE scales linearly with SE along a slope of-lg2/N.We investigate the effect ofMon EE for a given SE value in the case of fixed NM and independent N and M.In both cases,there is a unique optimal M that results in optimal EE.In the case of independentN andM,there is no optimal(N,M)combination for optimizing EE.The results of numerical simulations are provided,and these results support our analysis.

    digital beamforming;analog beamforming;hybrid beamforming;energy efficiency;spectral efficiency

    1 Introduction

    Wireless communication systems have developed from first generation to fourth generation to accommodate ever-increasing and diversified mobile traffic.The anticipated thousandfold increase in wireless traffic by 2020 and the push for green communication worldwide create some very tough challenges for 5G system design[1].Massive MIMO,also known as largescale antenna system(LSAS)[2],[3],is a promising green 5G communication scheme that improves both energy efficiency(EE)and spectral efficiency(SE).With full digital beamforming(BF)LSAS can,in theory,perform optimally.When many antennas are implemented to increase beamforming gain,it may not be feasible to implement the same number of transceivers because of excessive demand on real-time signal processing when there is large BF gain[4]and also because of cost and power consumption,especially for mixed-signal devices in a millimeter-wave system.A beamforming structure with a much smaller number of digital transceivers than antennas is therefore more practical and cost-effective.

    To reduce complexity in a LSAS,analog beamforming with active antennas can be considered[5],[6].With analog beamforming,the signal phase on each antenna is controlled by a network of analog phase shifters.In[7]-[9],hybrid analog-digital beamforming strategies were investigated for pre-coding multiple data streams and increasing beamforming gain.In[7],the transmitted signal on each of N digital transceivers travels along all NM RF paths(mixer,PA,and phase shifter),where M is the number of active antennas per transceiver.The signal is summed up before being connected with each antenna element(Fig.1a).Analog beamforming is then introduced over NM RF paths per transceiver,and digital beamforming is introduced over N digital transceivers.The complexity of this structure is high.

    In Fig.1b,the N×M hybrid beamforming structure has N transceivers connected to M antennas.This structure is more practical for base station antenna deployment in 3G and 4G LTE systems,where each transceiver is connected to a column of antennas.With active antennas on each RF path,elevation beamforming can be introduced by applying different phases to each antenna in each column.

    ▲Figure 1.Hybrid beamforming structure

    Recently,there has been growing interest in hybrid beamforming design.The structure in Fig.1a features a precoding solution where only some aspects of the channel(e.g.,angle of arrival and departure)are known at the base station and mobile station[7].The spatial structure of millimeter-wave channels has been further exploited to formulate the single user precoding/combining problem as a sparse reconstruction problem[8].In[4],the authors propose an angle-of-arrival estimation algorithm and beamforming algorithm.In[9],the authors propose a beam-domain RS design that results in better performance than a design based on pure analog beamforming.An outdoor trial of the N×M beamforming structure has been carried out in South Korea[10],but the optimal configuration of M remains an open and very important issue.An improper M may reduce EE even if the SE is satisfactory.

    In this paper,we focus on the N×M hybrid beamforming structure.In particular,we investigate the optimization of both EE and SE in the cases of fixed NM and independent N and M. In section 2,we discuss the relationship between EE and SE. Then,we investigate this relationship at the“green”points,i.e.,the points of maximum EE on the EE-SE curve.We discuss the effect of M on EE for a given SE.We investigate the optimal(N,M)combination that results in the highest EE in the case of independent N and M.In particular,we discuss the optimal M when there is severe inter-user interference.In section 3,we present and discuss numerical simulation results.In section 4,we draw some conclusions from our analyses.

    2 Energy Efficiency and Spectral Efficiency

    2.1 Relationship

    In the N×M structure in Fig.1b,perfect analog beamforming is assumed within M antennas per transceiver,which points to one user(there are N users in total).Assuming there is no inter-user interference,i.e.,there is proper user scheduling(the BS schedules users with orthogonal channels),then the sum capacity of this structure for N users is:

    where W is the bandwidth,P is transmit power of each transceiver(the total power of M antenna PAs),ηPAis the PA efficiency,and N0is the thermal noise density.Without loss of generality,the channel gain is assumed to be the unity.The SE of this structure is

    Because the accurate power model is non-trivial,the following simple power model is used:

    where Ptotalis the total power;NP is the RF power of N transceivers;Pstaticis the static power of the BS,including NP0,which scales with N;Pcommon,which is common for any number of transceivers;and NMPrf_circuit,which scales with NM.The relationship between EE and SE is

    Therefore,for a required SE,the hybrid LSAS beamforming should be designed to maximize EE through joint design of N,M,P0,Pcommon,Prf_circuitandηPA..This paper focuses on the design for an optimal number of active antennas per transceiver M* that ensures the best EE for a given SE.

    2.2 Relationship at Green Points

    When we take the circuit power into consideration,there is a“green”point on the EE-SE curve where EE is at its maximum and is denotedη*EE[11].Here,we discuss two cases for the N×M hybrid beamforming structure:NM=L(i.e.,the total number of antennas is fixed asL,but N and M are variable),and 2)NandMare independent.In the former case,we allow the first-order derivative of EE over SE to be zero:

    Combining(5)with(4),the relationship between theη*EEand corresponding SEη*SEis

    The relationship betweenη*EEandη*SEis further given as

    which indicates that lg(η*EE)scales linearly withη*SEand has a slope of-lg2/N.Similar to the EE-SE relationship in classic Shannon theory,higherη*SEalways leads to lowerη*EE.The relationship betweenη*EEandη*SEdoes not depend on P0,Pcommon,Prf_circuitand W,although from(4),we see thatη*SEandη*EEare based on all the other parameters.

    It is expected,therefore,that the system operates at the green point.Also,it is important thatη*SEsatisfies the system SE requirement,andη*EEshould be high enough.This requires careful design of P0,Pcommon,Prf_circuit,W,ηPA,N and M.For example,when other parameters are given,M can be designed to maximize EE.

    2.3 Optimal M for Maximizing EE for a Given SE

    2.3.1 When N and M are Independent

    It is of practical importance to know how M affects EE for a given SE.If there is one optimal M that results in the highest EE,it is not necessary to deploy too many antennas per transceiver.In the following,we derive the optimal M to maximize EE.We denote the denominator of(4)as f(M):

    The first-and second-order derivatives of f(M)are

    and

    Then f(M)is a quasi-convex function of M.The M*that gives the minimum f(M)is derived by making f'(M)=0:

    Because of the definition ofηEEin(4),EE is a quasi-concave function of M,and the EE is at its maximum when M=M*.When M≤M*,EE monotonically increases with M. When M>M*,EE monotonically decreases with M.In practical system design,for a given SE there is one M*that results in the highest EE.As in(11),M*increases with SE and bandwidth,but decreases with PA power efficiency and Prf_circuit.For a given number of transceivers N,more antennas per transceiver are needed for higher SE.If W increases,the noise power increases correspondingly,and a larger M is needed to achieve the SE.A larger Prf_circuit,however,reduces M*because the increased circuit power may reduce EE.

    2.3.2 When NM is Fixed

    Assume NM=L,the denominator of(4)is written as

    For simplicity of derivation,f(M)is rewritten as

    The first-order derivative of f(M)is

    Respectively,the first-and second-order derivatives of g(M)are

    and

    Therefore,g'(M)monotonically increases with M.In addition,

    Thus,there is unique positive M0so thatg'(M0)=0.When M<M0,g'(M)<0,g(M)monotonically decreases with M. When M>M0,g'(M)>0,g(M)monotonically increases with M.Because g(0)=0 andg(∞)=∞,there is a unique positive M1that is larger than M0and satisfies g(M1)=0.From(14),g(M)determines monotonicity of f(M);therefore,when M<M1,g(M)<0,f'(M)<0.When M>M1,g(M)>0,f'(M)>0. Also,

    Therefore,whenM≤M1,EE monotonically increases with M.When M>M1,EE monotonically decreases with M.In the case of fixed MN,EE is maximum at M=M1,where M1can be obtained by solvingg(M1)=0.

    2.3.3 Optimal(N,M)Combination

    An important issue is finding the N and M that results in the highest EE for a given SE when N and M are not fixed.Combining(11)and(4)the maximum EE for a given SE and N is

    The optimal N can then be calculated:

    We denote the denominator in(4)f(N,M):

    There is no extreme point for f(N,M).The partial derivative of f(N,M)over M is

    which leads to

    The partial derivative of f(N,M)over N is

    which leads to

    The optimal M and N should satisfy(24)and(26).Combining(24)and(26),we get

    This is equivalent to

    However,M in(28)cannot not exist because when 2N-ηSEln2>0,M<0,and when2N-ηSEln2<0, M<0. This is not feasible because M must be positive.

    2.3.4 When Inter-User Interference is Taken into Account

    In subsection 2.3.3,it is assumed there is no inter-user interference.However,in practical systems,inter-user interference may exist.For simplicity,we assume that interference from the kth beam to the nth beam isMηPAPαk,n.Then,EE can be expressed as

    Note that αk,ncan be a function of N and M.For example,consider a linear antenna array with NM elements,where the antenna spacing is half a wavelength.The main beam direction(azimuth)of the analog beamforming for the nth transceiver is ?n=nΔ/N,n=0,…,N-1,and N users are located on the N different main beam directions with same channel gain.We approximate αk,n:

    It seems difficult to determine how M affects EE in the cases that fixed NM and independent N and M are used.In some special cases,for example,in the interference-limited region,increasing the transmit power P does not improve spectral efficiency and actually reduces energy efficiency.When inter-us-er interference is negligible,the analysis in previous subsections holds.

    3 Simulation Results

    3.1Mvs EE When There is No Inter-User Interference

    ▲Figure 2.Mvs EE with different SE values(N=2).

    Assume Pcommon=50 W,Prf_circuit=1 W,P0=1 W,W=2×107Hz,N0=10-17dBm/Hz,ηPA=0.375 and the channel gain is-100 dB.Fig.2 shows the effect of M on EE for N=2 and where M is variable.Five spectral efficiencies between 4 bps/Hz to 20 bps/Hz are simulated.On each M versus EE curve,there is a unique M that results in the highest EE.For example,when SE is 20 bps/Hz,the M*is 33.When SE is 12bps/Hz,M*is 8.When M is smaller than optimal,more antennas per transceiver improve EE by providing beamforming gain.When M is greater than optimal,the extra power in the circuit needed by more antennas per transceiver negates any reduction in transmit power so that EE is reduced.

    Fig.3 shows the effect of M on EE when NM is fixed,e.g.,NM=128,and other parameters are the same as those in Fig. 2.Actually,M can only be 1,2,4,8,16,32,64 and 128(not shown),because N and M are both integers.As in the case of independent N and M,there is a unique M on each curve that results in the highest EE.For example,when SE is 48 bps/Hz,the optimal M is 8.In Fig.2,the optimal M increases as SE increases;however,in Fig.3,the optimal M increases as SE decreases.The reason for this is:as SE increases,more transceivers are needed to make the system more energy efficient,and a smaller M(M=L/N)is required.

    ▲Figure 3.Mvs EE for different SE values(NM=128).

    The above analysis can be referred to when designing an optimal LSAS.In a practical system,the required SE may vary according to the traffic load and service types.For example,in Fig.2,the M*for a maximum required SE of 20 bps/Hz is 33. However,when the required SE is reduced to 12 bps/Hz,M*is 8.Therefore,it is important that,in the case of independent N and M,the system is designed with the largest M*for the possible SE range,and the best M is chosen according to the SE requirement via antenna on/off.This can help increase EE according to system traffic load.

    3.2Mvs EE When There is Inter-User Interference

    We assume Pcommon=50W,Prf_circuit=1 W,P0=10 W,W=2× 107Hz,N0=10-17dBm/Hz,ηPA=0.375,and channel gain is 10-10.A linear antenna array with N=10 and half-wavelength antenna spacing is considered.The effect of M on EE is shown in Fig.4,and the inter-user interference is calculated according to(30)(whereΔ=π/3).Ten power levels between P=10 W to P=100 W are simulated.One power level corresponds to one SE value.At each power(and corresponding SE)level,increasing M from 1 to 25 increases EE,but if M goes beyond 25,EE decreases.This is quite different from when there is no inter-user interference and M*is generally different for different SE values.The possible reason for this is that the coverage of N(N=10)beams is onlyΔ(π/3),and there is too much inter-beam interference.Therefore,M has to be large enough to reduce this interference and increase EE.

    ▲Figure 4.Mvs EE with different power levels.

    ▲Figure 5.Mvs EE for different power levels.

    WhenΔ increases to π,the beam spacing increases from π 30toπ 10,resulting in less inter-beam(inter-user)interference.Fig.5 shows the effect of M on EE.The trend is similar to that in the case of no inter-user interference:at each power level,there is one M*that results in the highest EE.Interuser interference can be mitigated via digital precoders whose design is based on certain channel assumptions and that result in increased EE.One straightforward method is to use beam domain downlink reference signals via analog beamforming to estimate 1)the angle of departure of each user,2)the effective channel with analog beamforming,and 3)the inter-beam(interuser)interference.Then,digital precoding can further increase the multiuser beamforming gain.EE-SE optimization depends on different multiuser beamforming algorithms and is more complicated,especially in the case of fixed NM.

    4 Conclusions

    In this paper,an N×M hybrid analog-digital LSAS beamforming structure is investigated.In this structure,the number of transceivers can be much smaller than the number of antennas.We analyzed the relationship between EE and SE to determine the optimal design of the N×M beamforming structure. In particular,we analyzed two cases:fixed NM and independent N and M.We analyzed the EE-SE relationship at the green point and showed that the log-scale EE scales linearly with SE along a slope-lg2/N.In both cases,a unique number of antennas M per transceiver results in the optimal EE for a given SE.In the case of independent N and M,there is no optimal(N,M)combination that results in optimal EE.When interuser interference is negligible,the above results hold;when there is severe inter-user interference,the optimal M can be quite similar for each SE value.The findings in this paper can be used as guidelines for optimizing an LSAS design.

    Acknowledgement

    The authors would like to thank the editors and the reviewers for their very helpful comments and review.The authors are also grateful to the team members in the Green Communication Research Center of China Mobile Research Institute.

    [1]C.-L.I,C.Rowell,S.Han,Z.Xu,G.Li,and Z.Pan,“Towards green&soft:a 5G perspective,”IEEE Communication Magazine,vol.52,no.2,pp.66-73,Feb. 2014.doi:10.1109/MCOM.2014.6736745.

    [2]F.Rusek,D.Persson,B.K.Lau,E.Larsson,T.Marzetta,O.Edfors,and F. Tufvesson,“Scaling up MIMO:opportunities and challenges with very large arrays,”IEEE Signal Processing Magazine,vol.30,no.1,pp.40-60,Jan.2013. doi:10.1109/MSP.2011.2178495.

    [3]T.L.Marzetta,“Noncooperative cellular wireless with unlimited numbers of base station antennas,”IEEE Transactions on Wireless Communications,vol.9,no.11,pp.3590-3600,Nov.2010.doi:10.1109/TWC.2010.092810.091092.

    [4]X.Huang,Y.J.Guo,and J.D.Bunton,“A hybrid adaptive antenna array,”IEEE Transactions on Wireless Communications,vol.9,no.5,pp.1770-1779,May 2010.doi:10.1109/TWC.2010.05.091020.

    [5]J.Wang,Z.Lan,C.Pyo,T.Baykas,C.Sum,M.Rahman,J.Gao,R.Funada,F. Kojima,H.Harada,and S.Kato,“Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems,”IEEE Journal on Selected Areas in Communications,vol.27,no.8,pp.1390-1399,2009.doi:10.1109/ JSAC.2009.091009.

    [6]V.Venkateswaran and A.-J.van der Veen,“Analog beamforming in MIMO communications with phase shift networks and online channel estimation,”IEEE Transactions on Signal Processing,vol.58,no.8,pp.4131-4143,2010.doi: 10.1109/TSP.2010.2048321.

    [7]A.Alkhateeb,O.El Ayach,G.Leus,and R.W.Heath,“Hybrid precoding for millimeter wave cellular systems with partial channel knowledge,”in Information Theory and Applications Workshop,San Diego,USA,Feb.2013,pp.1-5. doi:10.1109/ITA.2013.6522603.

    [8]O.El Ayach,S.Rajagopal,S.Abu-Surra,Z.Pi,and R.W.Heath,“Spatially sparse precoding in millimeter wave MIMO systems,”IEEE Transactions on Wireless Communications,vol.13,no.3,pp.1499-1513,Mar.2014.doi: 10.1109/TWC.2014.011714.130846.

    [9]S.Han,C.-L.I,Z.Xu,and S.Wang“Reference signals design for hybrid analog and digital beamforming,”IEEE Communications Letters,vol.18,no.7,pp. 1191-1193,Jul.2014.doi:10.1109/LCOMM.2014.2317747.

    [10]W.Roh,J.-Y.Seol,J.Park,B.Lee,J.Lee,Y.Kim,J.Cho,K.Cheun,and F. Aryanfar,“Millimeter-wave beamforming as an enabling technology for 5G cellular communications:theoretical feasibility and prototype results,”IEEE Communication Magazine,vol.52,no.2,pp.106-113,Feb.2014.doi:10.1109/ MCOM.2014.6736750.

    [11]G.Y.Li,Z.Xu,C.Xiong,C.Yang,S.Zhang,Y.Chen,and S.Xu,“Energy-efficient wireless communications:tutorial,survey,and open issues,”IEEE Wireless Communications,vol.18,no.6,pp.28-35,Dec.2011.doi:10.1109/ MWC.2011.6108331.

    Manuscript received:2014-09-15

    Biographiesphies

    Shuangfeng Han(hanshuangfeng@chinamobile.com)received his MS and PhD degrees in electrical engineering from Tsinghua University in 2002 and 2006.He joined Samsung Electronics as a senior engineer in 2006 and worked on MIMO and MultiBS MIMO.Since 2012,he has been a senior project manager in the Green Communication Research Center of China Mobile Research Institute.His research interests include green 5G,massive MIMO,full-duplex,non-orthogonal multiple access,energy efficiency,and spectral efficiency co-design.

    Chih-Lin I(icl@chinamobile.com)received her PhD degree in electrical engineering from Stanford University.She has worked for numerous world-class companies and research institutes,including AT&T Bell Labs,AT&T HQ,ITRI Taiwan,and ASTRI Hong Kong.She was awarded the Stephen Rice Best Paper Award from IEEE Tranactions on Communications and is a winner of the CCCP National 1000 Talent program.Currently,she is China Mobile's chief scientist of wireless technologies and has established the Green Communications Research Center,spearheading major initiatives including key 5G technology R&D;high EE system architectures,technologies and devices;green energy;and C-RAN and soft base stations.She was an elected Board Member of IEEE ComSoc,Chair of the ComSoc Meetings and Conferences Board,and Founding Chair of the IEEE WCNC Steering Committee.She is currently an Executive Board Member of GreenTouch and a Network Operator Council Member of ETSI NFV.Her research interests are green communications,C-RAN,network convergence,bandwidth refarming,EE-SE co-design,massive MIMO,and active antenna arrays.

    Zhikun Xu(xuzhikun@chinamobile.com)received his BSE and PhD degrees in signal and information processing from Beihang University(BUAA),China in 2007 and 2013. After graduation,he joined the Green Communication Research Center of China Mobile Research Institute as a project manager.His current interests include green technologies,cross-layer resource allocation,advanced signal processing,and transmission techniques

    Qi Sun(sunqiyjy@chinamobile.com)received her BSE and PhD degrees in information and communication engineering from Beijing University of Posts and Telecommunications in 2009 and 2014.After graduation,she joined the Green Communication Research Center of China Mobile Research Institute.Her research interests include MIMO,cooperative communication,and green communications.

    Haibin Li(lihaibin@chinamobile.com)received her MS degree in project management from Beijing University of Posts and Telecommunications,China.She is currently the director of Division of Energy Conservation and Emission Reduction,Department of Planning and Construction,China Mobile Communications Corporation.She has been in charge of energy saving and emission reduction from April 2011 and has 19 years experience in the field of communications planning and construction.She is also the director of Resource Sharing Plan for CMCC and deputy head of the CCSA ST2 and ST4 group.

    Roundup Introduction toZTE Communications

    ZTE Communications is a quarterly,peer-reviewed international technical journal(ISSN 1673-5188 and CODEN ZCTOAK)sponsored by ZTE Corporation.The journal publishes original academic papers and research findings on the whole range of communications topics,including communications and information system design,optical fiber and electro-optical engineering,microwave technology,radio wave propagation,antenna engineering,electromagnetics,signal and image processing,and power engineering.The journal is designed to be an integrated forum for university academics and industry researchers from around the world.ZTE Communications was founded in 2003 and has a readership of 5500.The English version is distributed to universities,colleges,and research institutes in more than 140 countries.It is listed in Inspec,Cambridge Scientific Abstracts(CSA),Index of Copernicus(IC),Ulrich's Periodicals Directory,Norwegian Social Science Data Services(NSD),Chinese Journal Fulltext Databases,Wanfang Data— Digital Periodicals,and China Science and Technology Journal Database.Each issue of ZTE Communications is based around a Special Topic,and past issues have attracted contributions from leading international experts in their fields.

    www.av在线官网国产| 欧美亚洲 丝袜 人妻 在线| 欧美 亚洲 国产 日韩一| av不卡在线播放| 曰老女人黄片| 人妻系列 视频| 美女视频免费永久观看网站| 极品少妇高潮喷水抽搐| 精品亚洲成国产av| 18+在线观看网站| 国产探花极品一区二区| 国产男女超爽视频在线观看| 在线看a的网站| 欧美xxⅹ黑人| 色网站视频免费| 男女啪啪激烈高潮av片| 亚洲欧美成人综合另类久久久| 久久ye,这里只有精品| 一区二区三区乱码不卡18| 欧美成人午夜精品| 天天躁夜夜躁狠狠躁躁| 亚洲第一av免费看| 色94色欧美一区二区| 欧美精品一区二区大全| 免费观看a级毛片全部| 大片电影免费在线观看免费| 青青草视频在线视频观看| 成人无遮挡网站| 亚洲av免费高清在线观看| a级毛色黄片| 日韩视频在线欧美| 国产毛片在线视频| 成人亚洲欧美一区二区av| 人体艺术视频欧美日本| 99国产综合亚洲精品| 国产成人精品福利久久| 母亲3免费完整高清在线观看 | 中文字幕另类日韩欧美亚洲嫩草| a 毛片基地| 大码成人一级视频| 亚洲av欧美aⅴ国产| 国产不卡av网站在线观看| 激情视频va一区二区三区| 久久99热这里只频精品6学生| 精品国产一区二区久久| 亚洲人成77777在线视频| 青春草视频在线免费观看| 9热在线视频观看99| 狂野欧美激情性xxxx在线观看| 国产极品天堂在线| 亚洲性久久影院| 国产爽快片一区二区三区| 最近手机中文字幕大全| 在线观看国产h片| 一级毛片 在线播放| 亚洲精品视频女| 日韩,欧美,国产一区二区三区| 热99久久久久精品小说推荐| 成年人免费黄色播放视频| 国产成人精品在线电影| 满18在线观看网站| 一区二区三区精品91| 最黄视频免费看| 久久久久久伊人网av| 少妇的逼好多水| 黑人欧美特级aaaaaa片| 亚洲国产最新在线播放| 久久久久国产精品人妻一区二区| 国产深夜福利视频在线观看| 久久久欧美国产精品| 国产男女超爽视频在线观看| 一级,二级,三级黄色视频| 七月丁香在线播放| 日韩成人av中文字幕在线观看| av电影中文网址| 九色亚洲精品在线播放| 亚洲欧美一区二区三区国产| 18禁动态无遮挡网站| 丁香六月天网| 男人添女人高潮全过程视频| av.在线天堂| 日本黄大片高清| 一区在线观看完整版| 免费播放大片免费观看视频在线观看| 国产精品秋霞免费鲁丝片| 国产男女内射视频| 免费观看性生交大片5| 国产精品久久久久成人av| 亚洲精品成人av观看孕妇| 欧美成人精品欧美一级黄| 伊人久久国产一区二区| 国产xxxxx性猛交| 熟女av电影| 伦理电影大哥的女人| 永久免费av网站大全| 欧美人与性动交α欧美精品济南到 | 成人毛片60女人毛片免费| a级毛片在线看网站| 免费播放大片免费观看视频在线观看| xxx大片免费视频| 久久久久人妻精品一区果冻| av卡一久久| 国产精品嫩草影院av在线观看| 一边摸一边做爽爽视频免费| 18禁观看日本| 精品视频人人做人人爽| videos熟女内射| 精品99又大又爽又粗少妇毛片| 精品人妻一区二区三区麻豆| 少妇精品久久久久久久| av不卡在线播放| 卡戴珊不雅视频在线播放| 在线观看美女被高潮喷水网站| 五月天丁香电影| 亚洲精品456在线播放app| 男人添女人高潮全过程视频| 亚洲在久久综合| 纵有疾风起免费观看全集完整版| 男人操女人黄网站| 免费久久久久久久精品成人欧美视频 | 99久久中文字幕三级久久日本| 国产高清国产精品国产三级| 日韩免费高清中文字幕av| 日韩一区二区三区影片| 日本欧美视频一区| 久久久久精品人妻al黑| 全区人妻精品视频| 午夜福利网站1000一区二区三区| 日韩伦理黄色片| 国产日韩一区二区三区精品不卡| 亚洲综合精品二区| 啦啦啦啦在线视频资源| 男女无遮挡免费网站观看| 在线天堂中文资源库| 亚洲av欧美aⅴ国产| 一本色道久久久久久精品综合| 日本av手机在线免费观看| 久久久久网色| 天天躁夜夜躁狠狠躁躁| 亚洲成av片中文字幕在线观看 | 美女中出高潮动态图| 伦理电影大哥的女人| 成人毛片60女人毛片免费| 视频区图区小说| 欧美精品国产亚洲| 色视频在线一区二区三区| 欧美 亚洲 国产 日韩一| 如何舔出高潮| 汤姆久久久久久久影院中文字幕| 国产一区二区在线观看av| 天美传媒精品一区二区| 欧美成人午夜精品| 十八禁高潮呻吟视频| 人妻 亚洲 视频| 国产av精品麻豆| 交换朋友夫妻互换小说| 美女主播在线视频| 黑人猛操日本美女一级片| 少妇猛男粗大的猛烈进出视频| 少妇熟女欧美另类| 91成人精品电影| 亚洲成av片中文字幕在线观看 | 久久狼人影院| 性高湖久久久久久久久免费观看| 日本黄大片高清| 少妇被粗大猛烈的视频| 国产激情久久老熟女| 久久精品国产综合久久久 | 国产高清不卡午夜福利| 男女边摸边吃奶| 一本色道久久久久久精品综合| av国产精品久久久久影院| 男人爽女人下面视频在线观看| 欧美成人午夜免费资源| 精品人妻在线不人妻| 老司机影院毛片| 只有这里有精品99| 亚洲国产欧美在线一区| 久久 成人 亚洲| 三级国产精品片| 久久国产精品男人的天堂亚洲 | 男女高潮啪啪啪动态图| 久久韩国三级中文字幕| 好男人视频免费观看在线| 日韩 亚洲 欧美在线| 女的被弄到高潮叫床怎么办| 国产不卡av网站在线观看| 你懂的网址亚洲精品在线观看| 久久精品国产自在天天线| 亚洲av福利一区| 中国国产av一级| 免费观看性生交大片5| 久久精品久久久久久久性| 国产乱人偷精品视频| 色94色欧美一区二区| 国产精品一国产av| 多毛熟女@视频| 美女国产高潮福利片在线看| tube8黄色片| 少妇高潮的动态图| 国产精品无大码| 欧美少妇被猛烈插入视频| 大香蕉97超碰在线| av线在线观看网站| 欧美日本中文国产一区发布| av网站免费在线观看视频| 婷婷色综合大香蕉| 久久热在线av| 亚洲精品日本国产第一区| 狠狠精品人妻久久久久久综合| 久久av网站| 成人毛片60女人毛片免费| 久久久久久伊人网av| 久久青草综合色| 国产精品一二三区在线看| 成年动漫av网址| 寂寞人妻少妇视频99o| 一区二区三区精品91| 一级毛片电影观看| a 毛片基地| 免费少妇av软件| 国产熟女欧美一区二区| 亚洲美女黄色视频免费看| 多毛熟女@视频| 高清欧美精品videossex| 久久久久久人妻| 亚洲国产精品999| 精品人妻偷拍中文字幕| 久久久久久伊人网av| 9191精品国产免费久久| 欧美成人午夜免费资源| 不卡视频在线观看欧美| 欧美精品一区二区免费开放| 成人影院久久| 丝袜脚勾引网站| 国产精品久久久av美女十八| 熟女电影av网| 亚洲精品色激情综合| 国语对白做爰xxxⅹ性视频网站| 免费黄网站久久成人精品| 精品酒店卫生间| 免费在线观看黄色视频的| 男男h啪啪无遮挡| 国产精品久久久久久精品古装| 一区二区日韩欧美中文字幕 | 99香蕉大伊视频| 一区二区三区四区激情视频| 黄色 视频免费看| 亚洲久久久国产精品| 如日韩欧美国产精品一区二区三区| 久久午夜综合久久蜜桃| 国产乱来视频区| 深夜精品福利| 制服诱惑二区| 天美传媒精品一区二区| 中文字幕亚洲精品专区| 亚洲精品美女久久av网站| 成人黄色视频免费在线看| 久久青草综合色| 欧美 日韩 精品 国产| 女性生殖器流出的白浆| 少妇被粗大猛烈的视频| 黄色毛片三级朝国网站| 老熟女久久久| 日韩熟女老妇一区二区性免费视频| 久久精品久久久久久噜噜老黄| 丝袜美足系列| 久久久久久人妻| 99视频精品全部免费 在线| 亚洲国产欧美在线一区| 狂野欧美激情性bbbbbb| 国产精品国产av在线观看| 亚洲精品视频女| 国产精品女同一区二区软件| 久久人人爽人人片av| 在线观看免费视频网站a站| 人成视频在线观看免费观看| 亚洲av福利一区| 女性被躁到高潮视频| 国产精品人妻久久久久久| 汤姆久久久久久久影院中文字幕| 精品第一国产精品| 久久久精品区二区三区| 精品少妇黑人巨大在线播放| 国产欧美日韩综合在线一区二区| 美女内射精品一级片tv| 丝袜喷水一区| 亚洲激情五月婷婷啪啪| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品国产av蜜桃| 色94色欧美一区二区| 七月丁香在线播放| 色婷婷久久久亚洲欧美| 少妇的逼水好多| 大香蕉久久成人网| 亚洲色图综合在线观看| 99久久人妻综合| 久久人妻熟女aⅴ| 精品久久蜜臀av无| 少妇 在线观看| 久久毛片免费看一区二区三区| 只有这里有精品99| 国精品久久久久久国模美| 亚洲国产精品国产精品| 免费观看av网站的网址| 亚洲内射少妇av| 一区二区三区乱码不卡18| 丝袜喷水一区| 日本-黄色视频高清免费观看| 亚洲精品色激情综合| 国国产精品蜜臀av免费| 中文字幕av电影在线播放| 熟妇人妻不卡中文字幕| 赤兔流量卡办理| av网站免费在线观看视频| 人人澡人人妻人| 老女人水多毛片| 交换朋友夫妻互换小说| 黄色怎么调成土黄色| 久久人人97超碰香蕉20202| 精品国产露脸久久av麻豆| 在线观看三级黄色| 麻豆精品久久久久久蜜桃| 国产成人精品福利久久| 十分钟在线观看高清视频www| 亚洲四区av| 久久毛片免费看一区二区三区| 婷婷色综合大香蕉| videossex国产| 午夜免费观看性视频| 日本午夜av视频| 国产精品久久久久久精品电影小说| 久久久精品免费免费高清| 欧美日韩成人在线一区二区| 卡戴珊不雅视频在线播放| videos熟女内射| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 国产xxxxx性猛交| 如日韩欧美国产精品一区二区三区| 久久午夜福利片| 老女人水多毛片| 日韩一本色道免费dvd| 欧美激情国产日韩精品一区| 亚洲国产精品专区欧美| 精品一区二区三区视频在线| 热99久久久久精品小说推荐| 国产精品国产三级国产av玫瑰| 亚洲精品成人av观看孕妇| 寂寞人妻少妇视频99o| 国产av国产精品国产| 国产又爽黄色视频| 制服诱惑二区| 老司机影院成人| 亚洲久久久国产精品| 国产成人91sexporn| 精品福利永久在线观看| 日韩不卡一区二区三区视频在线| 嫩草影院入口| 免费人成在线观看视频色| 国产 一区精品| 人妻人人澡人人爽人人| 国产精品不卡视频一区二区| 亚洲美女视频黄频| 下体分泌物呈黄色| 捣出白浆h1v1| 国产成人精品婷婷| 婷婷成人精品国产| 捣出白浆h1v1| 亚洲欧洲日产国产| 国产无遮挡羞羞视频在线观看| 免费高清在线观看日韩| 91久久精品国产一区二区三区| 亚洲精品成人av观看孕妇| 国产男女超爽视频在线观看| 欧美另类一区| 欧美日韩亚洲高清精品| 国产免费一级a男人的天堂| 久久97久久精品| 久久婷婷青草| 少妇人妻 视频| 日韩一区二区三区影片| 久久久国产精品麻豆| 黑人猛操日本美女一级片| 国产成人欧美| 久久人妻熟女aⅴ| 午夜免费鲁丝| 亚洲精品久久成人aⅴ小说| 两性夫妻黄色片 | 少妇猛男粗大的猛烈进出视频| 久久精品熟女亚洲av麻豆精品| 中文字幕人妻熟女乱码| 亚洲综合精品二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 岛国毛片在线播放| 99久久中文字幕三级久久日本| 久久久久网色| 国产一区二区激情短视频 | 大陆偷拍与自拍| 综合色丁香网| 国产又爽黄色视频| 婷婷色综合大香蕉| 黄色视频在线播放观看不卡| 亚洲经典国产精华液单| 多毛熟女@视频| 乱码一卡2卡4卡精品| freevideosex欧美| 久久午夜福利片| 欧美人与善性xxx| 国产成人精品婷婷| 晚上一个人看的免费电影| 伊人亚洲综合成人网| 国产成人免费无遮挡视频| 婷婷成人精品国产| 欧美激情国产日韩精品一区| 欧美精品人与动牲交sv欧美| 国产极品粉嫩免费观看在线| 青春草亚洲视频在线观看| 亚洲欧美清纯卡通| 久久久久国产精品人妻一区二区| 18+在线观看网站| 黄片无遮挡物在线观看| 欧美精品av麻豆av| 亚洲国产色片| 91精品三级在线观看| 国产麻豆69| 国产亚洲一区二区精品| 成年美女黄网站色视频大全免费| 精品少妇久久久久久888优播| 两个人免费观看高清视频| 少妇的丰满在线观看| 在线观看www视频免费| 人成视频在线观看免费观看| 国产免费一区二区三区四区乱码| 国产毛片在线视频| 九色成人免费人妻av| 涩涩av久久男人的天堂| 日韩中字成人| 亚洲精品第二区| 国产成人精品无人区| videossex国产| 久久久久精品人妻al黑| 多毛熟女@视频| 丝袜喷水一区| 搡女人真爽免费视频火全软件| 一级黄片播放器| 男女免费视频国产| 日本欧美视频一区| 精品一区二区免费观看| 婷婷成人精品国产| 日韩人妻精品一区2区三区| 欧美 亚洲 国产 日韩一| 久久国产精品大桥未久av| 视频中文字幕在线观看| 热99久久久久精品小说推荐| 午夜激情久久久久久久| 久久久国产欧美日韩av| 欧美日韩精品成人综合77777| 国产成人aa在线观看| 日本黄大片高清| videossex国产| 日韩,欧美,国产一区二区三区| av天堂久久9| 精品视频人人做人人爽| 人人妻人人澡人人看| 久久久精品区二区三区| 母亲3免费完整高清在线观看 | 国产欧美另类精品又又久久亚洲欧美| 久久久久久人人人人人| 精品99又大又爽又粗少妇毛片| 亚洲美女搞黄在线观看| 午夜福利网站1000一区二区三区| 啦啦啦视频在线资源免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲一码二码三码区别大吗| 欧美日韩国产mv在线观看视频| 国产成人一区二区在线| √禁漫天堂资源中文www| 日本欧美视频一区| 色婷婷av一区二区三区视频| 男人舔女人的私密视频| 五月伊人婷婷丁香| 国产无遮挡羞羞视频在线观看| 亚洲精品,欧美精品| 97人妻天天添夜夜摸| 人成视频在线观看免费观看| 精品国产国语对白av| 大香蕉久久网| 亚洲色图综合在线观看| 欧美人与善性xxx| 丰满迷人的少妇在线观看| 国产成人午夜福利电影在线观看| 国产男女内射视频| 男人添女人高潮全过程视频| 国产亚洲欧美精品永久| 巨乳人妻的诱惑在线观看| 亚洲av福利一区| 巨乳人妻的诱惑在线观看| 中文精品一卡2卡3卡4更新| 巨乳人妻的诱惑在线观看| 精品午夜福利在线看| 国产高清三级在线| 我的女老师完整版在线观看| 男人舔女人的私密视频| 亚洲欧洲国产日韩| 免费黄网站久久成人精品| 最新中文字幕久久久久| 18禁观看日本| 国产 一区精品| 另类精品久久| av在线观看视频网站免费| 少妇 在线观看| 日韩av在线免费看完整版不卡| 黄色视频在线播放观看不卡| 天天操日日干夜夜撸| a级毛片黄视频| 天天操日日干夜夜撸| 国产片特级美女逼逼视频| 在线看a的网站| 美女国产高潮福利片在线看| 国产女主播在线喷水免费视频网站| 一本久久精品| 香蕉丝袜av| 亚洲综合精品二区| 国产熟女欧美一区二区| 性色avwww在线观看| 精品国产一区二区三区久久久樱花| 久久 成人 亚洲| 国产成人精品福利久久| av在线播放精品| 黄色配什么色好看| 精品少妇久久久久久888优播| 亚洲在久久综合| 久久久久久久精品精品| 人人妻人人爽人人添夜夜欢视频| 两个人看的免费小视频| kizo精华| 成人18禁高潮啪啪吃奶动态图| 亚洲精华国产精华液的使用体验| 免费av中文字幕在线| 考比视频在线观看| 久久久久久伊人网av| 三级国产精品片| 街头女战士在线观看网站| 熟女人妻精品中文字幕| 国产一区二区激情短视频 | 日本与韩国留学比较| 国产乱来视频区| 成人黄色视频免费在线看| 天天躁夜夜躁狠狠躁躁| 免费在线观看黄色视频的| 久久精品国产亚洲av天美| 色婷婷av一区二区三区视频| 日本91视频免费播放| 亚洲国产欧美在线一区| h视频一区二区三区| 少妇的逼好多水| 亚洲丝袜综合中文字幕| 国产片内射在线| 伦精品一区二区三区| 久久 成人 亚洲| 肉色欧美久久久久久久蜜桃| 国产精品熟女久久久久浪| 久久人妻熟女aⅴ| 我要看黄色一级片免费的| 免费观看av网站的网址| 国产精品久久久久久精品电影小说| 成人毛片a级毛片在线播放| 亚洲欧美日韩另类电影网站| 国产黄频视频在线观看| 黄色 视频免费看| 搡女人真爽免费视频火全软件| 97在线人人人人妻| 成人国产av品久久久| 亚洲欧美成人精品一区二区| 亚洲欧洲精品一区二区精品久久久 | 精品一区二区三卡| 一本色道久久久久久精品综合| 夜夜爽夜夜爽视频| 91久久精品国产一区二区三区| 亚洲欧美成人精品一区二区| 日本爱情动作片www.在线观看| 国产精品.久久久| videossex国产| 精品熟女少妇av免费看| 国产黄色视频一区二区在线观看| 超色免费av| 香蕉精品网在线| 少妇人妻久久综合中文| 国产成人精品一,二区| 九色成人免费人妻av| 一区二区日韩欧美中文字幕 | 伦理电影大哥的女人| 我要看黄色一级片免费的| 成人毛片a级毛片在线播放| 一级黄片播放器| 国产精品成人在线| 欧美成人精品欧美一级黄| 国产成人91sexporn| 成年动漫av网址| 两个人看的免费小视频| 国产一区二区三区综合在线观看 | 久久精品人人爽人人爽视色| 又黄又粗又硬又大视频| 一级片免费观看大全| 韩国高清视频一区二区三区| av福利片在线| 少妇精品久久久久久久| 欧美少妇被猛烈插入视频| 精品人妻熟女毛片av久久网站| 国产成人a∨麻豆精品| 在线天堂最新版资源| 久久久久精品性色| av在线观看视频网站免费| 男人舔女人的私密视频|