• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      高碑店湖表層水中雌激素的分布及其光降解影響因素

      2015-10-09 05:00:54張帥王京剛馬晶晶齊維曉
      生態(tài)毒理學(xué)報(bào) 2015年6期
      關(guān)鍵詞:高碑店光降解表層

      張帥,王京剛,馬晶晶,齊維曉, #

      1. 北京化工大學(xué)化學(xué)工程學(xué)院,北京 100029 2. 中國科學(xué)院生態(tài)環(huán)境研究中心,北京 100085

      高碑店湖表層水中雌激素的分布及其光降解影響因素

      張帥1, 2,王京剛1,,馬晶晶2,齊維曉2, #

      1. 北京化工大學(xué)化學(xué)工程學(xué)院,北京 100029 2. 中國科學(xué)院生態(tài)環(huán)境研究中心,北京 100085

      雌激素等內(nèi)分泌干擾物在水體中普遍存在,其在再生水中的存在以及在水體中的遷移轉(zhuǎn)化會(huì)產(chǎn)生潛在的健康和生態(tài)風(fēng)險(xiǎn)。光降解是水體中雌激素消除的主要途徑之一,水體中共存的無機(jī)離子及有機(jī)質(zhì)等對雌激素的光解存在不同的影響。對高碑店湖再生水體中雌激素的污染狀況進(jìn)行了調(diào)查,結(jié)果顯示表層水中天然雌激素雌酮(E1)和人工合成雌激素17α-乙炔基雌二醇(EE2)的濃度最高。在模擬太陽光照射條件下對E1在水溶液中的降解規(guī)律及影響因素進(jìn)行了研究,發(fā)現(xiàn)在模擬1 SUN的光密度條件下,15 min時(shí)E1降解率可達(dá)85%(C0=5 μg·L-1),而氨氮對E1的光降解存在一定的抑制作用,并且抑制作用隨著氨氮的升高而變大。與純水系統(tǒng)相比,高碑店湖表層水基質(zhì)中E1的光降解速率較低,說明整體上氨氮、HCO-3、濁度等因素對E1光降解產(chǎn)生的抑制作用占主導(dǎo)。對雌酮及其降解產(chǎn)物進(jìn)行了紅外光譜分析,結(jié)果顯示1 720 cm-1對應(yīng)的C=O鍵特征峰在光照時(shí)間為0、10和20 min樣品中的強(qiáng)度逐漸減弱,而2 854 cm-1和2 925 cm-1對應(yīng)的脂肪碳的C-H鍵特征峰先增強(qiáng)后減弱,可能是因?yàn)镋1結(jié)構(gòu)中的C-C=O發(fā)生了反應(yīng)生成了C=C-OH,而隨著反應(yīng)的繼續(xù),C=C也被進(jìn)一步氧化,但降解產(chǎn)物的結(jié)構(gòu)需要進(jìn)一步研究推斷。隨著E1的光降解,E1水溶液的內(nèi)分泌干擾活性逐漸下降,氨氮雖然對E1的光降解有一定的抑制作用,但隨著降解反應(yīng)的進(jìn)行E1水溶液的內(nèi)分泌干擾活性依然呈下降趨勢。

      雌酮;再生水;內(nèi)分泌干擾活性;光降解;可見光

      近二十年來,大量學(xué)者報(bào)道了世界范圍內(nèi)水體中內(nèi)分泌干擾物的普遍存在[1-4]。即使在低濃度的內(nèi)分泌干擾物存在條件下,生物體的長期暴露也會(huì)導(dǎo)致生殖生育能力降低、雌性化、幼體的變態(tài)發(fā)育等多方面的危害[1,5]。水體中的內(nèi)分泌干擾物主要來源于污水的排放,尤其是天然雌激素類物質(zhì),其在水體中的主要來源是污水的直接排放。污水處理廠并不能徹底去除這些微量有機(jī)污染物,而且去除率受很多因素影響而變異較大[6]。此外,再生水處理工藝中的氯消毒過程中,含氯消毒劑會(huì)還會(huì)與內(nèi)分泌干擾物的衍生物發(fā)生反應(yīng)生成具有比母體更強(qiáng)內(nèi)分泌活性的產(chǎn)物[7]。

      光降解是水中雌激素消除的主要途徑之一,水中雌激素的紫外光降解已有很多研究[8-9],而在太陽光照下的光降解的研究近幾年來才有報(bào)道[10]。雌激素的光降解包括直接光解和間接光降解,雌激素因?yàn)槟芪?90~360 nm波段之內(nèi)的光,因此直接光解在水體中可能發(fā)揮了較大的作用。對于非直接光解,水中普遍存在的硝酸鹽氮、Fe3+和腐植酸等都會(huì)影響雌激素等有機(jī)物的光降解[11]。Zuo等[12]發(fā)現(xiàn),盡管EE2(17α-乙炔雌二醇)很難被水體中的微生物降解,在入??谔幾匀还庹障聟s可以發(fā)生光降解反應(yīng),在春季光照條件下半衰期小于1.5 d。溶解性有機(jī)質(zhì)會(huì)加速水中雌激素的光降解,因?yàn)槿芙庑杂袡C(jī)碳可以吸收太陽光,其在降解過程中產(chǎn)生的自由基促進(jìn)了雌激素的光降解[13]。目前關(guān)于雌激素在水中的光降解研究多是在純水系統(tǒng)中,在天然水體和再生水體中的研究較少。

      本文研究了高碑店湖再生水體中雌激素的污染狀況,并以天然雌激素為代表,研究模擬太陽光照射條件下其在水溶液中的降解規(guī)律及影響因素,重點(diǎn)研究了京津水體中普遍存在的氨氮對雌激素光降解的影響,同時(shí)對降解過程中雌激素的內(nèi)分泌干擾活性進(jìn)行了測定,以評(píng)價(jià)雌激素在可見光光降解過程中的內(nèi)分泌干擾活性的變化。

      1 材料與方法(Materials and methods)

      1.1樣品的采集

      高碑店湖位于北京東郊,是通惠河從高碑店閘到四惠鐵路橋之間的部分。高碑店湖接納了北京市最大污水處理廠-高碑店污水處理廠的出水,日來水量約200 000 t。湖水還作為中電國華電力股份有限公司北京熱電分公司的直流冷卻用水。

      圖1 采樣點(diǎn)分布圖Fig. 1 The sampling sites in the Gaobeidian Reservoir (1 to 6 in the figure represented the sampling sites)

      2012年4月于高碑店湖采集了6個(gè)表層水樣品,采樣點(diǎn)分布如圖1所示。采集的表層水儲(chǔ)存于4 L的棕色玻璃瓶中用于雌激素含量的測定,另外采集表層水儲(chǔ)存于聚乙烯塑料瓶中用于氮、磷、陰離子、金屬離子等的測定。

      為了測定雌激素的含量,采樣當(dāng)天返回實(shí)驗(yàn)室之后用直徑142 mm的玻璃纖維膜 (Millipore, 0.7 μm孔徑, 450 ℃烘4 h)過濾,獲得濾后水樣品。在調(diào)節(jié)水樣pH至2~3之后,濾后水(4 L)利用HLB小柱(Waters,500 mg,6 mL)富集其中的溶解態(tài)的有機(jī)物。

      2015年1月于1#、4#和6#采樣點(diǎn)采集了表層水樣品以進(jìn)行實(shí)驗(yàn)室模擬實(shí)驗(yàn),樣品過濾后放于4 ℃的冷庫中保存。

      1.2樣品的預(yù)處理與分析檢測

      將富集了有機(jī)物的HLB柱抽干后,分別用甲醇(HPLC,F(xiàn)isher Chemicals,美國)/水(1:3,v/v)、超純水、甲醇/氨水/水(10:2:88,v/v)、超純水各5 mL依次進(jìn)行清洗,目的是去除雜質(zhì)干擾。之后用10 mL叔丁基甲醚(HPLC,J.T. Baker,美國)/甲醇(9:1,v/v)分3次(4 mL、3 mL、3 mL)淋洗,淋洗液被收集在K-D濃縮瓶中。氮?dú)獯抵两珊蠹尤胙苌噭?硅甲基衍生化試劑BSTFA(含1%TMCS)和TMSI(購自AccuStandard,美國)進(jìn)行衍生化,加入內(nèi)標(biāo)氘代芘(AccuStandard,美國)和正己烷(Fisher Chemicals,美國)并定容到0.5 mL后待儀器檢測。

      雌酮、雌三醇和己烯雌酚的標(biāo)準(zhǔn)物質(zhì)購自Dr. Ehrenstorfer(德國),雌二醇、乙炔基雌二醇購自東京化成公司(TCI,日本)。樣品中雌激素用安捷倫GC-MS (7890A-5975C)進(jìn)行定量分析,測定分析條件參考文獻(xiàn)[14]。水中雌酮(E1)、17β-雌二醇(E2)、雌三醇(E3)、己烯雌酚(DES)和17α-乙炔基雌二醇(EE2)的檢出限分別為0.1、0.1、0.23、0.03和0.2 ng·L-1。

      pH、DO、電導(dǎo)率用便攜式水質(zhì)參數(shù)測定儀(Sension156,HACH,美國)在采樣現(xiàn)場測定。水樣經(jīng)過硫酸鉀消解和氧化后,分別利用鉬銻抗分光光度法和紫外分光光度法測定水中總磷(TP)和總氮(TN)的含量。水中NH4-N的含量利用納氏試劑光度法測定,硝酸鹽氮、F-、Cl-等陰離子利用離子色譜儀(Dionex-4500 i,美國)進(jìn)行測定。懸浮物含量(SS)利用稱重過濾一定體積表層水前后0.45 μm孔徑膜的質(zhì)量來計(jì)算。有機(jī)碳含量(NPOC)利用有機(jī)碳分析儀(TOC-VCPH,Shimadzu,日本)進(jìn)行測定。Fe和Mn等元素含量利用ICP-MS (Plasma Quad 3,英國)測定。

      1.3雌酮的光照實(shí)驗(yàn)

      雌酮儲(chǔ)備液配制方法如下:在盛有超純水的燒杯中溶于過量的E1,放入攪拌子在黑暗中攪拌。2 d后用0.45 μm的玻璃纖維濾膜將未溶解的E1過濾掉,并檢測其濃度。

      在配有循環(huán)冷卻水的反應(yīng)器中配制初始濃度約為5 μg·L-1的E1溶液,用500 W氙燈光源模擬1 SUN的輻照度(100 mWcm-2)進(jìn)行垂直照射,反應(yīng)過程進(jìn)行避光處理,分別在光照0、5、10、15、20、30、60 min后采集水樣進(jìn)行富集,分析其中E1含量。所有光照實(shí)驗(yàn)重復(fù)2次以上。

      1.4雌酮光解產(chǎn)物的紅外光譜分析

      1.5內(nèi)分泌干擾活性測定

      反應(yīng)前及光照一定時(shí)間時(shí)含雌酮水溶液的內(nèi)分泌干擾活性采用β-半乳糖酵母法,具體參考文獻(xiàn)[15-16]。

      2 結(jié)果與討論 (Results and discussion)

      2.1高碑店湖表層水中雌激素的分布

      2012年4月高碑店湖表層水常規(guī)水質(zhì)指標(biāo)(pH、溶解氧、電導(dǎo)率、氮、磷、無機(jī)陰離子)及Fe和Mn元素等含量如表1所示。表層水中氮主要以硝態(tài)氮形式存在,氨氮含量相對較低(0.9~3.0 mg·L-1)。另外非揮發(fā)性有機(jī)碳的含量也較低,約為2.0 mg·L-1,普遍低于河流水體,而金屬元素Fe和Mn的含量皆為幾十μg·L-1的水平。

      5種雌激素在高碑店湖表層水中普遍存在,E1、E2、E3、DES和EE2的平均濃度分別為30、15、19、9和27 ng·L-1,略低于京津河流表層水中雌激素濃度水平[4]。5種雌激素中以天然雌激素E1和人工合成雌激素EE2的濃度最高。E2較容易轉(zhuǎn)化為E1[17],這可能是大部分樣品中E1濃度高于E2的原因;EE2為多種避孕藥物的活性成分,普通的污水處理工藝很難將之去除[18],能夠?qū)ζ溥M(jìn)行降解的微生物菌種也十分有限[19-21];DES辛醇水系數(shù)較高,易被顆粒物吸附,在水中含量因此較低。

      2.2雌酮純水溶液的光降解

      E1水溶液的吸收光譜如圖3所示,E1在紫外區(qū)有較強(qiáng)吸收,在大于300 nm波長區(qū)域內(nèi)吸收較弱,可以推斷E1在純水溶液中的光降解主要取決決于光源中紫外區(qū)的能量。在以氙燈光源模擬的太陽光照射條件下(100 mW·cm-2),E1在超純水配置水溶液中的光降解規(guī)律如圖4所示,結(jié)果顯示光照時(shí)間15 min內(nèi)E1迅速降解,15 min時(shí)降解率為85%,之后降解速率緩慢,60 min時(shí)降解率為96%。

      表1 高碑店湖表層水水質(zhì)指標(biāo) (2012-04)

      注:ND,未測出。

      Note: ND, not detected.

      圖2 高碑店湖表層水中雌激素的分布 (2012-04)注:E1為雌酮,E2為17β-雌二醇,E3為雌三醇,DES為己烯雌酚,EE2為17α-乙炔基雌二醇。Fig. 2 Distribution of estrogens in surface water from Gaobeidian Reservoir (2012-04)Note: E1 stands for estrone, E2 stands for 17β estradiol, E3 stands for estriol, DES stands for diethylstilbestrol, EE2 stands for 17α-ethynylestradiol.

      圖3 E1水溶液的紫外可見吸收光譜圖Fig. 3 Absorption spectrum of E1 over 250~400 nm

      圖4 太陽光模擬條件下E1光降解的濃度變化趨勢Fig. 4 Concentration profiles of E1 solutions irradiated with simulated sunlight

      圖5 太陽光模擬條件下純水系統(tǒng)中E1光降解準(zhǔn)一級(jí)動(dòng)力學(xué)模擬Fig. 5 Solar photodegradation of E1 and pseudo-first order simulation

      將所得數(shù)據(jù)分段進(jìn)行準(zhǔn)一級(jí)動(dòng)力學(xué)模擬,結(jié)果如圖5所示,Ln(C/C0)與時(shí)間之間的線性相關(guān)性較高,相關(guān)系數(shù)大于0.98。0~20 min和20~60 min時(shí)間段內(nèi)反應(yīng)常數(shù)分別為0.1123和0.0282,說明水溶液中E1的光降解與濃度有很大關(guān)系,在一定范圍內(nèi)濃度越高降解速率越大。本文后期主要研究在光照20 min前氨氮對反應(yīng)規(guī)律的影響。

      2.3氨氮對雌酮光降解的影響

      通過已有研究可知,天然水體中存在的無機(jī)離子例如NO3-N、HCO-3、Fe3+等對E1的光降解皆有一定的影響[11]。在290~330 nm波段紫外光激發(fā)下,NO3-N能夠生成羥基自由基從而促進(jìn)雌激素等的光降解,而HCO-3因?yàn)槟茆缌u基自由基從而減緩雌激素等有機(jī)物的降解。然而水體中氨氮對雌酮等有機(jī)物光降解的影響尚無報(bào)道。在中國尤其是北方缺水地區(qū),由于污水處理廠出水占水體水量的50%以上[22],水體中氨氮普遍存在,其對雌酮等有機(jī)物的光降解可能產(chǎn)生一定的影響。在純水系統(tǒng)中,氨氮和硝酸根單獨(dú)存在條件下對E1的光降解的影響如圖6所示。當(dāng)E1與氨氮同時(shí)存在時(shí),E1的光降解速率常數(shù)為0.0907,低于無氨氮存在時(shí)的常數(shù)0.1123,即氨氮的存在減緩了E1的光降解。NO3-N對E1的光降解具有明顯的促進(jìn)作用,與已有文獻(xiàn)報(bào)道結(jié)果一致。

      圖6 硝酸鹽氮和氨氮存在下E1光降解準(zhǔn)一級(jí)動(dòng)力學(xué)模擬Fig. 6 Solar photodegradation of E1 and pseudo-first order simulation at presence of NO3-N and NH4-N

      在氨氮濃度較低時(shí)(低于10 mg·L-1),其對E1光降解的抑制作用隨著氨氮的濃度的升高并沒有顯著增強(qiáng),而當(dāng)氨氮濃度提高到20 mg·L-1時(shí),其對E1光降解的抑制作用明顯增強(qiáng),降解動(dòng)力學(xué)常數(shù)為0.0793,顯著低于氨氮濃度為10 mg·L-1時(shí)的0.0991。實(shí)際水體中,例如高碑店湖中氨氮濃度較低(低于5 mg·L-1),其對E1光降解的抑制作用可能相對較弱。

      2.4高碑店湖表層水基質(zhì)中雌酮的光降解

      實(shí)際水體中共存污染物組成復(fù)雜,有機(jī)物的光降解規(guī)律的影響因素也極其復(fù)雜。本研究采集了高碑店水庫表層水(1#、4#和6#樣品),以其為基質(zhì)研究了E1光降解規(guī)律。3個(gè)樣品的常規(guī)理化指標(biāo)如表2所示。1#樣品因?yàn)榭拷弑晡鬯幚韽S出口,其水質(zhì)主要受污水處理廠排水影響,該樣品中的pH值低于4#和6#樣品,而ORP和電導(dǎo)率高于4#和6#樣品,6#樣品中的溶解氧略低于1#和4#樣品。氨氮的濃度大小關(guān)系是:1#<4#<6#,1#樣品中的NO3-N的濃度略高于其他2個(gè)樣品。

      圖7 不同氨氮濃度存在時(shí)E1光降解準(zhǔn)一級(jí)動(dòng)力學(xué)模擬Fig. 7 Photodegradation of E1 and pseudo-first order simulation at presence of different concentrations of NH4-N

      表2 高碑店湖表層水常規(guī)理化指標(biāo) (2015-01)

      圖8 高碑店湖表層水基質(zhì)中E1光降解準(zhǔn)一級(jí)動(dòng)力學(xué)模擬Fig. 8 Photodegradation of E1 and pseudo-first order simulation in the matrix of Gaobeidian surface water

      圖9 E1光照前(0 min)和光照10 min和20 min后樣品的紅外光譜圖Fig. 9 Fourier transform infrared spectra of E1 and its photodegradation product

      圖10 不同光照時(shí)間E1水溶液的β-半乳糖苷酶活性注:(a)誘導(dǎo)率;(b)雌二醇當(dāng)量。Fig. 10 Endocrine disrupting activity of E1 solution with different irradiation timeNote: (a) Inductivity; (b) Estradiol equivalent.

      高碑店湖表層水基質(zhì)中E1的光降解規(guī)律如圖8所示,不同樣品基質(zhì)中E1的光降解速率常數(shù)存在明顯的差異。其中氨氮濃度最低而NO3-N最高的1#樣品基質(zhì)中E1的光降解速率常數(shù)最大,為0.0915,氨氮濃度高而硝酸根離子低的6#樣品基質(zhì)中E1的光降解速率常數(shù)最小,為0.0711。與純水系統(tǒng)相比(k=0.1123),高碑店水庫表層水基質(zhì)中E1的光降解速率都有所減緩,說明整體上氨氮、HCO-3、濁度等因素對E1光降解產(chǎn)生的抑制作用占主導(dǎo)。

      2.5雌酮光降解過程中結(jié)構(gòu)和內(nèi)分泌干擾活性的變化

      為了進(jìn)一步研究E1的光降解機(jī)理,對雌酮及其降解產(chǎn)物進(jìn)行了紅外光譜分析,結(jié)果如圖9所示。E1及其光降解產(chǎn)物的紅外光譜在1 499 cm-1和1 580 cm-1對應(yīng)的苯環(huán)特征吸收峰在0、10和20 min樣品中的強(qiáng)度逐漸減弱,說明在光照反應(yīng)過程中,E1的苯環(huán)遭到破壞。同時(shí),1 720cm-1對應(yīng)的C=O鍵特征峰在0、10和20 min樣品中的強(qiáng)度逐漸減弱,而2 854 cm-1和2 925cm-1對應(yīng)的脂肪碳的C-H鍵特征峰先增強(qiáng)后減弱,可能是因?yàn)镋1結(jié)構(gòu)中的C-C=O發(fā)生了反應(yīng)生成了C=C-OH,而隨著反應(yīng)的繼續(xù),C=C也被進(jìn)一步氧化。Caupos等[23]報(bào)道了模擬太陽光條件下E1在水溶液中的降解可能產(chǎn)生一種烯醇產(chǎn)物,但是其結(jié)構(gòu)需要進(jìn)一步研究推斷。

      為了研究光降解反應(yīng)過程中E1水溶液內(nèi)分泌干擾活性的變化,本文測定了不同光照時(shí)間E1水溶液的β-半乳糖苷酶的酶活性,不同光照時(shí)間E1水溶液的β-半乳糖苷酶活性誘導(dǎo)率和雌二醇當(dāng)量如圖10所示。隨著光照時(shí)間的延長,E1水溶液的內(nèi)分泌干擾活性逐漸下降。NO3-N由于能促進(jìn)E1的光解,NO3-N與E1共存時(shí)溶液的內(nèi)分泌干擾活性下降的比E1單獨(dú)存在時(shí)更快。當(dāng)氨氮與E1共存時(shí),在0~15 min的光照時(shí)間內(nèi),溶液的內(nèi)分泌干擾毒性逐漸下降,光照20 min的溶液的內(nèi)分泌干擾活性比15 min時(shí)的略有上升。此外,雖然氨氮對E1的光降解速率有抑制作用,但光照10 min及15 min時(shí)氨氮存在下E1水溶液的內(nèi)分泌干擾活性并沒有高于E1單獨(dú)存在時(shí)的活性,可能是由于低濃度氨氮(2 mg·L-1)對E1光降解的抑制作用較弱,也有可能是內(nèi)分泌干擾活性實(shí)驗(yàn)誤差導(dǎo)致。氨氮對E1光降解的影響機(jī)制及降解過程中內(nèi)分泌干擾活性變化的具體原因有待進(jìn)一步的研究。

      綜上所述,雌激素在高碑店湖表層水中普遍存在,E1和EE2濃度普遍高于E2、DES和E3。在模擬1 SUN的光密度條件下,E1初始濃度為5 μg·L-1時(shí),光照時(shí)間15 min時(shí)E1降解率可達(dá)85%,氨氮對E1的光降解存在一定的抑制作用,并且隨著氨氮濃度的升高抑制作用變強(qiáng)。與純水系統(tǒng)相比,高碑店湖表層水基質(zhì)中E1的光降解速率較低。對雌酮及其降解產(chǎn)物進(jìn)行了紅外光譜分析,結(jié)果顯示光解過程中E1結(jié)構(gòu)中的C-C=O可能發(fā)生了反應(yīng)生成了C=C-OH,但降解產(chǎn)物的結(jié)構(gòu)需要進(jìn)一步研究推斷。隨著光照時(shí)間的增長,水中E1濃度逐漸下降,E1水溶液的內(nèi)分泌干擾活性也隨之逐漸下降,氨氮雖然對E1的光降解有一定的抑制作用,但隨著降解反應(yīng)的進(jìn)行E1水溶液的內(nèi)分泌干擾活性依然呈下降趨勢。

      致謝:感謝國家自然科學(xué)基金重點(diǎn)項(xiàng)目(No. 51138006)對本研究的大力支持。

      通訊作者簡介:王京剛(1962-),男,材料科學(xué)與工程博士后,副教授,主要研究方向?yàn)榇髿馕廴究刂品较?,發(fā)表學(xué)術(shù)論文70余篇。

      共同通信作者簡介:齊維曉(1982-),女,環(huán)境工程博士,副研究員,主要研究方向?yàn)樗w中有機(jī)物的遷移轉(zhuǎn)化。

      [1]Baronti C, Curini R, D'Ascenzo G, et al. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water [J]. Environmental Science & Technology, 2000, 34(24): 5059-5066

      [2]Isobe T, Serizawa S, Horiguchi T, et al. Horizontal distribution of steroid estrogens in surface sediments in Tokyo Bay [J]. Environmental Pollution, 2006, 144(2): 632-638

      [3]Thompson M L, Casey F X M, Khan E, et al. Occurrence and pathways of manure-borne 17β-estradiol in vadose zone water [J]. Chemosphere, 2009, 76(4): 472-479

      [4]Lei B, Huang S, Zhou Y, et al. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China [J]. Chemosphere, 2009, 76(1): 36-42

      [5]Zha J, Sun L, Zhou Y, et al. Assessment of 17α-ethinylestradiol effects and underlying mechanisms in a continuous, multigeneration exposure of the Chinese rare minnow (Gobiocypris rarus) [J]. Toxicology and Applied Pharmacology, 2008, 226(3): 298-308

      [6]Johnson A C, Aerni H R, Gerritsen A, et al. Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices [J]. Water Research, 2005, 39(1): 47-58

      [7]Hu J, Aizawa T, Ookubo S, et al. Products of aqueous chlorination of bisphenol A and their estrogenic activity [J]. Environmental Science & Technology, 2002, 36(9): 1980-1987

      [8]Liu X L, Wu F, Deng N S, et al. Photodegradation of 17α-ethynylestradiol in aqueous solution exposed to a high-pressure mercury lamp (250 W) [J]. Environmental Pollution, 2003, 126(3): 393-398

      [9]Liu B, Liu X. Direct photolysis of estrogens in aqueous solutions [J]. Science of the Total Environment, 2004, 320(2): 269-274

      [10]Chowdhury R R, Charpentier P, Ray M B, et al. Photodegradation of estrone in solar irradiation [J]. Industrial & Engineering Chemistry Research, 2010, 49(15): 6923-6930

      [11]Chowdhury R R, Charpentier P A, Ray M B, et al. Photodegradation of 17β-estradiol in aquatic solution under solar irradiation: Kinetics and influencing water parameters [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219(1): 67-75

      [12]Zuo Y, Zhang K, Deng Y, et al. Occurrence and photochemical degradation of 17α-ethinylestradiol in Acushnet River Estuary [J]. Chemosphere, 2006, 63(9): 1583-1590

      [13]Leech D M, Snyder M T, Wetzel R G, et al. Natural organic matter and sunlight accelerate the degradation of 17?-estradiol in water [J]. Science of the Total Environment, 2009, 407(6): 2087-2092

      [14]Nie Y F, Qiang Z M, Zhang H, et al. Determination of endocrine-disrupting chemicals in the liquid and solid phases of activated sludge by solid phase extraction and gas chromatography-mass spectrometry [J]. Journal of Chromatography A, 2009, 1216(42): 7071-7080

      [15]李劍, 崔青, 馬梅, 等. 基于 H4IIE細(xì)胞株測試間接雌激素效應(yīng)物質(zhì)的代謝活化方法[J]. 環(huán)境科學(xué)學(xué)報(bào), 2006, 26(8): 1320-1325

      Li J, Cui Q, Ma M, et al. A metabolic activation method for screening indirect estrogen pollutants based on H4IIE cell line [J]. Acta Scientiae Circumstantiae,2006, 26(8): 1320-1325 (in Chinese)

      [16]李劍, 馬梅, 饒凱鋒, 等. 酵母雙雜交技術(shù)構(gòu)建重組人雌激素受體基因酵母[J]. 生態(tài)毒理學(xué)報(bào), 2008, 3(1): 21-26

      Li J, Ma M, Rao K F, et al. Construction of the recombinant human estrogen receptor (hER) gene yeast using two-hybrid yeast technique [J]. Asian Journal of Ecotoxicology, 2008, 3(1): 21-26 (in Chinese)

      [17]Servos M R, Bennie D T, Burnison B K, et al. Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants [J]. Science of the Total Environment, 2005, 336(1): 155-170

      [18]De Rudder J, Van de Wiele T, Dhooge W, et al. Advanced water treatment with manganese oxide for the removal of 17α-ethynylestradiol (EE2) [J]. Water Research, 2004, 38(1): 184-192

      [19]Shi J, Fujisawa S, Nakai S, et al. Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea [J]. Water Research, 2004, 38(9): 2323-2330

      [20]Haiyan R, Shulan J, ud din Ahmad N, et al. Degradation characteristics and metabolic pathway of 17α-ethynylestradiol by Sphingobacterium sp. JCR5 [J]. Chemosphere, 2007, 66(2): 340-346

      [21]Khunjar W O, Mackintosh S A, Skotnicka-Pitak J, et al. Elucidating the relative roles of ammonia oxidizing and heterotrophic bacteria during the biotransformation of 17α-ethinylestradiol and trimethoprim [J]. Environmental Science & Technology, 2011, 45(8): 3605-3612

      [22]Pernet-Coudrier B, Qi W X, Liu H J, et al. Sources and pathways of nutrients in the simi-aird region of Beijing-Tianjin region, China [J]. Environmental Science & Technology, 2012, 46: 5294-5301

      [23]Caupos E, Mazellier P, Croue J P, et al. Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight [J]. Water Research, 2011, 45(11): 3341-3350

      Occurrence and Photodegradation of Estrogens in Surface Water of Gaobeidian Reservoir

      Zhang Shuai1, 2, Wang Jinggang1, *, Ma Jingjing2, Qi Weixiao2, #

      1. College of Chemical Engineering, Beijing University of Chemical Engineering, Beijing 100029, China 2. Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China

      15 April 2015accepted 18 May 2015

      The presence of estrogenic compounds in aquatic environment is ubiquitous and has attracted increasing concern due to their endocrine disruption potential. Photodegradation is one of the main elimination pathways of estrogens in surface water and is influenced differently by different ions and organic matters in the water. In this study, surface water was collected from Gaobeidian Reservoir and analyzed for estrogens and the photodegradation of estrone (E1) in the solution under simulated sunlight irradiation was investigated. The results showed that E1 and 17α-ethynylestradiol (EE2) were the most abundant and that the elimination rate of E1 could be 85% after 15 min of 1SUN irradiance. Ammonium, HCO-3and turbidity inhibited the photodegradation of E1. Although ammonium ion showed inhibition on the photodegradation of E1, the endocrine disrupting activity of the E1 solution decreased on the presence of ammonium ion. Fourier transformed infrared (FTIR) analysis showed C=O bonds peak decreased in samples irradiated with longer time, while peak of C-H in aliphatic carbon increased. This is possibly caused by the elimination of C-C=O and formation of C=C-OH during the reaction. Endocrine disrupting activity of the E1 solution decreased along with the photodegradation.

      estrone; reclaimed water; endocrine disrupting activity; photodegradation; simulated sunlight

      國家自然科學(xué)基金重點(diǎn)項(xiàng)目(No. 51138006)

      張帥(1990-),男,碩士研究生,研究方向?yàn)樗w中有機(jī)物的化學(xué)轉(zhuǎn)化,E-mail: 775220944@qq.com

      Corresponding author), E-mail: wangjg@mail.buct.edu.cn

      #共同通訊作者(Co-corresponding author), E-mail: wxqi@rcees.ac.cn

      10.7524/AJE.1673-5897.20150415009

      2015-04-15 錄用日期:2015-05-18

      1673-5897(2015)6-173-08

      X171.5

      A

      張帥, 王京剛, 馬晶晶, 等. 高碑店湖表層水中雌激素的分布及其光降解影響因素[J]. 生態(tài)毒理學(xué)報(bào),2015, 10(6): 173-180

      Zhang S, Wang J G, Ma J J, et al. Occurrence and photodegradation of estrogens in surface water of Gaobeidian Reservoir [J]. Asian Journal of Ecotoxicology, 2015, 10(6): 173-180 (in Chinese)

      猜你喜歡
      高碑店光降解表層
      數(shù)字同頻同播技術(shù)在白溝河(高碑店段)應(yīng)急通信中的應(yīng)用
      河北水利(2022年4期)2022-05-17 05:42:46
      半潛式平臺(tái)表層卡套管處理與認(rèn)識(shí)
      海洋石油(2021年3期)2021-11-05 07:43:10
      角的度量 教學(xué)設(shè)計(jì)
      水體表層沉積物對磷的吸收及釋放研究進(jìn)展
      水體中布洛芬的間接光降解作用機(jī)理研究
      建設(shè)高碑店海綿城市的思考
      氬弧熔覆原位合成Ti(C,N)-WC增強(qiáng)鎳基表層復(fù)合材料的研究
      焊接(2015年6期)2015-07-18 11:02:25
      超聲波光整強(qiáng)化40Cr表層顯微硬度研究
      水中磺胺類抗生素的光降解及富里酸對其光降解的影響
      理化因子對紅曲色素色價(jià)的影響及桔霉素的光降解性
      景泰县| 枣庄市| 个旧市| 柳河县| 蛟河市| 三都| 昌邑市| 台湾省| 江华| 麻栗坡县| 山东省| 连南| 长子县| 垦利县| 太湖县| 黄大仙区| 什邡市| 乌拉特后旗| 凤山县| 宜州市| 阳春市| 钟山县| 门头沟区| 焉耆| 民丰县| 旌德县| 雅安市| 和平区| 江都市| 新宾| 焉耆| 浙江省| 宣汉县| 盘山县| 泽普县| 莆田市| 揭东县| 鄄城县| 廉江市| 平陆县| 开化县|