• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫酸鈉水合物在網(wǎng)絡(luò)微區(qū)域中的相變機(jī)制

    2015-09-19 08:10:31吳曉琳史劍符顯珠孫
    集成技術(shù) 2015年1期
    關(guān)鍵詞:香港中文大學(xué)水合硫酸鈉

    吳曉琳史 劍符顯珠孫 蓉,2

    1(中國科學(xué)院深圳先進(jìn)技術(shù)研究院 深圳 518055)

    2(香港中文大學(xué) 香港 999077)

    硫酸鈉水合物在網(wǎng)絡(luò)微區(qū)域中的相變機(jī)制

    吳曉琳1史 劍1符顯珠1孫 蓉1,2

    1(中國科學(xué)院深圳先進(jìn)技術(shù)研究院 深圳 518055)

    2(香港中文大學(xué) 香港 999077)

    水合鹽作為一種固-液相變材料因具有高的能量儲(chǔ)存密度而備受關(guān)注。然而,其過冷和相分離的缺陷限制了它的應(yīng)用。為了解決過冷及相分離問題,文章提出了采用在硫酸鈉飽和溶液中原位聚合的方法制備硅膠。根據(jù)實(shí)驗(yàn)結(jié)果,硅膠中飽和硫酸鈉水溶液的潛熱為 238.1 J/g,相變溫度為 30℃。通過添加這種添加劑,它可以在亞熱帶春夏季時(shí)期承受長達(dá)五個(gè)月以上的冷熱循環(huán)。通過掃描電子顯微鏡和傅里葉變換紅外光譜檢測(cè)發(fā)現(xiàn),實(shí)驗(yàn)制備的硅膠是無定型結(jié)構(gòu),并有一些小的晶體分布其中。實(shí)驗(yàn)推斷,硅膠的添加提供了一種多孔結(jié)構(gòu),有助于硫酸鈉水合鹽晶體的生長,因此,它可以抑制過冷和相分離的發(fā)生。

    相變材料;水合鹽;硅膠;過冷;相分離;晶體

    1 Introduction

    In recent years, as the energy cost is skyrocketing,phase change material (PCM) is attracting much renewed attention. PCMs use latent heat to store energy and hence shall have high energy storage density and small temperature variation in the process of storing and releasing heat energy. Various organic, inorganic, polymeric and eutectic PCMs have been studied[1-3]. Among them, salt hydrate is one of the most attractive PCMs[4]owing to its moderate cost, easy production, high volumetric energy storage density, high thermal conductivity,and environment safety. However, its applications have been limited by the problems of supercooling and phase segregation[5].

    In order to solve the problems of supercooling and phase segregation, many studies have been carried out. Biswas[6], for example, suggested the use of extra water to prevent the formation of the heavy anhydrous salt. Telkes[7]introduced borax as a nucleating agent to minimize subcooling. The use of some thickening agents[8], such as polymer and gel[9], has been suggested to overcome the phase segregation. In general, at least two additives are needed to diminish the supercooling and phase separation. It is possible to use direct contact heat transfer between an immiscible heat transfer fluid and the salt hydrate solution without additives[10,11]. The agitation caused by the heat transfer fluid minimized the supercooling and prevented phase segregation. However, several controlling systems were needed in the above process. Until now, there is no effective method to solve the problems of supercooling and phase segregation. Moreover, the preventing supercooling mechanics of amorphous nucleating agent for hydrate salt is not well understood.

    In this paper, we investigate the phase transition of salthydrate with silica gel. A temperature recording device and the differential scanning calorimeter were used to study the phase change characteristics of salt hydrate in silica gel. The results showed that silica gel was effective in preventing the supercooling and phase segregation of salt hydrate.

    2 Experimental Methods

    In our experiments, the raw materials include Na2SO4, Na2SiO3and H2SO4.Na2SiO3was dissolved into saturated Na2SO4solution at 40℃ (All the raw solutions used in our experiments are saturated Na2SO4solution). Through chemical reaction of Na2SiO3with acid, silica sol was obtained. After ripening it for a moment, homogeneous silica gel[12]was obtained and saturated Na2SO4solution could be dispersed in the silica gel uniformly.

    Two methods were used to test the long-time cycling stability of silica gel. One was natural heating-cooling process which worked by the temperature change of a day in the subtropical spring and summer in the lab (The lab is located in Shenzhen, Guangdong, China, a typical subtropic region where the temperature ranges from 18℃to 35℃). The other was forcible heating-cooling process which worked by two prepared constant temperature water baths (One was at 10℃ and the other was at 40℃).

    A simple device was made to record the temperature timely. Firstly, samples on test tubes with a thermal couple in the center were initially heated to 40℃. Secondly, the sampleswere immersed into a 10℃ water cooler with the temperature changing recorded using a multipoint recorder (IDAQ-8018+) and stored in a computer via an RS-232 port.

    Differential scanning calorimeter (DSC) was used with nitrogen atmosphere to analyze the phase transition in microscopic level. Samples about 15.00 mg were sealed in an aluminum pan and was placed in DSC analyzing from 10℃ to 60℃ with a linear heating rate of 7℃/min and the nitrogen flow rate at 50 mL/min. The accuracy of the DSC is ±0.02℃and the latent heat was calculated as the total area under the peaks of transitions process.

    The scanning electron microscopy (SEM) and Fourier transformation infrared (FTIR) spectroscopy were used to study the microstructure of the samples. For SEM analysis, a thin layer of gold was coated in the surface of sample, and images were acquired on a HITACHI S-4700 microscope with a constant ambient temperature at 22℃. For FTIR spectroscopy,viscous samples were mixed with KBr at 10℃. Then the functional groups of samples were obtained.

    3 Results and Discussions

    3.1 The Time-temperature Characteristics of the Sodium Sulfate Hydrate

    Fig. 1 shows two time-temperature (t-T) curves. Curve “1” corresponds to the saturated solution of sodium sulfate without silica gel. The phase change temperature is about 28℃ and however,the supercooling to 13℃ is obvious. Curve “2”corresponds to the saturated sodium sulfate solution with silica gel. The phase change phenomenon is clearly seen at 30℃ and there is no supercooling. It is also found that after 30 heating-cooling cycles,the silica gel is still homogeneous and stable without phase separation.

    Fig. 1 The t-T curves of saturated sodium sulfate solution with and without silica gel

    Table 1 summarizes the phase change temperature and latent heat of the 7 samples. It shows that except sample 1, the characteristics of the other samples are similar.

    To test the long time stability of saturated sodium sulfate solution with silica gel, the same sample using forcible heating-cooling method was tested in many cycles. Fig. 2 is the t-T curves of a sample. Curves 1, 2 and 3 are the t-T curves after 10, 20 and 30 heating-cooling cycles, respectively. Each10 heating-cooling cycles was completed in one day. Then, the next 10 heating-cooling cycles were done after 10 days. It is seen that the phase change temperature is stabilized at 30℃, and the process is very stable.

    Table 1 Summary of the experiment results

    Fig. 2 The t-T cooling curves of saturated sodium sulfate with silica gel in different cycles

    To further improve the long-time recycling stability of silica gel, span 80 as a surfactant was used. Fig. 3 is the t-T curve of a sample. It can be seen that the surfactant does not affect the phase change characteristics.

    Fig. 3 The t-T curve of saturated sodium sulfate hydrate with silica gel and surfactant

    Fig. 4(a) is the picture of saturated sodium sulfate hydrate without additives. The sample has clear phase segregation and bulky crystals can be observed at the bottom of the test tube. Fig. 4(b) is the saturated sodium sulfate hydrate in silica gel with surfactant. The natural heating-cooling method was used to test the long-time stability of the sample. After five months, it has been found that the sample still shows no phase segregation, indicating good stability.

    Fig. 4 Pictures of sodium sulfate hydrate

    3.2 The DSC Results

    Fig. 5 shows the DSC curves of samples with and without additives. The curve with solid line depicts the peak of heat absorption of saturated hydrate salt without additives. The latent heat can be measured by the area of the peak. It is only 96.7 J/g and the phase change temperature is 25.4℃. The curve with dashed line shows the peak of heat absorption of saturated hydrate salt with additives (silica gel). As is shown in Fig. 5, the latent heat is increased to 238.1 J/g and the phase change temperature is 29.9℃. This indicates that the addition of silica gel improves the heat energy storage capability.

    3.3 SEM Results

    Fig. 5 DSC curve of a sample hydrate salts in silica gel

    Fig. 6 SEM images of a sample hydrate salt with silica gel

    Fig. 6 shows the SEM images of sodium sulfate hydrate in silica gel, magnified by 10000, 30000 and 200000 times, respectively. Fig. 6(a) shows the micro structure is complex. The crystals were randomly packed with many pores about several micrometers in between. Fig. 6(b) shows a couple of typical needle-shaped crystals and their lengths are about 10 μm. Fig. 6(c) zooms in a pore, which is full of tiny holes about 20 nm.

    3.4 FTIR Spectroscopy Results

    Fig. 7 shows the FTIR spectroscopy of a sample hydrate salt with silica gel in solid phase. The absorption bands at 470.63 and 1099.43 cm-1are associated with the bending, stretching of amorphous SiO2[13]. The bands at 617.22 and 796.60 cm-1are assigned to α-cristobalite[14]. The bending of the absorbed H2O molecules is at 1618.22 cm-1. The band at 1448.54 cm-1is attributed to the stretching(S=O) groups. The band at 3477.66 cm-1is stretching (OH) groups[15]. No other bonds are formed. So, it can be concluded that sodium sulfate hydrate should be lying in the matrix without any interaction with silica gel.

    Fig. 7 FTIR spectrum of the salt hydrate with silica gel

    The above analysis indicates that there should be two kinds of components in silica gel with hydrate salts: the amorphous silicon dioxide and the crystallized silicon dioxide. This would be the reason that with the silica gel, the bond strength is improved.

    3.5 Discussions

    Based on the testing results, it is clear that adding silica gel can suppress the supercooling and phase segregation of hydrated salt at the same time, which can omit the adding of thickening agents. The main reasons are: firstly, the complex structure of silica gel can act as a seed of the saturated solution of sodium sulfate during the solidification and aided effective crystallization; secondly, the existence of the stable micro-regions between the crystals can hinder convection and hence, decrease dynamic resistance of the saturated solution of sodium sulfate; thirdly,as Rosa[16]reported, the Gibbs energy necessary for heterogeneous nucleation was diminished by the presence of foreign substances. Therefore, the phase change process can occur homogeneously with less impetus.

    In addition, silica gel is a good thickening agent. The saturated hydrate salt solution is dispersed homogeneously in the micro regions, which effectively reduces the effect of gravity. Thus, phase segregation can be reduced. It may be argued that those micro regions are connected. Though, the densely packed structure of silica gel minimizes the connection channels between the adjacent micro regions. In other words, the hydrate salt in each micro region can be considered as a single system. Thus, silica gel can hinder crystal growth. The small crystal of hydrate salt with large surface area can contact the water around and hence, improve the stability. Therefore, the porous structure of silica gel is effective. In fact, compared with the results obtained by other researchers, the gel-salt hydrate system is more stable and the results are comparable.

    4 Conclusions

    In this paper, a new process for making sodium sulfate hydrate with silica gel was proposed. Based on the obtained results and discussions, the following conclusions can be made:

    (a)Adding the silica gel helps to suppress the supercooling and phase separation.

    (b)The latent heat of the sodium sulfate hydrate with silica gel is about 238 J/g, and its phase transition temperature is around 30℃ and its life is more than 5 months.

    (c)The silica gel can act as a seed of the saturated sodium sulfate solution during the solidification process. Its stable pores structure generates many micro regions which can hinder convection, reduce thermal resistance and improve the uniformity of the hydrate salt. Therefore, it is effective in preventing the supercooling and phase segregation.

    The future work includes the study of the mechanics of the phase change and the development of an effective process to produce stable PCM.

    References

    [1] Tyagi VV, Buddhi D. PCM thermal storage in buildings: A state of art [J]. Renewable &Sustainable Energy Reviews, 2007, 11: 1146-1166.

    [2] He Q, Zhang WN. A study on latent heat storage exchangers with the high-temperature phasechange material [J]. International Journal of Energy Research, 2001, 25: 331-341.

    [3] Memon SA. Phase change materials integrated in building walls: A state of the art review [J]. Renewable & Sustainable Energy Reviews, 2014,31: 870-906.

    [4] Canbazoglu S, Sahinaslan A, Ekmekyapar A, et al. Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system [J]. Energy and Buildings, 2005, 37: 235-242.

    [5] Garcia-Romero A, Diarce G, Ibarretxe J, et al. Influence of the experimental conditions on the subcooling of Glauber’s salt when used as PCM [J]. Solar Energy Materials and Solar Cells, 2012, 102: 189-195.

    [6] Biswas DR. Thermal-energy storage using sodiumsulfate decahydrate and water [J]. Solar Energy,1977, 19: 99-100.

    [7] Telkes M. Nucleation of supersaturated inorganic salt solutions [J]. Industrial and Engineering Chemistry, 1952, 44: 1308-1310.

    [8] Ryu HW, Woo SW, Shin BC, et al. Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials [J]. Solar Energy Materials and Solar Cells, 1992, 27: 161-172.

    [9] Zhang SM, Swarthout D, Noll T, et al. Silicone phase change thermal interface materials: properties and applications [J]. Advances in Electronic Packaging, 2003, 2: 167-170.

    [10] Mulyono P. Direct contact thermal energy storage system using Na2CO3·10H2O solution [J]. Energy,2004, 29(12-15): 2573-2583.

    [11] Farid MM, Khalaf AN. Performance of directcontact latent-heat storage units with 2 hydrated salts [J]. Solar Energy, 1994, 52: 179-189.

    [12] Gao Y, Choudhury NR, Dutta N, et al. Organicinorganic hybrid from ionomer via sol-gel reaction [J]. Chemistry of Materials, 2001, 13: 3644-3652.

    [13] Bruni S, Cariati F, Casu M, et al. IR and NMR study of nanoparticle-support interactions in a Fe2O3-SiO2nanocomposite prepared by a sol-gel method [J]. Nanostructured Materials, 1999, 11: 573-586.

    [14] Chen HS, Ji SF, Niu JZ, et al. Vibration spectroscopy on transformation of amorphous silica to alpha-cristobalite [J]. Acta Physico-Chimica Sinica, 1999, 15: 454-457.

    [15] Wu XL, Wang YH, Sun R, et al. The antisupercooling effect of surface-modified nano-scaled SiO2in hydrated salts phase transition system [J]. Journal of Physics Conference Series, 2009, 188(1): 012046-012049.

    [16] Espinosa RM, Franke L, Deckelmann G. Phase changes of salts in porous materials: Crystallization,hydration and deliquescence [J]. Construction and Building Materials, 2008, 22(8): 1758-1773.

    Phase Change Mechanism of Confined Sodium Sulfate Hydrates in Micro Network Regions

    WU Xiaolin1SHI Jian1FU Xianzhu1SUN Rong1,2

    1( Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China )

    2( The Chinese University of Hong Kong, Hong Kong 999077, China )

    Hydrate salt is an attractive solid-liquid phase change material because of its high energy storage density. However, its applications have been limited owing to the supercooling and phase segregation. In order to solve these problems, we propose to make the silica gel in the saturated solution of sodium sulfate by means of in-situ polymerization. According to our experiments, the latent heat of saturated solution of sodium sulfate in silica gel is about 238.1 J/g and the phase change temperature is 30℃. With some surfactant, it can endure more than five months of heating-cooling cycles stably in subtropical spring and summer. Using scanning electron microscope and Fourier transformation infrared spectroscopy, we found that the microstructure of silica gel was mainly amorphous with some small crystals distributed in it. We believe that adding the silica gel produces a porous structure, which helps the crystal growth of sodium sulfate hydrate and hence, suppresses the supercooling and phase segregation.

    phase change material; hydrated salt; silica gel; supercooling; phase segregation; crystal

    2014-07-18 Revised: 2014-11-12

    Wu Xiaolin (corresponding author), Ph.D., Research Assistant. Her research interest is materials science, E-mail:xl.wu@siat.ac.cn; Shi Jian, Master’s degree candidate. His research interests include electronic & packaging materials and applied electrochemistry; Fu Xianzhu, Ph.D.,Associate Researcher. His research interest is electrochemistry; Sun Rong (corresponding author), Ph.D., Researcher. Her research interest is materials science, E-mail:rong.sun@siat.ac.cn.

    O 611.4

    A

    Foundation:Shenzhen Foundamental Research Program (JCYJ20120831180118531);Guangdong Innovative Research Team Program (2011D052);Shenzhen Peacock Pragram (KYPT20121228160843692);Shenzhen Electronic Packaging Materials (The Development and Reform Commission of Shenzhen【2012】372)

    猜你喜歡
    香港中文大學(xué)水合硫酸鈉
    香港中文大學(xué)
    淺談無人機(jī)和機(jī)器人的自動(dòng)化控制
    香港中文大學(xué)提出環(huán)境適應(yīng)性控濕調(diào)溫織物新思路
    毛銻生產(chǎn)廢液制備硫酸鈉的工藝研究
    紅球菌菌株腈水合酶提取方法優(yōu)化
    香港中文大學(xué)籌資工作的經(jīng)驗(yàn)和啟示
    硫酸鈉在蛋雞飼糧中的安全性評(píng)價(jià)
    過氧化硫酸鈉在洗衣粉中的應(yīng)用
    花生蛋白水合性質(zhì)的研究進(jìn)展
    二水合丙氨酸復(fù)合體內(nèi)的質(zhì)子遷移和氫鍵遷移
    成人午夜高清在线视频| 婷婷六月久久综合丁香| 男人舔奶头视频| 又黄又爽又免费观看的视频| 亚洲在线自拍视频| 午夜福利成人在线免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲七黄色美女视频| 波多野结衣高清作品| 国产私拍福利视频在线观看| 一a级毛片在线观看| 男女午夜视频在线观看| 亚洲全国av大片| 美女免费视频网站| 免费看美女性在线毛片视频| 成年免费大片在线观看| 91在线观看av| 久久欧美精品欧美久久欧美| 久久中文看片网| 大型av网站在线播放| 国产日本99.免费观看| 久久热在线av| 日本黄色视频三级网站网址| 88av欧美| 中亚洲国语对白在线视频| www国产在线视频色| 9191精品国产免费久久| 最好的美女福利视频网| 91av网站免费观看| 最新在线观看一区二区三区| 99久久99久久久精品蜜桃| 精品国产亚洲在线| av福利片在线观看| 校园春色视频在线观看| 天天添夜夜摸| 国产精品九九99| 日韩三级视频一区二区三区| 久久久久久久精品吃奶| 欧美另类亚洲清纯唯美| 少妇熟女aⅴ在线视频| 久久精品人妻少妇| 色综合站精品国产| 老司机午夜十八禁免费视频| netflix在线观看网站| 悠悠久久av| 18禁国产床啪视频网站| 男女之事视频高清在线观看| 免费看日本二区| 亚洲av中文字字幕乱码综合| 一进一出抽搐gif免费好疼| 午夜a级毛片| 少妇裸体淫交视频免费看高清 | 国产高清videossex| 欧美日韩瑟瑟在线播放| avwww免费| 黄频高清免费视频| 可以免费在线观看a视频的电影网站| 国产亚洲精品综合一区在线观看 | 黄色片一级片一级黄色片| 国产又黄又爽又无遮挡在线| 999久久久精品免费观看国产| 国产蜜桃级精品一区二区三区| 欧美成人性av电影在线观看| 蜜桃久久精品国产亚洲av| 日日夜夜操网爽| 国产午夜福利久久久久久| 99久久精品热视频| 久久亚洲真实| 久久精品国产99精品国产亚洲性色| 看片在线看免费视频| 亚洲 欧美 日韩 在线 免费| 久久精品国产清高在天天线| 久久久久九九精品影院| 伦理电影免费视频| 久久久久久免费高清国产稀缺| 精品国产美女av久久久久小说| 免费人成视频x8x8入口观看| 久久久久精品国产欧美久久久| 无限看片的www在线观看| 午夜影院日韩av| 淫秽高清视频在线观看| 久久精品国产99精品国产亚洲性色| 国产午夜精品论理片| 激情在线观看视频在线高清| 少妇人妻一区二区三区视频| 欧美在线一区亚洲| 欧美极品一区二区三区四区| 老司机福利观看| 亚洲男人的天堂狠狠| 99久久99久久久精品蜜桃| 亚洲 国产 在线| a级毛片a级免费在线| 精品一区二区三区四区五区乱码| 国产亚洲精品一区二区www| 日韩免费av在线播放| 国产欧美日韩一区二区三| 色播亚洲综合网| 欧美极品一区二区三区四区| 在线a可以看的网站| 国产精品香港三级国产av潘金莲| 精品国产乱码久久久久久男人| aaaaa片日本免费| 亚洲国产欧美网| 日韩精品青青久久久久久| 日韩三级视频一区二区三区| 欧美中文日本在线观看视频| 国产精品一区二区三区四区免费观看 | 51午夜福利影视在线观看| 女人被狂操c到高潮| 国产免费男女视频| 日韩成人在线观看一区二区三区| cao死你这个sao货| 伦理电影免费视频| 久久久久久免费高清国产稀缺| 99热只有精品国产| 中文字幕精品亚洲无线码一区| 亚洲精品av麻豆狂野| 女同久久另类99精品国产91| 亚洲国产看品久久| 成年人黄色毛片网站| 亚洲在线自拍视频| 欧美又色又爽又黄视频| 叶爱在线成人免费视频播放| 国产成人av教育| 窝窝影院91人妻| 国产精品久久久久久亚洲av鲁大| 久久精品国产亚洲av高清一级| 日韩精品中文字幕看吧| 国产精品一及| x7x7x7水蜜桃| 国产精品99久久99久久久不卡| 国产蜜桃级精品一区二区三区| 一本久久中文字幕| 中文字幕av在线有码专区| 日韩欧美国产一区二区入口| 欧美黑人巨大hd| 级片在线观看| 午夜福利高清视频| 欧美成人性av电影在线观看| www.熟女人妻精品国产| 久久精品人妻少妇| 最近最新免费中文字幕在线| 日日夜夜操网爽| 午夜福利在线在线| 男女视频在线观看网站免费 | 亚洲,欧美精品.| 最近在线观看免费完整版| 可以在线观看毛片的网站| 欧美+亚洲+日韩+国产| 国产精品精品国产色婷婷| 又爽又黄无遮挡网站| 老熟妇乱子伦视频在线观看| 美女高潮喷水抽搐中文字幕| 最新在线观看一区二区三区| 欧美黄色片欧美黄色片| 国产91精品成人一区二区三区| 亚洲av电影在线进入| 亚洲无线在线观看| 亚洲av熟女| 丝袜人妻中文字幕| 免费在线观看成人毛片| 蜜桃久久精品国产亚洲av| 人妻丰满熟妇av一区二区三区| 国产熟女xx| 欧美三级亚洲精品| 国产亚洲精品第一综合不卡| 久久精品国产亚洲av香蕉五月| 变态另类丝袜制服| 亚洲五月天丁香| 日韩欧美国产在线观看| 最好的美女福利视频网| 黄片大片在线免费观看| 黑人操中国人逼视频| 亚洲美女黄片视频| 国产精品 国内视频| 久久久久精品国产欧美久久久| 久久婷婷成人综合色麻豆| 亚洲精品粉嫩美女一区| 成熟少妇高潮喷水视频| 国产精品1区2区在线观看.| 欧美午夜高清在线| 热99re8久久精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | av超薄肉色丝袜交足视频| 国产又黄又爽又无遮挡在线| 久久久国产欧美日韩av| 精品久久久久久久末码| 一级毛片高清免费大全| 欧美av亚洲av综合av国产av| 1024手机看黄色片| 亚洲国产欧美网| 美女午夜性视频免费| 俺也久久电影网| 成人精品一区二区免费| 91麻豆精品激情在线观看国产| 欧美人与性动交α欧美精品济南到| 国产亚洲精品综合一区在线观看 | 午夜精品一区二区三区免费看| 又粗又爽又猛毛片免费看| 亚洲一码二码三码区别大吗| 日日摸夜夜添夜夜添小说| 亚洲精品在线观看二区| 在线观看免费日韩欧美大片| 亚洲自偷自拍图片 自拍| 久久99热这里只有精品18| 真人一进一出gif抽搐免费| 91在线观看av| 波多野结衣高清作品| 欧美丝袜亚洲另类 | 久久国产乱子伦精品免费另类| 日本 欧美在线| 99精品在免费线老司机午夜| 中文字幕人成人乱码亚洲影| 好男人在线观看高清免费视频| 久久精品国产综合久久久| 一a级毛片在线观看| 别揉我奶头~嗯~啊~动态视频| 色综合婷婷激情| 欧美黑人精品巨大| 亚洲色图 男人天堂 中文字幕| 看黄色毛片网站| 婷婷精品国产亚洲av在线| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩乱码在线| 日日爽夜夜爽网站| 久久99热这里只有精品18| 日本一区二区免费在线视频| 日本熟妇午夜| 亚洲18禁久久av| 欧美丝袜亚洲另类 | 亚洲精品久久成人aⅴ小说| 欧美人与性动交α欧美精品济南到| 亚洲va日本ⅴa欧美va伊人久久| 男女床上黄色一级片免费看| 又爽又黄无遮挡网站| 亚洲人成网站在线播放欧美日韩| 视频区欧美日本亚洲| 欧美国产日韩亚洲一区| 欧美又色又爽又黄视频| 午夜精品久久久久久毛片777| 免费在线观看视频国产中文字幕亚洲| 长腿黑丝高跟| 国产精品永久免费网站| 久久精品人妻少妇| 亚洲成av人片免费观看| 白带黄色成豆腐渣| 听说在线观看完整版免费高清| 亚洲欧洲精品一区二区精品久久久| 又粗又爽又猛毛片免费看| av超薄肉色丝袜交足视频| 中文字幕高清在线视频| 丰满人妻一区二区三区视频av | av有码第一页| 精品第一国产精品| 精华霜和精华液先用哪个| 午夜精品久久久久久毛片777| 亚洲一区中文字幕在线| 黄色视频,在线免费观看| 色尼玛亚洲综合影院| 神马国产精品三级电影在线观看 | 悠悠久久av| 免费搜索国产男女视频| 好看av亚洲va欧美ⅴa在| 免费电影在线观看免费观看| 亚洲欧美精品综合久久99| 久久婷婷成人综合色麻豆| 成人午夜高清在线视频| 搡老熟女国产l中国老女人| 亚洲精品色激情综合| 国产精品亚洲av一区麻豆| 亚洲一区二区三区色噜噜| 日本a在线网址| 精品国内亚洲2022精品成人| 一区福利在线观看| 美女 人体艺术 gogo| 麻豆成人av在线观看| 国产精品av久久久久免费| www.熟女人妻精品国产| 精品久久久久久,| 国产真实乱freesex| 日韩精品中文字幕看吧| 我要搜黄色片| 亚洲av中文字字幕乱码综合| 久久精品影院6| 欧美另类亚洲清纯唯美| 亚洲精品一区av在线观看| tocl精华| 在线观看66精品国产| 丝袜美腿诱惑在线| 成人欧美大片| a在线观看视频网站| 午夜免费激情av| 国内久久婷婷六月综合欲色啪| 成年版毛片免费区| 中文字幕人成人乱码亚洲影| АⅤ资源中文在线天堂| 久久九九热精品免费| 两个人看的免费小视频| 成人高潮视频无遮挡免费网站| 欧美av亚洲av综合av国产av| 99久久无色码亚洲精品果冻| 日韩欧美在线二视频| 亚洲国产精品合色在线| 精品久久久久久,| 69av精品久久久久久| 又爽又黄无遮挡网站| 亚洲最大成人中文| 亚洲美女黄片视频| 日本免费a在线| 亚洲第一电影网av| 亚洲国产看品久久| 亚洲欧美精品综合久久99| 欧美+亚洲+日韩+国产| 欧美乱妇无乱码| 午夜激情av网站| 在线观看美女被高潮喷水网站 | 亚洲av成人不卡在线观看播放网| 精品久久久久久久末码| 曰老女人黄片| 欧美日韩亚洲综合一区二区三区_| 淫妇啪啪啪对白视频| av在线播放免费不卡| 国产成人av教育| 欧美三级亚洲精品| 在线观看午夜福利视频| 免费无遮挡裸体视频| or卡值多少钱| 脱女人内裤的视频| 亚洲精品美女久久久久99蜜臀| 欧美丝袜亚洲另类 | 亚洲国产精品sss在线观看| 亚洲人与动物交配视频| 在线观看www视频免费| 日韩av在线大香蕉| 搞女人的毛片| 99国产综合亚洲精品| 亚洲av成人精品一区久久| 国产蜜桃级精品一区二区三区| 欧美一级毛片孕妇| 婷婷精品国产亚洲av在线| 99在线视频只有这里精品首页| 在线观看免费视频日本深夜| 18禁美女被吸乳视频| 男男h啪啪无遮挡| 亚洲熟妇中文字幕五十中出| 日本在线视频免费播放| 草草在线视频免费看| 午夜激情福利司机影院| 日韩免费av在线播放| 久久久国产成人免费| 国产精品久久久久久久电影 | 麻豆国产97在线/欧美 | 色综合亚洲欧美另类图片| 成人三级做爰电影| 亚洲欧美日韩无卡精品| 精品一区二区三区四区五区乱码| 亚洲av成人不卡在线观看播放网| 99热6这里只有精品| 久久婷婷成人综合色麻豆| 十八禁人妻一区二区| 成人国产综合亚洲| 夜夜爽天天搞| 成人国产综合亚洲| 亚洲国产精品成人综合色| 国产成人精品久久二区二区免费| 亚洲国产欧美人成| 国产成人av激情在线播放| 免费电影在线观看免费观看| 最近最新中文字幕大全电影3| 一进一出好大好爽视频| 最近最新中文字幕大全电影3| 久久99热这里只有精品18| 法律面前人人平等表现在哪些方面| 精华霜和精华液先用哪个| 国产成人欧美在线观看| 成人三级黄色视频| 可以免费在线观看a视频的电影网站| 久久久久亚洲av毛片大全| 国产成人一区二区三区免费视频网站| 亚洲精品在线美女| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人免费电影在线观看| 男插女下体视频免费在线播放| 日韩国内少妇激情av| 制服丝袜大香蕉在线| 亚洲国产欧美网| 九九热线精品视视频播放| 一级毛片高清免费大全| 亚洲人成77777在线视频| 国产激情欧美一区二区| 变态另类丝袜制服| 日日爽夜夜爽网站| 亚洲中文av在线| 精品国内亚洲2022精品成人| 亚洲中文av在线| 久久久久久久久中文| 国产精品一区二区三区四区久久| 国产在线精品亚洲第一网站| 国产精品免费一区二区三区在线| 久久热在线av| 一二三四社区在线视频社区8| 制服人妻中文乱码| 在线免费观看的www视频| 欧美久久黑人一区二区| 国产成年人精品一区二区| 欧美久久黑人一区二区| 日韩三级视频一区二区三区| 99久久99久久久精品蜜桃| 国产一区二区三区在线臀色熟女| 久久久精品大字幕| 国产精品一区二区三区四区久久| 成人一区二区视频在线观看| 国产黄a三级三级三级人| 91老司机精品| 久久精品影院6| 99精品在免费线老司机午夜| videosex国产| 欧美乱码精品一区二区三区| 欧美日韩乱码在线| 国产精品一区二区三区四区免费观看 | 色哟哟哟哟哟哟| 欧美色视频一区免费| av免费在线观看网站| 麻豆av在线久日| 亚洲成人免费电影在线观看| 午夜精品久久久久久毛片777| 国产精品综合久久久久久久免费| 国产成人av教育| 人人妻,人人澡人人爽秒播| 老司机午夜十八禁免费视频| 国产在线观看jvid| 91麻豆av在线| av欧美777| 黄色丝袜av网址大全| 国产私拍福利视频在线观看| 怎么达到女性高潮| 淫秽高清视频在线观看| 99国产精品一区二区三区| 亚洲精品中文字幕一二三四区| 欧美激情久久久久久爽电影| av超薄肉色丝袜交足视频| 久久香蕉精品热| 好男人在线观看高清免费视频| 99国产综合亚洲精品| 成年女人毛片免费观看观看9| 国产午夜福利久久久久久| 51午夜福利影视在线观看| 成熟少妇高潮喷水视频| 又粗又爽又猛毛片免费看| 俺也久久电影网| 色哟哟哟哟哟哟| 久久香蕉激情| 日韩精品青青久久久久久| 亚洲一区高清亚洲精品| 亚洲美女视频黄频| 99热这里只有是精品50| 日韩欧美一区二区三区在线观看| 亚洲欧美日韩高清在线视频| or卡值多少钱| 成人国产综合亚洲| 午夜福利视频1000在线观看| 久久久久久九九精品二区国产 | 色在线成人网| 亚洲男人的天堂狠狠| 国产私拍福利视频在线观看| 真人做人爱边吃奶动态| 男女之事视频高清在线观看| 国产视频一区二区在线看| 欧美人与性动交α欧美精品济南到| 亚洲 国产 在线| 国产视频内射| 男女做爰动态图高潮gif福利片| 国产成年人精品一区二区| 美女免费视频网站| 狂野欧美激情性xxxx| 午夜a级毛片| 亚洲一区高清亚洲精品| 久久精品aⅴ一区二区三区四区| 成人亚洲精品av一区二区| 精品国产美女av久久久久小说| 久久久久国产一级毛片高清牌| 久久婷婷人人爽人人干人人爱| √禁漫天堂资源中文www| 久久精品人妻少妇| 毛片女人毛片| 成人精品一区二区免费| av视频在线观看入口| 黑人操中国人逼视频| 制服丝袜大香蕉在线| 欧美高清成人免费视频www| 国产高清有码在线观看视频 | 欧美 亚洲 国产 日韩一| 亚洲黑人精品在线| 亚洲自偷自拍图片 自拍| 1024视频免费在线观看| 日本熟妇午夜| 一本久久中文字幕| 亚洲人成网站在线播放欧美日韩| 一进一出抽搐动态| 国产爱豆传媒在线观看 | 婷婷精品国产亚洲av在线| 欧美在线一区亚洲| 久久久久久免费高清国产稀缺| 亚洲aⅴ乱码一区二区在线播放 | 久久中文字幕人妻熟女| 精品福利观看| 51午夜福利影视在线观看| 熟女电影av网| 亚洲五月婷婷丁香| 男人舔奶头视频| 99久久精品国产亚洲精品| 国内揄拍国产精品人妻在线| 亚洲国产精品久久男人天堂| 久久精品影院6| 日日夜夜操网爽| 一夜夜www| 老司机深夜福利视频在线观看| 这个男人来自地球电影免费观看| 亚洲中文字幕日韩| 亚洲成人久久爱视频| 一进一出抽搐gif免费好疼| 老司机午夜福利在线观看视频| 女人高潮潮喷娇喘18禁视频| 欧美成人免费av一区二区三区| av欧美777| 99精品在免费线老司机午夜| 国产av不卡久久| 亚洲自偷自拍图片 自拍| 丝袜美腿诱惑在线| 亚洲熟女毛片儿| 俺也久久电影网| 午夜免费成人在线视频| 成人国语在线视频| 精品乱码久久久久久99久播| 啦啦啦韩国在线观看视频| 舔av片在线| 国产精品亚洲美女久久久| 一进一出好大好爽视频| 看免费av毛片| 91成年电影在线观看| 激情在线观看视频在线高清| 亚洲精品久久国产高清桃花| 国产高清视频在线播放一区| 精品无人区乱码1区二区| 一a级毛片在线观看| 国产成人啪精品午夜网站| 99精品欧美一区二区三区四区| 精品久久久久久久久久免费视频| 亚洲性夜色夜夜综合| 人人妻人人看人人澡| 母亲3免费完整高清在线观看| 国产精品99久久99久久久不卡| 欧美日韩福利视频一区二区| 精品一区二区三区视频在线观看免费| 51午夜福利影视在线观看| 欧美激情久久久久久爽电影| 亚洲五月婷婷丁香| 久久九九热精品免费| 日韩中文字幕欧美一区二区| 国产区一区二久久| 国产真人三级小视频在线观看| 一级毛片女人18水好多| 亚洲精品美女久久av网站| 免费在线观看视频国产中文字幕亚洲| 免费人成视频x8x8入口观看| 亚洲全国av大片| 亚洲一区高清亚洲精品| 88av欧美| 夜夜躁狠狠躁天天躁| 在线观看美女被高潮喷水网站 | 亚洲一区高清亚洲精品| 91字幕亚洲| 黄频高清免费视频| 亚洲成av人片在线播放无| 深夜精品福利| 人妻久久中文字幕网| 国产精品av视频在线免费观看| 中文字幕精品亚洲无线码一区| 999久久久精品免费观看国产| 欧美人与性动交α欧美精品济南到| 老熟妇乱子伦视频在线观看| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久人妻蜜臀av| 美女高潮喷水抽搐中文字幕| √禁漫天堂资源中文www| 巨乳人妻的诱惑在线观看| 99久久国产精品久久久| 日韩欧美 国产精品| 欧美zozozo另类| 一本综合久久免费| 国产成人精品无人区| 国产亚洲精品综合一区在线观看 | 亚洲精华国产精华精| 国产乱人伦免费视频| av在线天堂中文字幕| 看免费av毛片| 国产午夜精品久久久久久| 国产亚洲精品一区二区www| 亚洲成av人片免费观看| 97碰自拍视频| 国产精品 欧美亚洲| 免费高清视频大片| 国产精品98久久久久久宅男小说| 毛片女人毛片| 日韩 欧美 亚洲 中文字幕| 成人18禁高潮啪啪吃奶动态图| 搡老妇女老女人老熟妇| 亚洲最大成人中文| 国产成人aa在线观看| 久久欧美精品欧美久久欧美| svipshipincom国产片| 在线永久观看黄色视频| 无限看片的www在线观看| АⅤ资源中文在线天堂| 亚洲av成人一区二区三|