• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of grain grow th in hybrid weld HAZ based on the coupled thermo-fluid model

    2015-09-05 00:49:46ZhangZhuanzhuanandWuChuansong張轉(zhuǎn)轉(zhuǎn)武傳松
    China Welding 2015年1期

    Zhang Zhuanzhuan and Wu Chuansong張轉(zhuǎn)轉(zhuǎn),武傳松*

    ?

    Analysis of grain grow th in hybrid weld HAZ based on the coupled thermo-fluid model

    Zhang Zhuanzhuan and Wu Chuansong
    張轉(zhuǎn)轉(zhuǎn),武傳松*

    Accurate calculation of thermal cycles isa prerequisite tomodel grain growth in the heat-affected zone(HAZ).To improve the computation precision of thermal field and HAZ geometry,a coupled model of heat transfer and fluid flow is developed for laser+GMAW-P hybrid welding of TCS stainless steel.Utilizing computed temperature fields from the coupled model,the evolution of grain structure in the HAZ of TCS stainless steel in hybrid welding is numerically simulated by using a three dimensional Monte Carlo model.Simulation results show thatmore accurate HAZ grain structure can be obtained based on the coupled model of fluid flow and heat transfer,and the computed grain size distribution agrees well with the corresponding experimental results.

    grain growth,HAZ,hybrid welding,numerical analysis

    0 Introduction

    TCS stainless steel,made by Chinese steel companies,is a new type of ferritic stainless steel used inmanufacturing railway wagons[1].However,rapid grain growth will occur in heat-affected zone(HAZ)when TCS stainless steel iswelded,which results in large deterioration in plasticity and toughness.This would seriously reduce the mechanical property of weld joints under the dynamic load,and even hardly satisfies the application requirements[2].Thus,awelding processwith high energy density should be used to reduce HAZ width and the grain size in HAZ of TCS steel welds.Various kinds of traditional welding processes cannot completely meet the quality requirement of welding TCS stainless steel[1,3].As an advanced welding process,laser+pulsed gasmetal arc hybrid welding,combining advantages of laser welding and pulsed gasmetal arc welding(GMAW-P),is characterized with high welding speed,low heat input,narrow HAZ,deep weld penetration and high process stability[4]. Thus,it has significant potential to solve the challenging problems of welding TCS stainless steel.But it is still uncertain of the influence mechanism of hybrid heat source on dimension of HAZ and grain growth in HAZ.

    Until now,considerable researches have been carried out on numerical simulation of the grain growth in HAZ by using the Monte Carlo(MC)model in combination with thermal analysis[5-8].However,these investigationsmostly focus on the HAZmicrostructure of titanium alloys and austenite steels under typical welding process,such as GTAW.Although Zhang et al.[9]has given comprehensive experimental and theoretical investigations to understand the grain growth in HAZ of TCS stainless steel during the laser+GMAW-P hybrid welding,the temperature field used to predict the grain growth was calculated from the solution of the heat conduction equation that could result in the important deficiency in the numerical analysis of HAZ grain structure[5].In order to improve the accuracy of the numerical computation of HAZ microstructure for hybrid welding of TCS stainless steel,it is essential to develop the HAZmicrostructure model based on the thermofluid model,i.e.,the temperature profiles should be determined by a coupled model of fluid flow and heat transfer.

    In this study,a 3D coupled model of heat transferand fluid flow is firstly developed for laser+GMAW-P hybrid welding of TCS stainless steel to acquiremore accurate temperature field.Base on themore accurately calculated HAZgeometry and thermal cycles,the MCmethod is used to conduct the analysis of the grain growth in hybrid weld HAZ of TCS stainless steel.At last,the validity of the numericalmodel is confirmed by comparing the simulation resultswith the corresponding experimental data.

    1 Coupled thermo-fluid model

    1.1Conservation equations

    The fluid flow and heat transfer in hybrid welding of TCS stainless steel aremodeled by using the continuum equations of energy,momentum and mass conservation,which are given as follows[說10-11]:

    Energy conservation:

    Momentum conservation:

    Mass conservation:

    Fig.1 Physicalmodel of hybrid welding process

    1.2Boundary conditions

    The calculation domain is depicted in Fig.1,and the corresponding boundary conditions are expressed as follows:

    On the top surface of the workpiece

    where?n is the normal unit vector to top surface,q(r)is

    tathe heat input from the arc,qcon,qradare heat loss fromconvection and radiation respectively,V?tis the velocity vectorof top surface,tx,

    tyare tangential unit vectors of

    top surface parallel to the xz and yz plane,respectively,?γ/?T is the temperature gradient of surface tension,σis the Stefan-Boltzmann constant,αcris the heat transfer coefficient,T0is the ambient temperature.

    Keyhole surface

    where Tevpis the boiling temperature.This represents that the keyhole surface is at the boiling temperature.

    Inlet and outlet

    where u0is the welding velocity that represents themovement of the workpiece relative to the hybrid heat source.

    Other surfaces

    1.3Heat source model

    In laser+GMAW-P hybrid welding,heat input comes from laser beam,arc heat and droplet heat content. To reflect the characteristics of each heat source,a combined volumetric heat source model was proposed in this paper to take into account the heating effect for the energy equation.The temperature of keyhole surface is set to the evaporation temperature that means the temperature of keyhole ismaintained at the boiling point by balancing laser beam energy with the heat absorbed by workpiece and the evaporation heat loss.A Gaussian density function is used to dealwith the heat input from the arc and a hemispheroid with uniformly distributed heat density represents the droplet enthalpy,and they are given as follows:

    whereηis the arc efficiency,U and I are the effective arc voltage and welding current,rais the heat distribution parameter,rwis thewire radius,ρwis the density of the electrode wire,uwis the wire feeding speed,rdis the droplet radius,fdis the drop generation rate,Hvis the average heat content of the weld pool,and Hdris the droplet heat content.

    1.4 Numerical simulation

    Due to the symmetry with respect to the weld center line,half of the workpiece was selected as the computational domain,which was of a size of75mm in length,20 mm in width and 6 mm in height.A non-uniform structured mesh system was adopted with finer grids near the heat source and coarser ones far away from it.To perform the analysis of the thermal process in hybrid welding of TCS steel,the commercial CFD solver Fluent was employed to solve the governing equations and their boundary conditions.

    The study case is with following test conditions:the average values of arc voltage and current are 20.3 V and 114 A;thewire diameter is1.2mm;laser power is2 kW;the welding speed is0.8m/min.During the hybrid welding experiments,the laser is leading and normally acts on the workpiece,the arc is tilted backwards by 30°relative to the laser head,and the separation distance between laser focal pointand arc electrode is 2mm.

    2 Grain growthmodel for hybrid weld HAZ of TCS steel

    Based on the calculated HAZ shape and size and thermal cycles,three dimensional Monte Carlo method isemployed to develop the HAZ grain growth model for hybrid welding of TCS stainless steel,and the evolution of grain structure in hybrid weld HAZ of TCS stainless steel is numerically simulated.Detailed description of themodel can be referred to literature[9].The dimension of the solution domain used in MC simulation is 0.7 mm×4.6 mm×5.0mm in consideration of hybrid weld HAZ geometry and computing time,and it is discretized into uniform grid with grid spacing of 10μm.The grid spacing is set to the actual initialmean grain size.The total number of the grain orientations used in the present calculation is taken to be 65 since the grain growth exponent becomes almost independent of it[12].

    3 Simulation results

    Fig.2 demonstrates the three-dimensional temperature field and fluid flow in weld poolwith a keyhole.It can be seen that the temperature contours in hybrid welding are compressed in front of the weld pool and spread out at the rear of it.Besides,the fluid flow field is clearly displayed.At the top surface near the keyhole wall,the flow is outward to the weld pool edge,and then to the weld pool rear,and finally is reversed toward to the keyhole.In the region below the top surface the molten metal flows downward along the keyhole wall,and then towards the weld pool rear and boundary.

    Fig.2 Three dimensional tem perature field of TCS stainless steel in hybrid welding

    Fig.3 shows the simulated finalmicrostructure of the hybrid weld HAZ for TCS steel.As expected,the grain size is coarser at the site near the fusion line.Largest grain size is observed in the region slightly below the top surface.Furthermore,it can be seen that grain growth near the top surface of the HAZ ismuch more significant than that near the bottom of weld pool.The grain size is dependent on the thermal history,and the temperature near the top surface is higher than at the bottom of the weldment due to the feature of heating action in hybrid welding.

    Fig.3 3D map of grain structure of HAZ

    The accurate numerical simulation of HAZ grain structure requires a temperature field with high calculation accuracy.Therefore,the more accurate thermal cycles and HAZ shape and size calculated by the coupled model are applied to the numerical analysis of the grain growth in hybrid weld HAZ of TCS stainless steel,and it is compared with the corresponding experimental data and the simulation results based on the pure thermal conduction model in Fig.4.It can be observed that the 2D map of grain structure distribution and the widths of the coarse grained HAZ(CGHAZ)in Fig.4b are in better agreement with the experimental ones,but the location of the widest CGHAZ near the point P in Fig.4c is closer to the top surface than that around the point m.Besides,the mean grain size and CGHAZ width below the point P are smaller compared with the experiment results.These results indicate that more accurate HAZ grain structure can be ob-tained if the coupled model of fluid flow and heat transfer is employed.

    To verify the predicted results,the variation of the mean grain size with distance from the fusion line along line AB is plotted in Fig.5.The predicted mean grain sizes based on the data calculated by two different models are compared with themeasurements.Although the calculated results for two differentmodels bothmatch the experimental data,those based on the coupled model of fluid flow and heat transfer are in better agreement with the measured ones,especially in the transition zone between the CGHAZ and the fine grain region.

    Fig.4 Com parison between experim entally measured and simulated HAZ Microstructure

    Fig.5 Com parison between experim ental data and predicted mean grain size based on two different thermalmodels

    4 Conclusions

    A three-dimensionalmodel is established to simulate the heat transfer and fluid flow in laser+GMAW-P hybrid welding of TCS stainless steel.The temperature field,thermal cycles and HAZ geometry are calculated.On the base of the calculated HAZ shape and size and thermal cycles,three dimensional Monte Carlo approach is used to develop the HAZ grain growth model for hybrid welding of TCS stainless steel,and the evolution of grain structure in hybrid weld HAZ of TCS stainless steel is numerically simulated.Simulation results show that microstructure features of coarse and fine grain region in HAZ based on the heat and fluid flow model are much closer to the experimental ones in contrastwith the predicted results based on the pure heat conduction model.

    Acknow ledgement

    The authors are grateful to the financial support for this project from Shandong Province Natural Science Foundation(ZR2014EL025)and the Open Research Fund of Provincial Key Lab of Advanced Welding Technology at Jiangsu University of Science and Technology.

    References

    [1] Wang B S,Ma L,Tian JS,etal.Research on the weldability of TCS stainless steel used in the railway.Transactions of the ChinaWelding Institution,2008(5):54-56.(in Chinese)

    [2] Wang L X,Song C J.Study on characteristics and mechanical properties of HAZ of TCS ferritic stainless steel.Iron and Steel,2008,43:71-74.(in Chinese)

    [3] Wu Y L,Li JL,Li JQ,et al.Weldability of TCS stainless steel.Transactions of the China Welding Institution,2007 (12):37-40,64.(in Chinese)

    [4] Defalco J.Practical applications for hybrid laser welding. Welding Journal,2007,86(10):47-51.

    [5] Yang Z,Sista S,Elmer JW,et al.Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium.Acta Materialia,2000,48:4813-4825.

    [6] Mishra S,Debroy T.Measurements and Monte Carlo simulation of grain growth in heat-affected zone of Ti-6Al-4V welds. Acta Materialia,2004,52:1183-1192.

    [7] Shi YW,Chen D,Lei Y P,etal.HAZmicrostructure simulation in welding of a ultra fine grain steel.Computational Materials Science,2004,31:379-388.

    [8] Wei Y H,Xu Y L,Dong Z B,et al.Three dimensional Monte Carlo simulation of grain growth in HAZ of stainless steel SUS316.Key Engineering Materials,2007,353-358:1923-1936.

    [9] Zhang Z Z,Wu C S.Monte Carlo simulation grain growth in heat-affected zone of 12 wt.%Cr ferritic stainless steel hybrid welds.ComputationalMaterials Science,2012,65:442 -449.

    [10] ChoW I,Na S J,Cho M H,et al.Numerical study ofalloying element distribution in CO2laser-GMA hybrid welding. Computational Materials Science,2010,49:792-800.

    [11] Wu C S,Zhang T,F(xiàn)eng Y H.Numerical analysis of the heat and fluid flow in a weld pool with a dynamic keyhole. International Journal of Heat and Fluid Flow,2013,40:186-197.

    [12] Anderson M P,Srolovitz D J,Grest G S,et al.Computer simulation of grain growth-I.kinetics.Acta Metallurgica,1984,32:783-791.

    *Zhang Zhuanzhuan,School of Construction Machinery,Shandong Jiaotong University,Jinan,250023. Wu Chuansong,MOE Key Laboratory for Liquid-Solid Structural Evolution and Materials Processing,and Institute of Materials Joining,Shandong University,Jinan,250061. Wu Chuansong,Corresponding author,E-mail:wucs@sdu.edu.cn

    午夜福利欧美成人| 高清av免费在线| 一级毛片精品| 午夜激情av网站| 日韩成人在线观看一区二区三区| 亚洲av日韩精品久久久久久密| 青草久久国产| 久久久国产一区二区| 一本综合久久免费| 99国产极品粉嫩在线观看| 亚洲熟妇熟女久久| 欧美日韩成人在线一区二区| 欧美人与性动交α欧美精品济南到| 无人区码免费观看不卡| 最新在线观看一区二区三区| 美女扒开内裤让男人捅视频| 啦啦啦在线免费观看视频4| 一边摸一边抽搐一进一出视频| 久久人人97超碰香蕉20202| 色在线成人网| 国产免费av片在线观看野外av| 日韩视频一区二区在线观看| 中文欧美无线码| 美女 人体艺术 gogo| 最近最新中文字幕大全电影3 | 在线十欧美十亚洲十日本专区| 欧美性长视频在线观看| 精品福利观看| 黑人巨大精品欧美一区二区mp4| 少妇粗大呻吟视频| 亚洲av成人不卡在线观看播放网| 午夜精品国产一区二区电影| 丝瓜视频免费看黄片| av欧美777| www.999成人在线观看| 俄罗斯特黄特色一大片| 亚洲五月天丁香| 国产精品美女特级片免费视频播放器 | 天堂√8在线中文| 亚洲性夜色夜夜综合| 母亲3免费完整高清在线观看| 中文欧美无线码| 日韩一卡2卡3卡4卡2021年| 亚洲 欧美一区二区三区| 国产成人欧美| 国产免费现黄频在线看| 欧美丝袜亚洲另类 | 国产精品一区二区在线不卡| 超碰97精品在线观看| 亚洲av美国av| 香蕉国产在线看| 午夜免费鲁丝| 午夜两性在线视频| 天堂动漫精品| 精品无人区乱码1区二区| 精品高清国产在线一区| 国产精品久久久av美女十八| 国产精品 国内视频| 美女扒开内裤让男人捅视频| 亚洲专区国产一区二区| 日本精品一区二区三区蜜桃| 18禁黄网站禁片午夜丰满| 国产成人免费无遮挡视频| ponron亚洲| 岛国毛片在线播放| 18禁黄网站禁片午夜丰满| 在线观看免费高清a一片| www.自偷自拍.com| 在线看a的网站| 久久久久国产一级毛片高清牌| 欧美人与性动交α欧美软件| 精品人妻在线不人妻| 国产精品 国内视频| 国产片内射在线| 一二三四在线观看免费中文在| 精品人妻在线不人妻| 视频在线观看一区二区三区| 窝窝影院91人妻| 老熟妇仑乱视频hdxx| 精品人妻熟女毛片av久久网站| 亚洲色图 男人天堂 中文字幕| 50天的宝宝边吃奶边哭怎么回事| 婷婷精品国产亚洲av在线 | 午夜激情av网站| 欧美午夜高清在线| 国产欧美日韩综合在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 精品亚洲成a人片在线观看| 亚洲九九香蕉| 国产高清videossex| 女同久久另类99精品国产91| 国产欧美日韩精品亚洲av| 操出白浆在线播放| 免费在线观看视频国产中文字幕亚洲| 国产免费av片在线观看野外av| a在线观看视频网站| 成人18禁高潮啪啪吃奶动态图| 久久久久久免费高清国产稀缺| 国产精品二区激情视频| 十分钟在线观看高清视频www| 老司机深夜福利视频在线观看| 国产xxxxx性猛交| 夜夜爽天天搞| 国精品久久久久久国模美| 久久久久久久国产电影| 亚洲精品中文字幕一二三四区| 成人三级做爰电影| 精品一区二区三区视频在线观看免费 | 黑人巨大精品欧美一区二区蜜桃| 亚洲国产精品一区二区三区在线| 50天的宝宝边吃奶边哭怎么回事| 无遮挡黄片免费观看| 国产成人精品无人区| 久久久久精品国产欧美久久久| 亚洲三区欧美一区| 俄罗斯特黄特色一大片| 校园春色视频在线观看| 在线观看www视频免费| 三上悠亚av全集在线观看| 在线天堂中文资源库| 热99re8久久精品国产| 欧美日韩国产mv在线观看视频| 巨乳人妻的诱惑在线观看| 最近最新免费中文字幕在线| 窝窝影院91人妻| 免费看a级黄色片| 亚洲七黄色美女视频| 国产精品 欧美亚洲| 亚洲精品在线美女| 日韩熟女老妇一区二区性免费视频| 性少妇av在线| 国产视频一区二区在线看| 国产欧美日韩精品亚洲av| 日韩一卡2卡3卡4卡2021年| www日本在线高清视频| 久久精品熟女亚洲av麻豆精品| 久久天躁狠狠躁夜夜2o2o| 亚洲情色 制服丝袜| 精品电影一区二区在线| 国产有黄有色有爽视频| 亚洲精品国产色婷婷电影| 国产一区二区三区视频了| 精品久久久久久久毛片微露脸| 成人三级做爰电影| 久久久久久人人人人人| 交换朋友夫妻互换小说| 窝窝影院91人妻| 无遮挡黄片免费观看| 中亚洲国语对白在线视频| 黄色a级毛片大全视频| 伊人久久大香线蕉亚洲五| 日本a在线网址| 成人18禁在线播放| 乱人伦中国视频| 男女下面插进去视频免费观看| av天堂久久9| 欧美 日韩 精品 国产| 午夜福利在线免费观看网站| 黑人猛操日本美女一级片| 婷婷成人精品国产| 极品教师在线免费播放| 久久久久精品国产欧美久久久| 女人被躁到高潮嗷嗷叫费观| 满18在线观看网站| 亚洲精品av麻豆狂野| 精品亚洲成国产av| 十八禁人妻一区二区| 中文字幕av电影在线播放| 亚洲第一av免费看| 一级作爱视频免费观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜免费观看网址| x7x7x7水蜜桃| 成人特级黄色片久久久久久久| 女人久久www免费人成看片| 亚洲一区高清亚洲精品| 久久婷婷成人综合色麻豆| 亚洲九九香蕉| 国产99久久九九免费精品| 亚洲美女黄片视频| 欧美成狂野欧美在线观看| 91在线观看av| 91精品三级在线观看| 99热网站在线观看| 动漫黄色视频在线观看| 亚洲一码二码三码区别大吗| 亚洲 欧美一区二区三区| 亚洲国产毛片av蜜桃av| 91国产中文字幕| 91在线观看av| 久久久久精品人妻al黑| 国产欧美日韩一区二区精品| 国产高清videossex| 一边摸一边做爽爽视频免费| 亚洲视频免费观看视频| 香蕉国产在线看| svipshipincom国产片| 咕卡用的链子| 乱人伦中国视频| 五月开心婷婷网| 国产av又大| 成人18禁高潮啪啪吃奶动态图| 一边摸一边做爽爽视频免费| 亚洲视频免费观看视频| 丝袜人妻中文字幕| 丰满人妻熟妇乱又伦精品不卡| 成年版毛片免费区| 国产又色又爽无遮挡免费看| 欧美在线一区亚洲| 人妻久久中文字幕网| 欧美激情久久久久久爽电影 | 中文字幕av电影在线播放| 日韩制服丝袜自拍偷拍| 天天添夜夜摸| 中文字幕最新亚洲高清| 亚洲欧美色中文字幕在线| 国产av又大| 热99国产精品久久久久久7| 91精品三级在线观看| 色综合欧美亚洲国产小说| 婷婷成人精品国产| 又大又爽又粗| 欧美激情久久久久久爽电影 | 亚洲熟女毛片儿| 日韩熟女老妇一区二区性免费视频| 露出奶头的视频| 欧美乱妇无乱码| 亚洲国产中文字幕在线视频| 老熟妇乱子伦视频在线观看| 成人亚洲精品一区在线观看| 淫妇啪啪啪对白视频| 巨乳人妻的诱惑在线观看| 中文字幕人妻熟女乱码| 精品国产亚洲在线| av超薄肉色丝袜交足视频| 丝袜美足系列| 亚洲成av片中文字幕在线观看| 国产单亲对白刺激| 亚洲专区中文字幕在线| 亚洲熟女精品中文字幕| 九色亚洲精品在线播放| 国产精品一区二区在线观看99| 高清在线国产一区| 一a级毛片在线观看| 99久久国产精品久久久| 婷婷成人精品国产| 欧美日韩成人在线一区二区| 国产精品98久久久久久宅男小说| 久久精品国产亚洲av高清一级| 国产激情欧美一区二区| 男女床上黄色一级片免费看| 中文字幕最新亚洲高清| 国产主播在线观看一区二区| 色综合欧美亚洲国产小说| 精品电影一区二区在线| 麻豆国产av国片精品| 国产精品98久久久久久宅男小说| 亚洲一码二码三码区别大吗| 国产亚洲精品一区二区www | 不卡av一区二区三区| 美女高潮到喷水免费观看| 午夜久久久在线观看| 极品少妇高潮喷水抽搐| 久99久视频精品免费| 王馨瑶露胸无遮挡在线观看| 国产亚洲精品第一综合不卡| 90打野战视频偷拍视频| 一级,二级,三级黄色视频| www.熟女人妻精品国产| 亚洲中文字幕日韩| 99精品欧美一区二区三区四区| 一级作爱视频免费观看| 欧美日韩国产mv在线观看视频| avwww免费| 中国美女看黄片| 国产高清videossex| 亚洲国产欧美日韩在线播放| 久久久国产精品麻豆| 国产aⅴ精品一区二区三区波| 亚洲第一av免费看| 女人被狂操c到高潮| 少妇粗大呻吟视频| 亚洲熟女精品中文字幕| 丰满饥渴人妻一区二区三| 高清黄色对白视频在线免费看| 精品卡一卡二卡四卡免费| 天堂动漫精品| 精品一区二区三区av网在线观看| 91麻豆精品激情在线观看国产 | 99久久99久久久精品蜜桃| 99re6热这里在线精品视频| 免费久久久久久久精品成人欧美视频| 精品一区二区三卡| 欧美成人免费av一区二区三区 | 波多野结衣一区麻豆| 麻豆成人av在线观看| 香蕉丝袜av| 一级毛片高清免费大全| 岛国毛片在线播放| 丁香六月欧美| 久久久水蜜桃国产精品网| 黄色丝袜av网址大全| 丁香欧美五月| 99久久综合精品五月天人人| 午夜影院日韩av| 无人区码免费观看不卡| 韩国精品一区二区三区| 国产成人一区二区三区免费视频网站| 大型黄色视频在线免费观看| av超薄肉色丝袜交足视频| 不卡av一区二区三区| 国产av精品麻豆| 国产1区2区3区精品| 亚洲精品美女久久久久99蜜臀| 国产精品永久免费网站| 精品国产美女av久久久久小说| 色综合欧美亚洲国产小说| 免费黄频网站在线观看国产| 亚洲成国产人片在线观看| 午夜免费成人在线视频| e午夜精品久久久久久久| ponron亚洲| tocl精华| 欧美日韩黄片免| 丝袜人妻中文字幕| 日韩中文字幕欧美一区二区| 桃红色精品国产亚洲av| 欧美成人午夜精品| a在线观看视频网站| 国产精品免费视频内射| 亚洲一码二码三码区别大吗| 日韩免费高清中文字幕av| 日本黄色日本黄色录像| 国产激情欧美一区二区| 五月开心婷婷网| 99精品在免费线老司机午夜| 亚洲中文av在线| 窝窝影院91人妻| 久久久久精品人妻al黑| 一级毛片精品| 成年人免费黄色播放视频| 黑人欧美特级aaaaaa片| 精品人妻熟女毛片av久久网站| 人人澡人人妻人| 免费在线观看完整版高清| 中文字幕最新亚洲高清| 免费在线观看完整版高清| 最新美女视频免费是黄的| 欧美午夜高清在线| 国产精品一区二区免费欧美| 日本精品一区二区三区蜜桃| 脱女人内裤的视频| 欧美日韩中文字幕国产精品一区二区三区 | 一区二区三区激情视频| 久久亚洲真实| 女同久久另类99精品国产91| 国产色视频综合| 国产亚洲精品久久久久久毛片 | 纯流量卡能插随身wifi吗| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲全国av大片| 在线观看免费午夜福利视频| 乱人伦中国视频| 免费在线观看亚洲国产| 无遮挡黄片免费观看| 首页视频小说图片口味搜索| 99re在线观看精品视频| 亚洲国产中文字幕在线视频| 91麻豆精品激情在线观看国产 | 国产99白浆流出| 午夜精品在线福利| 999久久久国产精品视频| 99香蕉大伊视频| 丝袜在线中文字幕| 精品国产一区二区久久| 日本五十路高清| 国产亚洲欧美98| 亚洲少妇的诱惑av| 中出人妻视频一区二区| 精品人妻在线不人妻| av一本久久久久| 18禁国产床啪视频网站| 免费观看精品视频网站| 一二三四社区在线视频社区8| 精品一区二区三区av网在线观看| 国产一区二区激情短视频| 男男h啪啪无遮挡| 日韩熟女老妇一区二区性免费视频| 丝袜美足系列| 亚洲av第一区精品v没综合| 757午夜福利合集在线观看| 人成视频在线观看免费观看| 久久香蕉精品热| 两性夫妻黄色片| 欧美日韩黄片免| 精品熟女少妇八av免费久了| 国产男靠女视频免费网站| 女人被狂操c到高潮| 啦啦啦免费观看视频1| 成人三级做爰电影| 午夜免费观看网址| 欧美最黄视频在线播放免费 | 在线看a的网站| 国产精品国产高清国产av | 精品一区二区三区视频在线观看免费 | 乱人伦中国视频| 最新的欧美精品一区二区| 高清欧美精品videossex| 最近最新中文字幕大全免费视频| 国产精品一区二区精品视频观看| 中文欧美无线码| 午夜视频精品福利| 亚洲欧美激情综合另类| 午夜福利欧美成人| 正在播放国产对白刺激| 成年人免费黄色播放视频| 午夜日韩欧美国产| 最近最新中文字幕大全免费视频| 黑人巨大精品欧美一区二区mp4| 青草久久国产| 日韩欧美国产一区二区入口| 中文字幕色久视频| 久久久精品免费免费高清| 亚洲欧洲精品一区二区精品久久久| 亚洲,欧美精品.| 人人妻人人添人人爽欧美一区卜| 国产成人精品在线电影| 久久久久国产精品人妻aⅴ院 | 精品电影一区二区在线| 18禁裸乳无遮挡动漫免费视频| 日本欧美视频一区| 欧美大码av| 亚洲久久久国产精品| 日日爽夜夜爽网站| 黄频高清免费视频| 亚洲精品成人av观看孕妇| 成年人黄色毛片网站| 亚洲全国av大片| 欧美黄色淫秽网站| 国产蜜桃级精品一区二区三区 | 亚洲九九香蕉| 国产精品99久久99久久久不卡| 大香蕉久久成人网| 18禁观看日本| 少妇的丰满在线观看| 国产精品香港三级国产av潘金莲| 亚洲情色 制服丝袜| 国产亚洲欧美在线一区二区| 热99国产精品久久久久久7| 亚洲精品自拍成人| 飞空精品影院首页| 狠狠婷婷综合久久久久久88av| netflix在线观看网站| 日本a在线网址| 麻豆成人av在线观看| www.熟女人妻精品国产| av天堂在线播放| 一级片'在线观看视频| a级片在线免费高清观看视频| 久久青草综合色| 叶爱在线成人免费视频播放| 国产精品免费视频内射| 一区在线观看完整版| 亚洲全国av大片| 国产精品美女特级片免费视频播放器 | 丰满饥渴人妻一区二区三| 国产男女超爽视频在线观看| 精品久久久久久久久久免费视频 | 免费不卡黄色视频| 欧美日韩亚洲高清精品| 十八禁人妻一区二区| 手机成人av网站| 狠狠狠狠99中文字幕| 高清欧美精品videossex| 老司机影院毛片| 脱女人内裤的视频| a级片在线免费高清观看视频| 黄色丝袜av网址大全| 国产高清激情床上av| 欧美精品av麻豆av| 国产精品国产av在线观看| svipshipincom国产片| 91成人精品电影| 性少妇av在线| av中文乱码字幕在线| 老司机午夜十八禁免费视频| 美女视频免费永久观看网站| 久久精品亚洲av国产电影网| 动漫黄色视频在线观看| 如日韩欧美国产精品一区二区三区| 亚洲五月色婷婷综合| 一边摸一边抽搐一进一小说 | 国产黄色免费在线视频| 欧美不卡视频在线免费观看 | 十八禁网站免费在线| 9色porny在线观看| 美女高潮喷水抽搐中文字幕| 91大片在线观看| 亚洲av美国av| 久久久久久久久免费视频了| 精品人妻熟女毛片av久久网站| 中文字幕高清在线视频| 欧美激情高清一区二区三区| 岛国在线观看网站| 日韩人妻精品一区2区三区| 一区二区三区激情视频| 在线观看日韩欧美| 人人妻,人人澡人人爽秒播| 日本vs欧美在线观看视频| 91成人精品电影| 中文字幕色久视频| 亚洲国产精品sss在线观看 | 男人操女人黄网站| 一进一出抽搐gif免费好疼 | 亚洲免费av在线视频| 免费看a级黄色片| 少妇的丰满在线观看| 久久狼人影院| 欧洲精品卡2卡3卡4卡5卡区| 丰满的人妻完整版| 脱女人内裤的视频| 黄色视频,在线免费观看| 不卡av一区二区三区| 亚洲精品自拍成人| 亚洲国产欧美日韩在线播放| 亚洲欧美激情综合另类| 欧美精品高潮呻吟av久久| 国产精品免费大片| 亚洲av美国av| 精品高清国产在线一区| 男女之事视频高清在线观看| 国产精品99久久99久久久不卡| 成年人黄色毛片网站| 国产深夜福利视频在线观看| 久久久国产成人精品二区 | 国产欧美日韩精品亚洲av| svipshipincom国产片| 亚洲视频免费观看视频| 欧美大码av| 亚洲中文av在线| 国产精品久久久久成人av| 69av精品久久久久久| 国产亚洲一区二区精品| 国产成人av教育| tube8黄色片| 国产人伦9x9x在线观看| 亚洲精品国产精品久久久不卡| 99久久99久久久精品蜜桃| 69av精品久久久久久| 国产99白浆流出| av片东京热男人的天堂| 久久亚洲精品不卡| 人妻丰满熟妇av一区二区三区 | 午夜成年电影在线免费观看| 国产精品二区激情视频| 亚洲午夜理论影院| 久久99一区二区三区| 久久久精品区二区三区| 精品久久久久久电影网| 国产不卡一卡二| 我的亚洲天堂| 国产一区二区三区在线臀色熟女 | 日韩制服丝袜自拍偷拍| 亚洲综合色网址| 男女床上黄色一级片免费看| netflix在线观看网站| 一级片免费观看大全| 欧美亚洲日本最大视频资源| 亚洲免费av在线视频| 丰满的人妻完整版| 日日爽夜夜爽网站| 欧美日韩亚洲综合一区二区三区_| 热99国产精品久久久久久7| 亚洲国产欧美一区二区综合| 麻豆乱淫一区二区| 久9热在线精品视频| 伊人久久大香线蕉亚洲五| 久久久国产成人精品二区 | 久久人妻福利社区极品人妻图片| 成年人午夜在线观看视频| 嫁个100分男人电影在线观看| 飞空精品影院首页| 国产区一区二久久| 人妻 亚洲 视频| 国产精品一区二区免费欧美| 一个人免费在线观看的高清视频| 岛国在线观看网站| 国产精品成人在线| 天天影视国产精品| 一区二区三区国产精品乱码| 嫁个100分男人电影在线观看| 天天影视国产精品| 一级毛片高清免费大全| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美亚洲二区| 淫妇啪啪啪对白视频| 亚洲黑人精品在线| 午夜免费成人在线视频| 淫妇啪啪啪对白视频| 久久亚洲真实| 亚洲美女黄片视频| 窝窝影院91人妻| 最新的欧美精品一区二区| 国产精品久久久av美女十八| 真人做人爱边吃奶动态| 免费看a级黄色片| 亚洲精品美女久久av网站| 美女国产高潮福利片在线看| 精品国产一区二区久久| 人人妻人人爽人人添夜夜欢视频| 手机成人av网站| 国产区一区二久久| 亚洲精品粉嫩美女一区| 精品少妇一区二区三区视频日本电影| 国产成人欧美在线观看 |