• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of C/B4C ratio on Microstructure and property of Fe-based alloy coatings reinforced w ith in situ synthesized TiB2-TiC*

    2015-09-05 05:22:13JiangShaoqunWangGangChangyueWangZehuaandZhouZehua江少群呂長月王澤華周澤華
    China Welding 2015年1期
    關鍵詞:播撒補液豬舍

    Jiang Shaoqun,Wang Gang,LüChangyue,Wang Zehua and Zhou Zehua江少群,王 剛,呂長月,王澤華,周澤華**

    ?

    Effects of C/B4C ratio on Microstructure and property of Fe-based alloy coatings reinforced w ith in situ synthesized TiB2-TiC*

    Jiang Shaoqun,Wang Gang,LüChangyue,Wang Zehua and Zhou Zehua
    江少群,王 剛,呂長月,王澤華,周澤華**

    The Fe-based alloy coatings reinforced with in situ synthesized TiB2-TiC were prepared on Q235 steel by reactive plasma cladding using Fe901 alloy,Ti,B4C,and graphite(C)powders as raw materials.The effects of C/B4C weight percentage ratio(0-1.38)on themicrostructure,microhardness,and wet sand abrasion resistance of the coatings were investigated.The resultsshow that the coatings consist of(Fe,Cr)solid solution,TiC,TiB2,Ti8C5,and Fe3C phases.The decrease of C/B4C ratio ispropitious to the formation of TiB2and Ti8C5.Increasing the C/B4C ratio can help to refine the microstructure of the coatings.However,theMicrohardness of the middle-upper of the coatings and the wet sand abrasion resistance of the coatings degenerate with the increase of C/B4C ratio.The coating exhibits the best wet sand abrasion resistance at C/B4C=0 and itsaveragemass loss rate per unitwear distance is 0.001 2%/m.The change of the wet sand abrasion resistance of the coatingswith the C/B4C ratio can bemainly attributed to the combined action of the changes of microhardness and the volume percentage of the ceramic reinforcements containing titanium in the coatings.

    plasma cladding,F(xiàn)e-based alloy coating,TiB2-TiC,in situ synthesis,abrasion

    0 Introduction

    Wear is one of themain failuremodes ofmaterials.It usually stems from the surface of materials.Therefore,strengthening the surfaces of thematerials by some surface treatment techniques has often been done to improve the wear resistance of the materials[1-2].Reactive plasma cladding is an effective surface strengthening technique.It can improve the wear resistance of the materials obviously by cladding the coatings with good wear resistance on the surfaces of the materials[3-4].Due to its high efficiency,low cost,ease of operation,and,especially,its applicability to a wide range ofmaterials,reactive plasma cladding is a highly promising process for the fabrication and reparation of engineering anti-wear components.At present,the anti-wear coatings prepared by reactive plasma cladding include mainly Ni-,Co-,and Fe-based coatings[5-7].Fe-based coating has become a research focus in recent years due to its high hardness and excellentwear resistance,especially its low cost compared to the other metalmatrix coatings.In order to further improve the wear resistance,the in situ synthesized ceramic phases are usually embedded in the clad coatings as reinforcements.A-mong various ceramic particulates,TiC and TiB2become preferred reinforcements on account of their high hardness,high melting temperature,low density,high chemical stability and outstanding tribological properties[8-11]. Up to now,there are lots of researches on Fe-based clad coatings reinforced with TiC or TiB[12-13].Unfortunately,2there are few reports on Fe-based alloy plasma clad coatings reinforced with in situ synthesized TiB2-TiC,espe-cially the effect of TiB2/TiC ratio on the clad coatings.

    The researches indicated that TiC-TiB2composite ceramic materials had comprehensive properties superior to those of TiB2or TiC single phase ceramic material.Moreover,the hardness,wear resistance,fracture toughness of the TiC-TiB2composite ceramic were directly relevant to the TiC/TiB2ratio[14-15].

    Therefore,in this work,the Fe-based alloy coatings reinforced with in situ synthesized TiB2-TiC have been deposited on Q235 steel by reactive plasma cladding using Fe901 alloy,B4C,Ti,and graphite powders as raw materials.The TiB2/TiC ratio of the clad coatings is adjusted by changing the C/B4C weight percentage ratio of the reactants.The effects of C/B4C weight percentage ratio on the microstructure,microhardness,and wet sand abrasion resistance of the clad coatings have been investigated in detail.

    1 Experiments

    Commercial Q235 steel was chosen as substrate.The dimensions of the substrateswere50mm×26mm×6mm. Prior to the cladding process,the substrates were blasted with sands and cleaned with acetone in an ultrasonic cleaner for 15 min to remove grease and residue.The raw claddingmaterials included Fe901 alloy powder(particle size:44-104μm),Tipowder(particle size:~50μm,purity:99.5%),B4C powder(particle size:28-40μm,purity:≥99.0%),and graphite powder(particle size:~50μm,purity:99.9%).The chemical composition of Fe901 alloy powderwas13 wt.%Cr,1.2 wt.%Si,1.6 wt.%B,0.8 wt.%Mo,and Fe in balance.Table 1 shows the proportion of the constituents of the precursor powder mixture by weight for different Fe-based alloy coatings.According to the composition design,the TiB2/TiC weight percentage ratio of the coating1,2 and 3 was about 70∶30,(47-48)∶(52-53)and 24∶76 respectively,which was calculated as per the chemical reactions shown in Eq.(1)and Eq.(2)and was an ideal value.

    To obtain a homogenous distribution,all measured quantities of raw powders for each coating were mixed by alternate cycles ofmanual stirring.Then a smallamountof self-made adhesivewas added into themixture.Aftermixing uniformly,the blend was preplaced manually on Q235 steel surface.The thickness of the preplaced layers was about 2 mm.In order to enhance the adhesion effect between the preplaced layer and substrate and removemoisture,the samples were dried thoroughly in a furnace at 100℃for 2 h before cladding process.The cladding experiments were carried out using the optimized parameters listed in Table 2 on the LHD-300 plasma cladding equipment.Arwas chosen as plasma gas and protective gas.In order tomeet the demand for adequate width,all the clad coatings for wear tests were prepared by double-pass plasma cladding process.The overlap ratio of the two passes was about30%.

    The phase structure characterization was performed by X-ray diffraction(XRD)with Cu Kαradiation.The microstructure analyses were done by scanning electron microscope(SEM).Energy dispersive spectroscopy(EDS)was used to analyze the compositions of the coatings.Microhardness testswere performed on coating cross-sections using an HXD-1000TC microhardness tester with a 100 g load and a dwell time of 15 s.Wear tests were performed on MLS-225 wet sand rubberwheel apparatus at a constant rubber wheel rotational speed of182 r/min and load of70 N under themixedmedium composed of1 000 gwater and 1 500 g quartz sand for 5 min.The particle size of the quartz sandswas about200-420μm.The diameter of the rubber wheelwas 178 mm.

    Table 1 Com position of the reactants of the coatings

    Table 2 Reactive plasma cladding process parameters

    2 Results and discussion

    Fig.1 X-ray diffraction patterns of the Fe-based alloy coatings

    The SEM micrographs of the cross-sections of the coatings are shown in Fig.2.Table 3 gives the chemical compositions of the corresponding micro-regions in the coatings.It can be found that the microstructure of the coatings strongly depends on C/B4C ratio and it exhibits an obvious gradient distribution along the depth direction. When C/B4C ratio is 0,as shown in Fig.2a-Fig.2c,plenty of relatively coarse black strip/block precipitations and some fine dark grey spherical/block precipitations are distributed in the Fe-based alloymatrix.The EDS results indicate that the black block phase A1is rich in Ti and B and contains a certain amount of Cr and Fe,however,the dark grey spherical phase B1is rich in Ti and C(Ti/C atomic ratio isabout1.9)and only contains a small amount of Fe and Cr.A part of the Fe and Cr signalsmay come from the Fe-Cr matrix owing to the small size of the analyzed phases or the presence of small thin regions on the phases.According to the results of XRD,it can be concluded that the black strip/block phases are TiB2and the fine dark grey spherical/block phases are titanium carbides(TiC and Ti8C5).TiB2strip/block morphology relates to its C32 crystal structure[11].At C/B4C=0.33,the morphology of the precipitations in the coating 2 (shown in Fig.2d-Fig.2f)can be approximately categorized into two kinds:black block and dark grey flowerlike/fine block.The EDS results of the precipitations (marked with A2and B2)indicate that dark grey phase A2ismainly composed of Ti,F(xiàn)e,C and a small amountof Cr and Si,however,the black block phase B2is rich in Ti and B and contains a little of Fe and Cr.Based on the above analysis,it can be deduced that TiC presents in flower-like/fine block form and TiB2precipitates in block form at this C/B4C ratio.When C/B4C ratio increases to1.38,as shown in Fig.2g-Fig.2i,the precipitations in the coating 3 are smaller than those of the former two and theygradually become coarse from the bottom to the upper of the coating.At the lower and themiddle of the coating 3,the precipitationsmainly present in spherical form and only a few precipitations are fine strip shape.The precipitations present in fine block or flower-like form at the upper of the coatings.EDS analysis was used to ascertain the chemical composition of these precipitations with different morphologies.It can be found that the spherical phase A3is rich in Ti,F(xiàn)e,C and only contains a small amount of Cr and Si.The flower-like phase C3is rich in Ti and C (Ti/C atomic ratio is about 1)and contains a trace of Cr and Fe.According to the XRD results,it can be concluded that the spherical precipitationsmainly consist of titanium carbides(TiC,Ti8C5)and a small amount of Fe3C and the flower-like precipitations mainly consist of TiC. Clearly,themorphology of TiC is variable along the depth direction of the coating.Ali Emamian et al.[2]pointed out that the morphology of TiC depended on the state of the molten pool during the cladding process.When themolten pool was partially solid,the TiC preferred to precipitate in spherical form.The TiC usually precipitated in flower-like form or dendrite structure if themolten poolwas fully liquid.In fact,the state of themolten pool has a vital effect on the formation mechanism of TiC.Therefore,it is reasonable to deduce that themorphology of the in situ formed TiC by reactive plasma cladding depends on its formation mechanisms.The EDS result of the fine strip phase B3indicates that it contains Ti(18.31at.%),B(50.63at.%),C(25.62at.%)and a small amount of Fe and Cr.This verifies that the titanium carbides and boride at themiddle portion of the coatings 3 are formed by solid state diffusion mechanism.By comparing the EDS results of carbide phases B1,A2and A3,it can be found that the contents of Fe and C increase and the content of Ti decreases in turn. This implies that the increase of C/B4C ratio can promote the formation of Fe3C and depress the formation of Ti8C5. Based on the microstructure of the coatings and the above analysis,it can be concluded that increasing the C/B4C ratio can promote the formation of Fe3C and decreasing the C/B4C ratio is in favor of the formations of TiB2and Ti8C5.

    Obviously,the C/B4C ratio has an important effect on themorphology of the precipitations and the contents of TiC,Ti8C5,F(xiàn)e3C and TiB2.The increase of the C/B4C ratio is beneficial to the refinementof themicrostructure of the coatings.There are plenty of TiB2in the coating at C/ B4C=0 and a lot of titanium carbides precipitate in the coating at C/B4C=1.38.

    Table 3 EDS results of the coatings

    Fig.3 gives the microhardness of the coatings as a function of coating depth.The microhardness of the coatings exhibits a nonmonotonic change along the depth direction.Thismainly results from the gradient distribution and distribution nonuniformity in microscale of the microstructure of the coatings.With the increase of C/B4C ratio,the microhardness of themiddle-upper of the coatings decreases gradually.The microhardness of the part which is in the depth range of 0-0.8 mm from the surface of the coating is about 595.5-635.9 HV0.1 at C/B4C=0,however,it is about 389.9-429.8 HV0.1 at C/B4C= 1.38.It indicates that the microhardness of the middleupper of the coatings can be improved by suitably increasing the TiB2/TiC ratio.

    In order to further understand the effect of C/B4C ratio on the properties of the coatings,wet sand abrasion tests have been carried out.Due to the composition difference of the precursor,themasses of the coatings with thesame size are different from each other.Therefore,the relative wear rateε(averagemass loss rate(%)per unit wear distance(m))calculated as per Eq.(3)is used to estimate the wet sand abrasion resistance of the coatings. m1is themass of sample before thewetsand abrasion test,m2themass of sample after the wet sand abrasion test,msthemass of substrate,D the diameter of the rubberwheel,t wear time(min)and v the rotational speed of the rubber wheel(r/min).Table 4 shows theεof the coatings.It can be found that the coatings exhibit good wet sand abrasion resistance and the decrease of C/B4C ratio can result in the improvement of the wet sand abrasion resistance of the coatings.Theεof the coating at C/B4C=0 is about 50%of that of the coating at C/B4C=1.38.

    Fig.2 SEM Micrographs of cross-sections of the coatings

    Fig.3 Microhardness profile of the Fe-based alloy coatings

    Table 4 Relative wear rate of the coatings

    Fig.4 shows the morphologies of the worn surface of the coatings.There are a few shallow worn scars on the surface of the coating at C/B4C=0.With the increase of C/B4C ratio,more worn scars occur on the surface of the coatings and the depth of worn scars also increases.It is mainly because:(1)Themicrohardnessof themiddle-upper of the coatings decreases with the increase of C/B4C ratio;(2)The increase of C/B4C ratio results in the decrease of TiB2/(TiB2+TiC)weight percentage ratio of the coatings.Thismeans that the volume percentage of TiB2+ TiC reinforcement decreases with the increase of C/B4C ratio,since the density of TiB2is lower than that of TiC. Then the probability and the area that the wet sands contactwith non-ceramic phases also increase when the wet sands scratch the surface of the coating,which does cause the degeneration of the wet sand abrasion resistance.This implies that the wet sand abrasion resistance of the coatings can be improved by suitably increasing the TiB2/TiC weight percentage ratio.

    Fig.4 Worn surfacemorphologies of the coatings

    3 Conclusions

    (1)The C/B4C weight percentage ratio plays an important role in themicrostructure and properties of the Febased alloy coatings reinforced with in situ synthesized TiB2-TiC.

    當豬場已經發(fā)生豬流行性腹瀉病時候,應該對豬場進行全面消毒工作,對廠區(qū)周圍也要進行播撒生石灰消毒,從而切斷傳染源。做好豬舍的保溫工作是重要環(huán)節(jié),一般采用保溫燈的效果比較好。預防機體脫水、酸中毒,抗菌消炎同時也要止瀉補液。

    (2)The change of C/B4C ratio(0-1.38)has not resulted in the formation of any new phase.But the increase of C/B4C ratio can promote the formation of Fe3C and is propitious to refining themicrostructure of the coatings.Decreasing the C/B4C ratio can promote the formation of TiB2and Ti8C5and improve the wet sand abrasion resistance of the coatings.

    (3)The microhardness of the middle-upper of the coatings decreases with the increase of the C/B4C ratio.

    (4)The wet sand abrasion resistance of the coatings can be improved by suitably increasing the TiB2/TiC weight percentage ratio.

    References

    [1] Jiang SQ,Ren QW,Ding Y,et al.Characteristics of Febased WC composite coatings prepared by double-pass plasma cladding process.Rare Metal Materials and Engineering,2012,41(S1):195-198.

    [2] Emam ian A,Corbin S F,Khajepour A.The influence of combined laser parameters on in-situ formed TiCmorphology. Surface&Coatings Technology,2011,206:124-131.

    [3] Liu JB,Wang L M,Li H Q.Reactive plasma cladding of TiC/Fe cermet coating using asphalt as a carbonaceous precursor.Applied Surface Science,2009,255:4921-4925.

    [4] Liu JB,Wang LM,Huang JH.Wear properties of reactive plasma clad(Cr,F(xiàn)e)7C3/γ-Fe ceramal composite coatings. Journal of University of Science and Technology Beijing,2007,29(1):50-54.(in Chinese)

    [5] Wu Y P,Peng Z Q,Lin P H.In-situ synthesis of TiC particle reinforced nickel base alloy composite coating by plasma cladding.Materials Science&Technology,2004,12(4):429-432.(in Chinese)

    [6] Zhang L M,Sun D B,Yu H Y.Effect of niobium on themicrostructure and resistance of iron-based alloy coating produced by plasma cladding.Materials Science and Engineering A,2008,490:57-61.

    [7] D'Oliveira A SC M,Paredes R SC,Santos R L C.Pulsed current plasma transferred arc hardfacing.Journal of Materials Processing Technology,2006,171:167-174.

    [8] Hamedi M J,Torkamany M J,Sabbaghzadeh J.Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment.Optics and Lasers in Engineering,2011,49:557-563.

    [9] Du B S,Zou ZD,Wang X H,etal.Laser cladding of in situ TiB2/Fe composite coating on steel.Applied Surface Science,2008,254:6489-6494.

    [10] Yang S,Chen N,Liu W J,et al.Fabrication of nickel composite reinforced with TiC particles by laser cladding. Surface and Coatings Technology,2004,183:254-260.

    [11] Wang X H,Pan X N,Du B S,et al.Production of in situ TiB2+TiC/Fe composite coating from precursor containing B4C-TiO2-Al powders by laser cladding.Transactions of Nonferrous Metals Society of China,2013,23:1689-1693.

    [12] Liu JB,Jiang JS,Tan ZQ,et al.Influence of C/Tiatomic ratio on TiC/Fe composites coating using sucrose as a carbonaceous precursor by plasma cladding.Heat Treatment of Metals,2008,33(6):50-53.(in Chinese)

    [13] Anal A,Bandyopadhyay T K,Das K.Synthesisand characterization of TiB2-reinforced iron-based composites.Journal of Materials Processing Technology,2006,172:70-76.

    [14] Zhang X H,Zhu C C,Qu W,et al.Self-propagating high temperature combustion synthesis of TiC/TiB2ceramic-matrix composites.Composites Science and Technology,2002,62:2037-2041.

    [15] Lu D Q,Wang J J,Du X K,et al.Effects of content of titanium on self-propagating high temperature synthesis of Ti-B4C-C system.Journal of Ordnance Engineering College,2004,16(6):4-7.(in Chinese)

    *Thiswork is supported by the National Natural Science Foundation of China(Grant No.51101051),the Natural Science Foundation of Jiangsu Province(Grant No.BK2011250),and Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.1101017C).

    **Jiang Shaoqun,Wang Gang,Wang Zehua and Zhou Zehua,College of Mechanics and Materials,Hohai University,Nanjing,210098. Jiang Shaoqun,Changzhou Hohai Institute of Science and Technology Limited Liability Company,Changzhou,213164. LüChangyue,School of Materials Science and Engineering,Southeast University,Nanjing,211189. Jiang Shaoqun,Corresponding author,E-mail:sqjhit@126. com.

    猜你喜歡
    播撒補液豬舍
    孩子高熱易脫水備點補液鹽
    母豬懷孕后如何控制豬舍環(huán)境
    冬季豬舍有啥講究
    播撒純真的種子
    學生天地(2017年12期)2017-05-17 05:51:23
    標準化豬舍設計技術
    新型帳篷式豬舍的使用
    播撒助人為樂的種子
    中國火炬(2015年7期)2015-07-31 17:39:58
    播撒在田野里的少年夢
    中國火炬(2014年5期)2014-07-24 14:15:58
    大面積燒傷休克早期補液治療體會
    頭孢哌酮鈉聯(lián)合低滲補液鹽對重型福氏志賀菌性痢疾的療效研究
    久久久亚洲精品成人影院| 久久狼人影院| 亚洲三区欧美一区| 国产精品蜜桃在线观看| 国产精品不卡视频一区二区| 黄频高清免费视频| 亚洲国产av新网站| 日韩一卡2卡3卡4卡2021年| 久久精品国产亚洲av高清一级| 午夜福利一区二区在线看| 国产一区二区三区综合在线观看| 99香蕉大伊视频| 中国国产av一级| a 毛片基地| 高清在线视频一区二区三区| 欧美最新免费一区二区三区| av福利片在线| xxx大片免费视频| 少妇被粗大猛烈的视频| 一区在线观看完整版| 99精国产麻豆久久婷婷| 亚洲成色77777| 99国产精品免费福利视频| 国产成人精品在线电影| 国产97色在线日韩免费| 夜夜骑夜夜射夜夜干| 妹子高潮喷水视频| 女人被躁到高潮嗷嗷叫费观| 侵犯人妻中文字幕一二三四区| 久久99热这里只频精品6学生| 国产片内射在线| 国产日韩一区二区三区精品不卡| 国产av国产精品国产| 免费观看无遮挡的男女| 国产精品蜜桃在线观看| 日韩,欧美,国产一区二区三区| 一区二区三区精品91| 丰满乱子伦码专区| 老司机影院成人| 日韩一区二区三区影片| 一本—道久久a久久精品蜜桃钙片| 老女人水多毛片| 日韩电影二区| 亚洲成人av在线免费| 久久精品亚洲av国产电影网| 欧美国产精品一级二级三级| av国产久精品久网站免费入址| 国产精品熟女久久久久浪| 久久久精品区二区三区| 久久久精品区二区三区| 久久久久国产精品人妻一区二区| 久久99精品国语久久久| 日韩一本色道免费dvd| 欧美亚洲 丝袜 人妻 在线| 国产片内射在线| 一级黄片播放器| 免费看不卡的av| 亚洲精品自拍成人| 黑人猛操日本美女一级片| av不卡在线播放| 午夜精品国产一区二区电影| 色网站视频免费| 极品人妻少妇av视频| 免费观看无遮挡的男女| 丝袜喷水一区| 亚洲av日韩在线播放| 日韩中文字幕视频在线看片| 久久久久国产精品人妻一区二区| 人妻一区二区av| 香蕉国产在线看| 精品少妇久久久久久888优播| 久久久久久免费高清国产稀缺| 深夜精品福利| 国产欧美日韩综合在线一区二区| 最近手机中文字幕大全| 欧美变态另类bdsm刘玥| 人成视频在线观看免费观看| 日本vs欧美在线观看视频| 日本猛色少妇xxxxx猛交久久| 国产一区二区 视频在线| 99九九在线精品视频| 久久久久久人妻| 老司机影院毛片| 桃花免费在线播放| 最近2019中文字幕mv第一页| 捣出白浆h1v1| 国产精品亚洲av一区麻豆 | 精品久久久精品久久久| 国产一区有黄有色的免费视频| 免费观看在线日韩| 国产亚洲最大av| 青春草国产在线视频| 欧美老熟妇乱子伦牲交| 最新中文字幕久久久久| 在现免费观看毛片| 亚洲,欧美精品.| 欧美人与性动交α欧美精品济南到 | 国精品久久久久久国模美| 999久久久国产精品视频| 国产白丝娇喘喷水9色精品| 亚洲国产av影院在线观看| 咕卡用的链子| 80岁老熟妇乱子伦牲交| 久久久久精品久久久久真实原创| 热99国产精品久久久久久7| 男人添女人高潮全过程视频| 午夜日本视频在线| 黑人欧美特级aaaaaa片| 精品亚洲乱码少妇综合久久| 你懂的网址亚洲精品在线观看| xxx大片免费视频| 亚洲欧美一区二区三区国产| 国产精品.久久久| 99热网站在线观看| 国产成人aa在线观看| 亚洲,欧美精品.| 精品国产乱码久久久久久小说| 嫩草影院入口| 久久久精品免费免费高清| 亚洲精品日韩在线中文字幕| 精品少妇内射三级| 在线观看免费视频网站a站| 婷婷色麻豆天堂久久| 黄色怎么调成土黄色| 亚洲精品国产av蜜桃| 免费高清在线观看日韩| 一级片'在线观看视频| 亚洲精品第二区| 精品人妻熟女毛片av久久网站| 久久精品久久久久久噜噜老黄| 天天躁日日躁夜夜躁夜夜| 天天影视国产精品| 男女边摸边吃奶| 色视频在线一区二区三区| 天天躁夜夜躁狠狠躁躁| 亚洲av欧美aⅴ国产| 中国国产av一级| 精品99又大又爽又粗少妇毛片| 丝袜美腿诱惑在线| 成人漫画全彩无遮挡| 午夜精品国产一区二区电影| 久久免费观看电影| 久久久久久久精品精品| 女人高潮潮喷娇喘18禁视频| 免费观看在线日韩| 久久久久久久精品精品| 美女中出高潮动态图| 汤姆久久久久久久影院中文字幕| 9191精品国产免费久久| 18+在线观看网站| 欧美日韩精品成人综合77777| 国产免费一区二区三区四区乱码| 亚洲精华国产精华液的使用体验| av免费在线看不卡| 一区二区三区激情视频| 黄频高清免费视频| 国产av国产精品国产| av在线老鸭窝| 美女主播在线视频| 99久国产av精品国产电影| 亚洲精华国产精华液的使用体验| 成人国语在线视频| 欧美成人精品欧美一级黄| 欧美日韩综合久久久久久| 一边亲一边摸免费视频| 欧美日韩亚洲高清精品| 国产成人精品无人区| 久久影院123| 国产爽快片一区二区三区| 天堂中文最新版在线下载| 国产日韩一区二区三区精品不卡| 天天影视国产精品| 久久精品久久久久久噜噜老黄| 热99国产精品久久久久久7| 免费在线观看完整版高清| 精品一区二区免费观看| 少妇熟女欧美另类| 天堂中文最新版在线下载| 青春草亚洲视频在线观看| 乱人伦中国视频| 边亲边吃奶的免费视频| av卡一久久| 亚洲国产看品久久| 观看av在线不卡| 最近手机中文字幕大全| 看免费成人av毛片| 伦理电影免费视频| 国产成人精品一,二区| 日产精品乱码卡一卡2卡三| 在线观看免费高清a一片| 美女午夜性视频免费| 大香蕉久久成人网| 成年人午夜在线观看视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久 成人 亚洲| 国产免费又黄又爽又色| 国产国语露脸激情在线看| 成年人午夜在线观看视频| 欧美日本中文国产一区发布| 黑人猛操日本美女一级片| 中文乱码字字幕精品一区二区三区| 久久国产精品男人的天堂亚洲| 伊人亚洲综合成人网| 爱豆传媒免费全集在线观看| 亚洲精品第二区| 久久国产精品大桥未久av| 久久久精品94久久精品| 午夜福利视频在线观看免费| 街头女战士在线观看网站| 天天躁日日躁夜夜躁夜夜| 欧美老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频| 97在线人人人人妻| 成人手机av| 亚洲综合精品二区| 久久av网站| av免费在线看不卡| 男人舔女人的私密视频| 青草久久国产| 9热在线视频观看99| 看免费成人av毛片| 在线观看国产h片| 女人高潮潮喷娇喘18禁视频| 久久精品国产自在天天线| 午夜激情av网站| 五月开心婷婷网| www.精华液| www.自偷自拍.com| 亚洲美女黄色视频免费看| 久久国内精品自在自线图片| 欧美最新免费一区二区三区| 一区二区三区四区激情视频| 18禁国产床啪视频网站| 一边亲一边摸免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 最新中文字幕久久久久| 国产成人欧美| 2022亚洲国产成人精品| 欧美日韩精品网址| 久久精品国产亚洲av高清一级| 免费观看无遮挡的男女| 91精品三级在线观看| 大片电影免费在线观看免费| 国产亚洲av片在线观看秒播厂| 午夜av观看不卡| 午夜激情av网站| 99精国产麻豆久久婷婷| 天美传媒精品一区二区| 午夜福利乱码中文字幕| 可以免费在线观看a视频的电影网站 | 久久久久久久亚洲中文字幕| 精品一区二区三区四区五区乱码 | 观看美女的网站| 欧美97在线视频| 哪个播放器可以免费观看大片| 免费日韩欧美在线观看| 国产成人精品在线电影| 色视频在线一区二区三区| 在线观看一区二区三区激情| 久久精品久久久久久噜噜老黄| 午夜激情av网站| 久久精品人人爽人人爽视色| 欧美另类一区| 一个人免费看片子| 国产极品粉嫩免费观看在线| 秋霞在线观看毛片| av网站免费在线观看视频| 一二三四中文在线观看免费高清| 黄片小视频在线播放| 桃花免费在线播放| 狠狠精品人妻久久久久久综合| 国产成人精品无人区| 国产1区2区3区精品| 国产精品香港三级国产av潘金莲 | 777久久人妻少妇嫩草av网站| 国产亚洲最大av| 黄网站色视频无遮挡免费观看| 午夜福利一区二区在线看| 欧美人与性动交α欧美精品济南到 | 亚洲av.av天堂| 高清欧美精品videossex| 青春草视频在线免费观看| 亚洲经典国产精华液单| 天天操日日干夜夜撸| 国产1区2区3区精品| 亚洲视频免费观看视频| 99香蕉大伊视频| 亚洲精品国产av成人精品| 一级爰片在线观看| 18在线观看网站| 9色porny在线观看| 成人二区视频| 日韩欧美一区视频在线观看| 大香蕉久久成人网| 亚洲国产欧美网| 美女视频免费永久观看网站| 亚洲精品美女久久av网站| 国产国语露脸激情在线看| 日韩免费高清中文字幕av| 97在线人人人人妻| av.在线天堂| 男女边吃奶边做爰视频| 亚洲三级黄色毛片| 大码成人一级视频| 国产精品久久久av美女十八| 中国三级夫妇交换| 在线观看人妻少妇| 亚洲精品,欧美精品| 美女xxoo啪啪120秒动态图| 九色亚洲精品在线播放| 日韩,欧美,国产一区二区三区| 国产男人的电影天堂91| 飞空精品影院首页| 最近最新中文字幕大全免费视频 | 国产精品 国内视频| 亚洲,一卡二卡三卡| 免费少妇av软件| 亚洲熟女精品中文字幕| 久久久久网色| 欧美日本中文国产一区发布| 亚洲国产欧美在线一区| 亚洲精品中文字幕在线视频| 精品国产乱码久久久久久男人| 青春草亚洲视频在线观看| av在线app专区| 日本av免费视频播放| 在现免费观看毛片| 久久av网站| 亚洲av福利一区| 少妇熟女欧美另类| 国产在线视频一区二区| 日本猛色少妇xxxxx猛交久久| 久久精品久久久久久久性| 亚洲av日韩在线播放| 一区二区三区四区激情视频| 国产又爽黄色视频| 一区在线观看完整版| 在线观看免费高清a一片| h视频一区二区三区| 精品国产乱码久久久久久小说| 午夜激情av网站| 国产精品一区二区在线观看99| 男女边吃奶边做爰视频| 欧美成人午夜免费资源| 欧美成人午夜精品| 欧美日韩综合久久久久久| 成人漫画全彩无遮挡| 波多野结衣av一区二区av| 街头女战士在线观看网站| 在现免费观看毛片| 女人久久www免费人成看片| 黑人猛操日本美女一级片| 高清在线视频一区二区三区| 久久精品亚洲av国产电影网| 不卡av一区二区三区| 十八禁网站网址无遮挡| 亚洲av福利一区| 九九爱精品视频在线观看| 久久久久久久久久久久大奶| 少妇猛男粗大的猛烈进出视频| 考比视频在线观看| 国产成人91sexporn| 国产黄色视频一区二区在线观看| 国产在线免费精品| 欧美另类一区| 91成人精品电影| 国产精品成人在线| 2021少妇久久久久久久久久久| 国产精品二区激情视频| 午夜激情久久久久久久| 久久人人97超碰香蕉20202| 亚洲av中文av极速乱| 一级毛片我不卡| 高清视频免费观看一区二区| 亚洲精品国产一区二区精华液| 伊人久久大香线蕉亚洲五| 国产精品 国内视频| 日本爱情动作片www.在线观看| 免费少妇av软件| 男人操女人黄网站| 我要看黄色一级片免费的| 亚洲人成网站在线观看播放| 26uuu在线亚洲综合色| 国产在视频线精品| 亚洲成av片中文字幕在线观看 | 自线自在国产av| 亚洲欧美成人综合另类久久久| 男人舔女人的私密视频| 一级毛片 在线播放| 波多野结衣av一区二区av| 日韩中文字幕视频在线看片| 久热这里只有精品99| 伦理电影免费视频| 久久精品国产亚洲av涩爱| 国产成人av激情在线播放| 十八禁网站网址无遮挡| 嫩草影院入口| 亚洲欧美精品自产自拍| 最近2019中文字幕mv第一页| 国产精品成人在线| 久久久久久人妻| 精品久久久久久电影网| 欧美精品高潮呻吟av久久| 在线观看三级黄色| 亚洲视频免费观看视频| xxxhd国产人妻xxx| 国产高清不卡午夜福利| 女性被躁到高潮视频| 久久久久久久久久久久大奶| 丰满饥渴人妻一区二区三| 国产一区二区三区av在线| 在线亚洲精品国产二区图片欧美| 少妇人妻久久综合中文| 青春草视频在线免费观看| 黑人猛操日本美女一级片| 亚洲第一青青草原| 久久97久久精品| 午夜福利在线免费观看网站| 人妻人人澡人人爽人人| 成人毛片a级毛片在线播放| 国产精品99久久99久久久不卡 | 国产一区二区 视频在线| 精品人妻熟女毛片av久久网站| 国产免费视频播放在线视频| 欧美日韩一区二区视频在线观看视频在线| 国产 精品1| 这个男人来自地球电影免费观看 | 中文乱码字字幕精品一区二区三区| 日本欧美国产在线视频| 国产一区二区三区综合在线观看| 国产亚洲最大av| 午夜福利视频在线观看免费| 欧美人与性动交α欧美精品济南到 | 国产高清国产精品国产三级| 十八禁高潮呻吟视频| 免费人妻精品一区二区三区视频| 五月天丁香电影| 欧美最新免费一区二区三区| 午夜91福利影院| 亚洲国产精品一区二区三区在线| 一级黄片播放器| 日本午夜av视频| 国产在线一区二区三区精| 成年女人毛片免费观看观看9 | 亚洲欧美日韩另类电影网站| 制服诱惑二区| 涩涩av久久男人的天堂| 免费av中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 精品卡一卡二卡四卡免费| 永久网站在线| 国产亚洲一区二区精品| 亚洲国产av影院在线观看| 亚洲第一av免费看| av天堂久久9| 大香蕉久久网| 日本欧美国产在线视频| 日韩av在线免费看完整版不卡| 免费看av在线观看网站| 精品久久久久久电影网| 亚洲三区欧美一区| 超色免费av| 熟妇人妻不卡中文字幕| 又粗又硬又长又爽又黄的视频| 18禁国产床啪视频网站| 大片免费播放器 马上看| 亚洲国产精品一区二区三区在线| 激情视频va一区二区三区| 26uuu在线亚洲综合色| tube8黄色片| 多毛熟女@视频| 人人妻人人爽人人添夜夜欢视频| 9191精品国产免费久久| 日韩一本色道免费dvd| 飞空精品影院首页| 日韩中文字幕视频在线看片| 免费在线观看完整版高清| 国产精品久久久久久av不卡| 欧美精品一区二区大全| 免费看av在线观看网站| 最近最新中文字幕免费大全7| 考比视频在线观看| 久久国产亚洲av麻豆专区| 中文字幕另类日韩欧美亚洲嫩草| 欧美成人午夜精品| 日韩一卡2卡3卡4卡2021年| 成年动漫av网址| 黄色怎么调成土黄色| 国产有黄有色有爽视频| 99热全是精品| 亚洲伊人久久精品综合| 久久这里有精品视频免费| 国产综合精华液| 国产男女超爽视频在线观看| 97精品久久久久久久久久精品| 欧美bdsm另类| 欧美97在线视频| 色视频在线一区二区三区| 丝袜美腿诱惑在线| 三级国产精品片| 色婷婷av一区二区三区视频| 免费看不卡的av| av卡一久久| 美女大奶头黄色视频| 香蕉精品网在线| 一本色道久久久久久精品综合| 少妇被粗大的猛进出69影院| 国产1区2区3区精品| 国产女主播在线喷水免费视频网站| 成人二区视频| 久久久久国产一级毛片高清牌| a级片在线免费高清观看视频| 美女福利国产在线| 久久久久久久久久久久大奶| 精品99又大又爽又粗少妇毛片| 高清av免费在线| 成年人免费黄色播放视频| 春色校园在线视频观看| 两性夫妻黄色片| 久久久a久久爽久久v久久| 亚洲av电影在线观看一区二区三区| 国产男女超爽视频在线观看| 韩国av在线不卡| 精品久久久久久电影网| 午夜福利在线观看免费完整高清在| 国产乱来视频区| 国产一区二区在线观看av| 久久久精品免费免费高清| 美女福利国产在线| 边亲边吃奶的免费视频| 成年av动漫网址| 国产精品欧美亚洲77777| 久久av网站| 亚洲 欧美一区二区三区| 五月开心婷婷网| 欧美精品亚洲一区二区| 久久精品国产自在天天线| 国产爽快片一区二区三区| 色婷婷av一区二区三区视频| 久久久精品免费免费高清| 男男h啪啪无遮挡| 男女啪啪激烈高潮av片| 99久久人妻综合| av天堂久久9| 熟女电影av网| 韩国高清视频一区二区三区| 一本色道久久久久久精品综合| 国产精品二区激情视频| www日本在线高清视频| 国产 一区精品| 男人添女人高潮全过程视频| 欧美精品av麻豆av| 黑丝袜美女国产一区| 青春草国产在线视频| 各种免费的搞黄视频| 国产精品二区激情视频| 国产老妇伦熟女老妇高清| 美女主播在线视频| 80岁老熟妇乱子伦牲交| 午夜老司机福利剧场| 黄片无遮挡物在线观看| 亚洲三级黄色毛片| 91精品伊人久久大香线蕉| 丝袜人妻中文字幕| 精品亚洲成a人片在线观看| 国产日韩一区二区三区精品不卡| 日本-黄色视频高清免费观看| 美女视频免费永久观看网站| 午夜久久久在线观看| 久久女婷五月综合色啪小说| 黄网站色视频无遮挡免费观看| 国产一区亚洲一区在线观看| 大香蕉久久网| 一边摸一边做爽爽视频免费| 女人精品久久久久毛片| 十八禁网站网址无遮挡| 777久久人妻少妇嫩草av网站| 菩萨蛮人人尽说江南好唐韦庄| 国产精品不卡视频一区二区| 欧美国产精品va在线观看不卡| 日韩伦理黄色片| 国产av一区二区精品久久| 国语对白做爰xxxⅹ性视频网站| 成人手机av| 精品视频人人做人人爽| 久久午夜福利片| 国产精品无大码| 精品一品国产午夜福利视频| 丰满少妇做爰视频| 午夜av观看不卡| 久热这里只有精品99| 亚洲综合精品二区| 99香蕉大伊视频| 久久久欧美国产精品| 春色校园在线视频观看| 欧美日韩精品成人综合77777| 赤兔流量卡办理| 欧美 亚洲 国产 日韩一| 国产熟女午夜一区二区三区| 欧美变态另类bdsm刘玥| 中文字幕精品免费在线观看视频| 日本午夜av视频| 国产又色又爽无遮挡免| 久久国内精品自在自线图片| 视频区图区小说| 久久亚洲国产成人精品v| 色婷婷久久久亚洲欧美| 久久这里只有精品19| 黄片小视频在线播放| 亚洲国产色片| 菩萨蛮人人尽说江南好唐韦庄| 99国产精品免费福利视频| 欧美日韩精品网址| 亚洲一级一片aⅴ在线观看| 五月开心婷婷网|