肖航 李俊明(清華大學(xué)熱能工程系熱科學(xué)與動(dòng)力工程教育部重點(diǎn)實(shí)驗(yàn)室 北京 100084)
R290和R22在水平細(xì)圓管內(nèi)流動(dòng)凝結(jié)換熱的實(shí)驗(yàn)研究
肖航李俊明
(清華大學(xué)熱能工程系熱科學(xué)與動(dòng)力工程教育部重點(diǎn)實(shí)驗(yàn)室北京100084)
實(shí)驗(yàn)研究了R290、R22在細(xì)圓管中的流動(dòng)凝結(jié)換熱特性。實(shí)驗(yàn)管內(nèi)徑為1.085 mm,R22的質(zhì)量流率為200~1200 kg/ (m2.s),R290的質(zhì)量流率為200~650 kg/(m2.s),飽和溫度分別為40℃與50℃。實(shí)驗(yàn)結(jié)果表明,高質(zhì)量流率時(shí)R22在較高干度下?lián)Q熱系數(shù)隨干度增加緩慢或略有下降,低質(zhì)量流率時(shí),R290在較小干度下出現(xiàn)換熱系數(shù)下降。兩種制冷劑蒸氣相比,相同條件下R290的凝結(jié)換熱系數(shù)高于R22的。本文的實(shí)驗(yàn)結(jié)果還與現(xiàn)有典型關(guān)聯(lián)式的計(jì)算結(jié)果作了對(duì)比,其中,Wang et al. (2002)關(guān)聯(lián)式對(duì)R290的實(shí)驗(yàn)數(shù)據(jù)預(yù)測(cè)偏差在17.5%之內(nèi),Kim et al.(2013)關(guān)聯(lián)式對(duì)R22的實(shí)驗(yàn)數(shù)據(jù)預(yù)測(cè)偏差在18.4%之內(nèi)。
微細(xì)通道;流動(dòng)凝結(jié);對(duì)流換熱;R290
由于HCFCs類制冷劑對(duì)臭氧層的破壞且溫室效應(yīng)明顯,尋求合適的環(huán)保制冷劑是制冷行業(yè)近年來(lái)的研究熱點(diǎn)。由于自然工質(zhì)具有零 ODP值和極低的GWP值的特點(diǎn),不存在人工合成工質(zhì)可能具有的潛在威脅[1],因此成為了部分學(xué)者關(guān)注的對(duì)象。在擬選用的R22替代物之中,R290(丙烷)的ODP值為0, GWP值小于20,熱力學(xué)性能優(yōu)良,是家用空調(diào)擬選的重要替代工質(zhì)之一[2-3]。
選擇R290等碳?xì)浠衔镱愇镔|(zhì)用作家用空調(diào)制冷劑時(shí),其可燃性是必需應(yīng)對(duì)的重要公共安全問(wèn)題。目前的主要方向?yàn)閲?yán)格控制其在系統(tǒng)中的充灌量。由于微細(xì)通道換熱器換熱性優(yōu)異,并可明顯減少充灌量[4-5],且易于適應(yīng)設(shè)備的緊湊化,因而受到廣泛關(guān)注。在微通道換熱器扁管子通道尺寸范圍(0.5 ~1.2 mm)內(nèi)制冷劑蒸氣的凝結(jié)換熱特性研究,具有重要應(yīng)用價(jià)值。
近年來(lái),Kim S M等[6-7]收集了來(lái)自36個(gè)研究者共7115個(gè)關(guān)于絕熱氣液混合物、絕熱兩相流和兩相流凝結(jié)換熱的壓降實(shí)驗(yàn)數(shù)據(jù),這些實(shí)驗(yàn)數(shù)據(jù)包含17種制冷劑。他們將收集的數(shù)據(jù)與現(xiàn)有25個(gè)關(guān)聯(lián)式的計(jì)算結(jié)果進(jìn)行了比較,并提出了一種新的關(guān)聯(lián)式,該關(guān)聯(lián)式對(duì)所有數(shù)據(jù)的絕對(duì)偏差在23.3%之內(nèi)。Park J E等[8]做了一種新型制冷劑R1234ze(E)在水力直徑為1.45 mm多通道管中的凝結(jié)換熱實(shí)驗(yàn),并與R134a和R236fa的實(shí)驗(yàn)結(jié)果進(jìn)行了比較,之后提出了一種新的換熱關(guān)聯(lián)式。
Nema G等[9]根據(jù)現(xiàn)有R134a的凝結(jié)流型數(shù)據(jù)提出了一種新流型轉(zhuǎn)變條件,其中包括間歇流、波狀流、環(huán)狀流、霧狀流和彌散流。Wu J等[10]和Chen Y等[11]進(jìn)行了蒸氣在微通道矩形和三角形管中凝結(jié)的可視化實(shí)驗(yàn),實(shí)驗(yàn)中觀測(cè)到了霧狀流、環(huán)狀流、間歇流及彈狀流,并發(fā)現(xiàn)在矩形管中,間歇流出現(xiàn)的位置隨著雷諾數(shù)的增加而延后;在三角形管中,質(zhì)量流率的增加和水力直徑的增大會(huì)導(dǎo)致間歇流的出現(xiàn)延后;在這兩種管型中,間歇流的頻率隨雷諾數(shù)和韋伯?dāng)?shù)增加而增加。
Del Col D等[12]使用R134a和R32通過(guò)實(shí)驗(yàn)研究了微通道管的傾斜對(duì)凝結(jié)換熱的影響,管道的傾斜范圍為與水平夾角15°~90°,流動(dòng)分為上升流和下降流。他們的結(jié)論為:上升流動(dòng)時(shí),管道傾斜對(duì)凝結(jié)換熱的減弱有較小的影響;下降流動(dòng)時(shí),質(zhì)量流率較低時(shí),管道傾斜對(duì)凝結(jié)換熱的減弱有很大的影響。
本文以R290和R22在細(xì)圓管內(nèi)的流動(dòng)凝結(jié)換熱規(guī)律對(duì)比作為主要內(nèi)容進(jìn)行了實(shí)驗(yàn)研究,并采用本文的實(shí)驗(yàn)數(shù)據(jù)與現(xiàn)有關(guān)聯(lián)式進(jìn)行了比較。
1.1實(shí)驗(yàn)系統(tǒng)
實(shí)驗(yàn)系統(tǒng)的流程如圖1所示。實(shí)驗(yàn)時(shí),儲(chǔ)液灌中的加熱器將制冷劑的壓力提高至設(shè)定工況的壓力,制冷劑通過(guò)磁力齒輪泵驅(qū)動(dòng),流經(jīng)過(guò)濾器、質(zhì)量流量計(jì)和預(yù)熱器,在預(yù)熱器中被加熱至設(shè)定的溫度,此時(shí)制冷劑為飽和蒸氣或具有一定干度的氣液兩相混合物,在實(shí)驗(yàn)段中被冷卻水冷卻。通過(guò)控制預(yù)熱器加熱功率,保證制冷劑在實(shí)驗(yàn)段出口不為過(guò)冷液體。制冷劑流出實(shí)驗(yàn)段后,在過(guò)冷段中繼續(xù)冷卻為過(guò)冷液體,隨后回到儲(chǔ)液罐。
圖1 實(shí)驗(yàn)系統(tǒng)Fig.1 The experiment system
圖2所示為實(shí)驗(yàn)段截面圖。實(shí)驗(yàn)段為不銹鋼圓管,內(nèi)徑為1.085 mm,外徑為1.98 mm;換熱長(zhǎng)度為328.2 mm。具體的實(shí)驗(yàn)工況由表1中給出。圖3所示為實(shí)驗(yàn)段凝結(jié)換熱示意圖。細(xì)圓管通過(guò)變徑四通接頭與實(shí)驗(yàn)臺(tái)連接,管內(nèi)的制冷劑被冷卻水以逆流的方式冷卻。6個(gè)T型熱電偶均勻的布置于管壁測(cè)量壁溫。
圖2 實(shí)驗(yàn)管截面圖Fig.2 The cross-section of test tube
圖3 實(shí)驗(yàn)段示意圖Fig.3 Schematic view of teat section
在預(yù)熱器的進(jìn)口和實(shí)驗(yàn)段的進(jìn)出口分別使用鉑電阻和壓力傳感器測(cè)量制冷劑的溫度和壓力,并用差壓傳感器測(cè)量實(shí)驗(yàn)段的流動(dòng)壓降。在水套的進(jìn)出口處放置鉑電阻測(cè)量冷卻水的進(jìn)出口溫度,制冷劑的流量通過(guò)質(zhì)量流量計(jì)測(cè)得。
1.2數(shù)據(jù)處理
實(shí)驗(yàn)段冷卻水的換熱量為:
式中:Qc為冷卻水換熱量,W;cp為冷卻水定壓比熱容,J/(kg.K);mc為冷卻水流量,kg/s;tc1為冷卻水進(jìn)入水套的進(jìn)口溫度,℃;tc2為出口溫度,℃。
制冷劑進(jìn)入實(shí)驗(yàn)段的進(jìn)口干度為:
式中:xin為制冷劑進(jìn)口干度;U為預(yù)熱段加熱電阻絲電壓,V;I為電阻絲電流,A;mr為制冷劑流量,kg/s;hp為預(yù)熱前制冷劑焓值,J/kg;hs為實(shí)驗(yàn)前制冷劑焓值,J/kg;hfg為制冷劑汽化潛熱,J/kg。
由于冷卻水的換熱量等于制冷劑在實(shí)驗(yàn)段中的換熱量,于是制冷劑出口干度xout可以表示如下:
表1 實(shí)驗(yàn)工況Tab.1 Experimental conditions
冷卻水的換熱量同時(shí)等于細(xì)圓管壁跟制冷劑的換熱量。于是有:
式中:Δt為實(shí)驗(yàn)管外壁面與制冷劑的溫差,℃;h為制冷劑凝結(jié)換熱系數(shù),W/(m2.K);A為內(nèi)壁面換熱面積,m2;δ為實(shí)驗(yàn)管的壁厚,m;k為實(shí)驗(yàn)管的導(dǎo)熱系數(shù),W/(m.K)。由此推導(dǎo)出制冷劑凝結(jié)換熱系數(shù)h的計(jì)算式為:
2.1R290和R22的實(shí)驗(yàn)結(jié)果
圖4~圖7分別是R22和R290在40℃和50℃飽和溫度時(shí)的凝結(jié)換熱系數(shù)隨質(zhì)量流率和干度的變化。從圖中可看出,對(duì)兩種制冷劑,Nu數(shù)均隨質(zhì)量流率和干度的增加而增加。中低干度時(shí),質(zhì)量流率一定的情況下,Nu數(shù)增長(zhǎng)較快;在高干度時(shí),Nu數(shù)增加較為平緩。對(duì)R22,在質(zhì)量流率較大的情況下,Nu數(shù)甚至出現(xiàn)下降。這可能是質(zhì)量流率較大時(shí),氣液兩相的速度差也較大,高干度時(shí),管壁上出現(xiàn)蒸氣單相對(duì)流換熱的區(qū)域增大,導(dǎo)致?lián)Q熱能力的下降。
圖4 飽和溫度40℃時(shí)R290的Nu數(shù)隨干度變化Fig.4 Nusselt number vs vapor quality at saturation temperature of 40℃for R290
圖5 飽和溫度50℃時(shí)R290的Nu數(shù)隨干度變化Fig.5 Nusselt number vs vapor quality at saturation temperature of 50℃for R290
圖6 飽和溫度40℃時(shí)R22的Nu數(shù)隨干度變化Fig.6 Nusselt number vs vapor quality at saturation temperature of 40℃ for R22
在R290的實(shí)驗(yàn)數(shù)據(jù)中,質(zhì)量流率較低時(shí),Nu數(shù)并不隨干度單調(diào)上升,在某一較低干度時(shí),Nu數(shù)出現(xiàn)下降現(xiàn)象。這可能是由于在較小的質(zhì)量流率時(shí),管道中的流型存在彈狀流向環(huán)狀流的轉(zhuǎn)變,轉(zhuǎn)變初期氣液兩相的接觸面積和氣相對(duì)液相的界面剪切力略有下降,影響了氣液兩相之間的換熱。
圖7 飽和溫度50℃時(shí)R22的Nu數(shù)隨干度變化Fig.7 Nusselt number vs vapor quality at saturation temperature of 50℃ for R22
2.2R290與R22換熱能力比較
圖8和圖9是R290與R22在飽和溫度為40℃和50℃時(shí)換熱系數(shù)的對(duì)比情況。在質(zhì)量流率范圍200~650 kg/(m2.s)的情況下,R290的換熱系數(shù)在總體上大于R22的換熱系數(shù)。在40℃飽和溫度下,R22與R290的差距明顯,但在50℃飽和溫度下,換熱系數(shù)的差距較小。并且換熱系數(shù)的差距在低質(zhì)量流率和低干度下較大,而高質(zhì)量流率和高干度下較小。
圖8 R22和R290在40℃飽和溫度下凝結(jié)換熱系數(shù)的對(duì)比Fig.8 Condensation heat transfer coefficients comparison between R22 and R290 at saturation temperature 40℃
圖9 R22和R290在50℃飽和溫度下凝結(jié)換熱系數(shù)的對(duì)比Fig.9 Condensation heat transfer coefficients comparison between R22 and R290 at saturation temperature 50℃
2.3實(shí)驗(yàn)數(shù)據(jù)與關(guān)聯(lián)式的對(duì)比
選取了 Kim et al.(2013)[13]、Koyama et al. (2003)[14]、Bohdal et al.(2011)[15]和 Wang et al. (2002)[16]四種關(guān)聯(lián)式的計(jì)算結(jié)果與本文的實(shí)驗(yàn)結(jié)果進(jìn)行了比較。結(jié)果見(jiàn)圖10、圖11。
其中,Kim et al.(2013)關(guān)聯(lián)式基于4045個(gè)實(shí)驗(yàn)數(shù)據(jù)擬合得出,數(shù)據(jù)中包含多種類型的制冷劑;Koyama et al.(2003)關(guān)聯(lián)式依據(jù)R134a在多通道管中的實(shí)驗(yàn)數(shù)據(jù),基于對(duì)Haraguchi et al關(guān)聯(lián)式的改進(jìn)得出;Bohdal et al.(2011)關(guān)聯(lián)式基于作者關(guān)于R134a和R404A在微通道管中的實(shí)驗(yàn)數(shù)據(jù)擬合得出;Wang et al.(2002)關(guān)聯(lián)式基于數(shù)值模擬與分析得出。
實(shí)驗(yàn)數(shù)據(jù)與關(guān)聯(lián)式的預(yù)測(cè)值對(duì)比時(shí),絕對(duì)偏差的定義如下:
由圖可見(jiàn),Kim et al.(2013)關(guān)聯(lián)式對(duì)R22的實(shí)驗(yàn)數(shù)據(jù)預(yù)測(cè)最好,70.9%的數(shù)據(jù)預(yù)測(cè)的誤差在± 20%之內(nèi)。在中低干度與中小質(zhì)量流率工況下,關(guān)聯(lián)式的預(yù)測(cè)結(jié)果較為準(zhǔn)確;在高干度、高質(zhì)量流率的情況下,關(guān)聯(lián)式的預(yù)測(cè)結(jié)果偏高。Koyama et al. (2003)關(guān)聯(lián)式的預(yù)測(cè)結(jié)果總體偏低,最大誤差為28.2%。實(shí)驗(yàn)數(shù)據(jù)集中在-20%的誤差線上,集中度較好。Bohdal et al.(2011)關(guān)聯(lián)式的預(yù)測(cè)值明顯高于實(shí)驗(yàn)值,整體偏差為132.7%。Wang et al. (2002)關(guān)聯(lián)式整體預(yù)測(cè)較好,79.7%的數(shù)據(jù)預(yù)測(cè)誤差在±30%之內(nèi),在高質(zhì)量流率和高干度時(shí),關(guān)聯(lián)式預(yù)測(cè)結(jié)果偏高。
圖10 R22實(shí)驗(yàn)結(jié)果與現(xiàn)有主要關(guān)聯(lián)式的對(duì)比Fig.10 Comparison of the experimental results from some of the existing correlations
圖11 R290實(shí)驗(yàn)結(jié)果現(xiàn)有主要關(guān)聯(lián)式的對(duì)比Fig.11 Comparison of the experimental results from R290 with some of the existing correlations
在質(zhì)量流率和干度不高的工況下,Kim et al. (2013)關(guān)聯(lián)式對(duì)R290的預(yù)測(cè)結(jié)果較好,高質(zhì)量流率和高干度的情況下,預(yù)測(cè)結(jié)果偏高。整體預(yù)測(cè)的偏差為25.7%,僅有45.3%的數(shù)據(jù)預(yù)測(cè)在±20%之內(nèi)。相比之下,Koyama et al.(2003)關(guān)聯(lián)式對(duì)R290的預(yù)測(cè)更好,整體預(yù)測(cè)偏差為 19.8%,有54.8%的數(shù)據(jù)預(yù)測(cè)在±20%之內(nèi)。在中低質(zhì)量流率和干度時(shí),關(guān)聯(lián)式的預(yù)測(cè)結(jié)果偏低,在高質(zhì)量流率、干度時(shí),關(guān)聯(lián)式的預(yù)測(cè)結(jié)果較好。Bohdal et al. (2011)關(guān)聯(lián)式的預(yù)測(cè)結(jié)果與R22時(shí)的相似,整體偏差為125.0%;Wang et al.(2002)關(guān)聯(lián)式的預(yù)測(cè)結(jié)果最好,整體偏差為17.5%。
本文通過(guò)實(shí)驗(yàn)研究了R290和R22蒸氣在細(xì)圓管中的凝結(jié)換熱特性、對(duì)比分析了實(shí)驗(yàn)結(jié)果,得出以下結(jié)論:
1)R290和R22蒸氣的凝結(jié)換熱系數(shù)均隨質(zhì)量流率和干度的增加而增加。在低質(zhì)量流率時(shí),R290的凝結(jié)換熱系數(shù)會(huì)有所下降;R22在較高質(zhì)量流率和較高干度時(shí),凝結(jié)換熱系數(shù)出現(xiàn)隨干度增加的下降。
2)相同工況下,R290的凝結(jié)換熱系數(shù)總體上大于R22的。
3)Kim et al.(2013)關(guān)聯(lián)式對(duì)R22的實(shí)驗(yàn)數(shù)據(jù)預(yù)測(cè)最好,Wang et al.(2002)關(guān)聯(lián)式對(duì)R290的實(shí)驗(yàn)數(shù)據(jù)預(yù)測(cè)最好,Bohdal et al.(2011)關(guān)聯(lián)式對(duì)二者的預(yù)測(cè)都有較大的偏差。
[1]何國(guó)庚,劉璇斐.R290在小型空調(diào)器中替代 R22的優(yōu)勢(shì)與問(wèn)題及其解決措施[J].制冷與空調(diào)(北京),2008,8(2):58-62.(He Guogeng,Liu Xuanfei.The advantages and problems and their solutions of small air-conditioner using R290 to substitute for R22[J].Refrigeration and Air-conditioning,2008,8(2):58-62.)
[2]李廷勛,楊九銘,曾昭順,等.R290灌注式替代R22空調(diào)整機(jī)性能研究[J].制冷學(xué)報(bào),2010,31(4):31-34. (Li Tinxun,Yang Jiuming,Zeng Zhaoshun,et al.Experiment on R290 substituting for R22 in a room air-conditioner [J].Journal of Refrigeration,2010,31(4):31-34.)
[3]常琳,祝偉.制冷劑 R290的國(guó)內(nèi)研究進(jìn)展[J].制冷與空調(diào)(北京),2011,11(3):65-68.(Chang Lin,Zhu Wei.Research progress of refrigerant R290 in China[J]. Refrigeration and Air-conditioning,2011,11(3):65-68.)
[4]鐘毅,尹建成,潘晟旻.微通道換熱器研究進(jìn)展[J].制冷與空調(diào),2009,9(5):1-4.(Zhong Yi,Yin Jiancheng,Pan Shengmin.Research development of microchannel heat exchanger[J].Refrigeration and Air Conditioning,2009,9(5):1-4.)
[5]饒榮水,陳俊偉,蔡宗軍,等.微通道換熱器在空調(diào)器上的應(yīng)用研究[J].制冷與空調(diào)(北京),2009,9(4):63-66.(Rao Rongshui,Chen Junwei,Cai Zongjun,et al. Application investigation of micro channel heat exchanger on air conditioner[J].Refrigeration and Air-conditioning,2009,9(4):63-66.)
[6]Kim S M,Mudawar I.Universal approach to predicting two-phase frictional pressure drop for adiabaticand condensing mini/micro-channel flows[J].International Journal of Heat and Mass Transfer,2012,55(11/12):3246-3261.
[7]Kim S M,Mudawar I.Review of databases and predictive methods for pressure drop in adiabatic,condensing and boiling mini/micro-channel flows[J].International Journal of Heat and Mass Transfer,2014,77:74-97.
[8]Park J E,Vakili-Farahani F,Consolini L,et al.Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E)versus R134a and R236fa[J].Experimental Thermal and Fluid Science,2011,35(3):442-454.
[9]Nema G,Garimella S,F(xiàn)ronk B M.Flow regime transitions during condensation in microchannels[J].International Journal of Refrigeration,2014,40:227-240.
[10]Wu J,Shi M,Chen Y,et al.Visualization study of steam condensation in wide rectangular silicon microchannels [J].International Journal of Thermal Sciences,2010,49 (6):922-930.
[11]Chen Y,Wu R,Shi M,et al.Visualization study of steam condensation in triangular microchannels[J].International Journal of Heat and Mass Transfer,2009,52(21):5122-5129.
[12]Del Col D,Bortolato M,Azzolin M,et al.Effect of inclination during condensation inside a square cross section minichannel[J].International Journal of Heat and Mass Transfer,2014,78:760-777.
[13]Kim S M,Mudawar I.Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow[J].International Journal of Heat and Mass Transfer,2013,56(1):238-250.
[14]Koyama S,Kuwahara K,Nakashita K.Condensation of refrigerant in a multi-port channel[C]//ASME 2003 1st International Conference on Microchannels and Minichannels.American Society of Mechanical Engineers,2003:193-205.
[15]Bohdal T,Charun H,Sikora M.Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels[J].International Journal of Heat and Mass Transfer,2011,54(9):1963-1974.
[16]Wang W W W,Radcliff T D,Christensen R N.A condensation heat transfer correlation for millimeter-scale tubingwith flow regime transition[J].Experimental Thermal and Fluid Science,2002,26(5):473-485.
About the corresponding author
Li Junming,male,Ph.D.,professor,Department of Thermal Engineering,Tsinghua University,+86 10-62771001,E-mail:lijm @mail.tsinghua.edu.cn.Research fields:flow and heat transfer in micro and mini channels,renewable energy application and energy conservation in air conditioning and refrigeration engineering.
Experimental Study on the Flow Condensation Heat Transfer of R290 and R22 in a Horizontal Circular Minitube
Xiao Hang Li Junming
(Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,Department of Thermal Engineering,Tsinghua University,Beijing,100084,China)
The condensation heat transfer characteristics of R290 and R22 were investigated experimentally in a horizontal circular minitube with 1.085 mm diameter.The mass flow rate of R22 is 200-1200 kg/(m2.s),and that of R290 is 200-650 kg/(m2.s).The saturation temperature is 40℃ and 50℃ respectively during the experiment.The experimental results show that at the higher mass flow rate of R22,the condensation heat transfer coefficient increases slowly or even decreases little with the vapor quality increasing,for the R290 at a less mass flow rate,the heat transfer coefficient will decreases slightly at a low vapor quality.The condensation heat transfer coefficient of R290 is higher than that of the R22 at the same experimental conditions.The experimental results are also compared with some of the existing correlations,which shows that the Wang et al.(2002)correlation predicts the experimental data of R290 very well,with an overall mean absolute error of 17.5%,while Kim et al.(2013)correlation makes the best prediction to the R22's data,with an overall mean absolute error of 18.4%.
minichannel;flow condensation;convective heat transfer;R290
TK124;TB61+2;TB657.5
A
0253-4339(2015)05-0022-08
10.3969/j.issn.0253-4339.2015.05.022
國(guó)家自然科學(xué)基金創(chuàng)新研究群體項(xiàng)目 (51321002)、環(huán)境保護(hù)部環(huán)境保護(hù)對(duì)外合作項(xiàng)目和國(guó)家科技支撐計(jì)劃項(xiàng)目(2012BAA13B02)資助。(The project was supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51321002),the Foreign Economic Cooperation Office (FECO),Ministry of Environmental Protection of China and Key Technologies R&D Program of China(No.2012BAA13B02).)
2015年2月7日
簡(jiǎn)介
李俊明,男,博士,教授,清華大學(xué)熱能工程系,(010)62771001,E-mail:lijm@mail.tsinghua.edu.cn。研究方向:微細(xì)流動(dòng)與傳熱,空調(diào)制冷系統(tǒng)可再生能源利用與節(jié)能。