• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      博格達(dá)造山帶東段芨芨臺(tái)子地區(qū)早二疊世雙峰式火山巖地球化學(xué)特征及其地質(zhì)意義

      2015-08-23 01:32:38汪曉偉崔方磊孫吉明朱小輝白建科朱濤
      西北地質(zhì) 2015年4期
      關(guān)鍵詞:博格達(dá)流紋巖臺(tái)子

      汪曉偉,崔方磊,孫吉明,朱小輝,白建科,朱濤

      (1.長(zhǎng)安大學(xué)地球科學(xué)與資源學(xué)院,陜西 西安 710054;2.中國(guó)地質(zhì)調(diào)查局西安地質(zhì)調(diào)查中心,陜西 西安 710054)

      博格達(dá)造山帶東段芨芨臺(tái)子地區(qū)早二疊世雙峰式火山巖地球化學(xué)特征及其地質(zhì)意義

      汪曉偉1,2,崔方磊1,2,孫吉明2,朱小輝2,白建科2,朱濤2

      (1.長(zhǎng)安大學(xué)地球科學(xué)與資源學(xué)院,陜西 西安710054;2.中國(guó)地質(zhì)調(diào)查局西安地質(zhì)調(diào)查中心,陜西 西安710054)

      博格達(dá)造山帶東段芨芨臺(tái)子地區(qū)早二疊世玄武巖和中酸性火山巖在時(shí)空上構(gòu)成雙峰式火山巖組合,其巖石類型主要為亞堿性玄武巖和流紋巖,主體屬鈣堿性系列。玄武巖SiO2含量為47.70%~51.71%,TiO2含量(1.26%~1.52%)略高于N型大洋中脊玄武巖,高Al(Al2O3=14.06%~20.93%),富Na貧K(Na2O/K2O=2.34~28.36),低Mg(MgO=2.99%~8.62%,Mg#為27~52),表明其玄武巖漿發(fā)生過(guò)明顯的橄欖石和輝石的分離結(jié)晶作用;玄武巖輕稀土元素略微富集,Eu異常不明顯(δEu=0.85~1.02),相對(duì)富集Rb、Ba、P等大離子親石元素,虧損Nb、Ta、Sr、Ti等不相容元素?;鹕綆r地球化學(xué)特征表明,研究區(qū)玄武質(zhì)巖漿來(lái)自于虧損巖石圈地幔的部分熔融,且受到一定程度的地殼物質(zhì)混染,顯示了板內(nèi)玄武巖的地球化學(xué)特征形成于陸內(nèi)伸展環(huán)境。流紋巖具有較高的SiO2(73.58%~75.45%)和全堿(Na2O+K2O=8.56%~8.79%)含量,以及較低的TiO2(0.12%~0.18%)、Al2O3(12.77%~13.24%)和MgO(平均為0.21%)含量;顯示右傾負(fù)斜率稀土配分模式,Eu負(fù)異常明顯(δEu為0.52~0.70),顯著富集Rb、Ba、Th等大離子親石元素,強(qiáng)烈虧損Nb、Ta、Sr、P、Ti等高場(chǎng)強(qiáng)元素,具有A型花崗巖的地球化學(xué)特征,為后碰撞伸展環(huán)境下底侵玄武巖漿結(jié)晶分異的產(chǎn)物。博格達(dá)造山帶東部芨芨臺(tái)子地區(qū)雙峰式火山巖的地球化學(xué)特征表明,該套火山巖應(yīng)形成于碰撞后伸展環(huán)境,同時(shí)獲得流紋巖鋯石U-Pb年齡為(294.2±1.3)Ma,表明該套火山巖形成于早二疊世早期。這一發(fā)現(xiàn)進(jìn)一步證實(shí)了研究區(qū)在歷經(jīng)石炭紀(jì)匯聚碰撞事件后進(jìn)入二疊紀(jì)后碰撞伸展的演化時(shí)期,為進(jìn)一步理解博格達(dá)地區(qū)晚古生代構(gòu)造格局及板塊構(gòu)造體制提供了重要的地質(zhì)依據(jù)。

      博格達(dá)造山帶;早二疊世;雙峰式火山巖;巖石成因;后碰撞伸展

      中亞造山帶是顯生宙形成的大規(guī)模增生型造山帶,其記錄了西伯利亞板塊與塔里木及華北克拉通相向匯聚、古亞洲洋俯沖消減,以及多種構(gòu)造單元(島弧、陸緣弧、俯沖增生雜巖和夾持其中的微陸塊等)相互碰撞、拼合的復(fù)雜演化歷史(CHEN et al.,2000;DOBRETSOV et al.,1995;XIAO et al.,2004;BADARCH et al.,2002)。天山造山帶位于中亞造山帶的南部邊界,是長(zhǎng)期以來(lái)研究中亞造山帶晚古生代構(gòu)造演化的理想場(chǎng)所。近東西向延展的博格達(dá)造山帶位于北天山晚古生代造山帶中部,是天山造山帶的重要組成部分,其南北兩側(cè)分別被吐哈盆地和準(zhǔn)噶爾盆地所夾持,東鄰克拉麥里-莫?dú)J烏拉蛇綠巖帶,大地構(gòu)造位置十分重要,長(zhǎng)期以來(lái)備受地質(zhì)學(xué)家的廣泛關(guān)注,是研究天山造山帶的運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)過(guò)程的理想場(chǎng)所。到目前為止,關(guān)于博格達(dá)造山帶晚古生代構(gòu)造屬性的認(rèn)識(shí)國(guó)內(nèi)外學(xué)者尚有不同的看法,素有裂谷(王利利等,1986;吳慶福,1986;何國(guó)琦等,1994;顧連興等,2001a,2001b;王銀喜等,2005,2006;王金榮等,2010;田黎萍等,2010)、島弧(方國(guó)慶,1993;馬瑞士等,1997)、弧后盆地(李錦軼等,2004;孫桂華等,2007)和大火成巖省(夏林圻等,2004)之爭(zhēng)。筆者在近幾年對(duì)博格達(dá)造山帶進(jìn)行的地質(zhì)調(diào)查過(guò)程中發(fā)現(xiàn),由玄武巖和流紋巖組成的雙峰式火山巖在博格達(dá)造山帶東段廣泛分布。雙峰式火山巖及相關(guān)侵入體巖石組合是全球造山旋回后期階段的產(chǎn)物,可產(chǎn)生堿性-亞堿性玄武巖至過(guò)堿性流紋巖巖石系列,形成于不同的構(gòu)造環(huán)境中(BONIN,2004;CIVETTA et al.,1998;COULON et al.,2002)。由鈣堿性玄武巖和A型流紋巖組成的雙峰式火山巖套通常形成于后碰撞板內(nèi)伸展的構(gòu)造環(huán)境,通常是被認(rèn)為由巖漿底侵所造成的地殼連續(xù)作用結(jié)果(FROST et al.,2001)。因此,博格達(dá)造山帶東段雙峰式火山巖的研究不僅可以成為約束研究區(qū)晚古生代地球動(dòng)力學(xué)環(huán)境的示蹤劑,還可以為研究中亞造山帶大陸增長(zhǎng)機(jī)制提供關(guān)鍵信息。筆者以后碰撞環(huán)境巖漿巖的地球化學(xué)特征為主線,對(duì)出露在博格達(dá)造山帶東段芨芨臺(tái)子一帶的早二疊世雙峰式火山巖進(jìn)行了詳細(xì)的巖石學(xué)、巖石地球化學(xué)、同位素年代學(xué)研究,并進(jìn)一步探討其巖石成因、構(gòu)造屬性,以期為研究中亞造山帶南部邊界碰撞后構(gòu)造演化過(guò)程提供新的線索。

      1 地質(zhì)概況及巖石學(xué)特征

      研究區(qū)位于博格達(dá)造山帶東段芨芨臺(tái)子地區(qū),北臨準(zhǔn)噶爾盆地,南隔吐哈盆地和覺(jué)羅塔格石炭紀(jì)火山巖帶相鄰,東以紅柳峽-蘇吉斷裂與克拉麥里-莫?dú)J烏拉晚古生代蛇綠巖相接,是3個(gè)主要大地構(gòu)造單元交匯的部位(圖1a)(馬瑞士等,1997;SHU et al.,1999)。研究區(qū)石炭紀(jì)地層分布最為廣泛,可以分為下石炭統(tǒng)七角井組和上石炭統(tǒng)柳樹(shù)溝組,是該區(qū)出露的最古老的巖層,其七角井組主要為火山碎屑巖和中細(xì)粒砂巖、泥巖等陸源碎屑巖,柳樹(shù)溝組為中基性火山巖、火山碎屑巖及少量砂巖,兩者多為不整合或斷層接觸。二疊系在調(diào)查區(qū)內(nèi)只發(fā)育有早二疊世地層,即下二疊統(tǒng)石人子溝組和三塘湖組。其中,石人子溝組往往與三塘湖組伴生,為一套正常的沉積碎屑巖,偶夾火山碎屑巖;三塘湖組為一套典型的陸相噴發(fā)火山巖建造,主體為火山巖熔巖、火山碎屑巖和碎屑沉積巖(紫紅色礫巖、粗砂巖、雜砂巖和砂巖),火山活動(dòng)由多以溢流相開(kāi)始,以溢流-爆發(fā)-沉積相或溢流-沉積相結(jié)束,多以噴發(fā)不整合方式覆于不同時(shí)代的下伏地層之上,構(gòu)成碰撞后伸展環(huán)境的一個(gè)重要標(biāo)志。侵入巖以二疊紀(jì)中基性-中酸性巖石為主,大多呈巖株?duì)顝V泛侵入石炭系地層中(圖1b)。雙峰式火山巖以巴里坤縣芨芨臺(tái)子地區(qū)早二疊世三塘湖組南北向剖面為代表,主要巖性為灰黑色玄武巖、紫紅色礫巖、含礫粗砂巖、砂巖、凝灰質(zhì)砂巖、薄層狀粉砂巖、巖屑晶屑凝灰?guī)r,另有少量的流紋巖(圖2)。該剖面上玄武巖與流紋巖的比例約為3∶1,且缺乏中間組分,從而構(gòu)成雙峰式火山巖。玄武巖呈灰黑色塊狀構(gòu)造,斑狀結(jié)構(gòu),斑晶含量較低,成分主要為斜長(zhǎng)石和輝石。其中斜長(zhǎng)石多呈短柱狀,板狀,半自形-自形,粒徑約為1.2~2mm,斜長(zhǎng)石多以拉長(zhǎng)石和中長(zhǎng)石為主,發(fā)育卡納復(fù)合雙晶,環(huán)帶結(jié)構(gòu)發(fā)育;輝石以單斜輝石為主,大多為他形粒狀,發(fā)育有暗邊化,半自形-自形,偶見(jiàn)輝石式解理,大多充填于斜長(zhǎng)石格架之中?;|(zhì)為間粒結(jié)構(gòu),由斜長(zhǎng)石微晶和輝石、磁鐵礦小顆粒組成,巖石后期發(fā)生顯著蝕變,暗色礦物普遍發(fā)生綠泥石化,斜長(zhǎng)石普遍黏土化。流紋巖呈灰紅色,致密堅(jiān)硬,碎塊呈棱角狀,斑狀結(jié)構(gòu),流紋構(gòu)造或塊狀構(gòu)造,定向構(gòu)造明顯,斑晶含量約占巖石總體積的15%~20%,其成分主要為石英和鉀長(zhǎng)石。其中鉀長(zhǎng)石多為自形-半自形板條狀,大小約為0.3~0.8mm;石英呈他形粒狀,多被溶蝕,可見(jiàn)波狀消光?;|(zhì)主要為長(zhǎng)英質(zhì)集合體,可見(jiàn)明顯的礦物定向拉伸,普遍發(fā)育綠泥石化以及絹云母化等次級(jí)蝕變。

      2 火山巖地球化學(xué)特征

      2.1樣品采集及分析測(cè)試

      雙峰式火山巖樣品在野外采集共8件,其中全巖及微量元素測(cè)試樣品7件,LA-ICP-MS鋯石U-Pb定年樣品1件。對(duì)采集樣品經(jīng)表面雜質(zhì)清除后,切割去除風(fēng)化面,在瑪瑙研缽中無(wú)污染破碎研磨到200目供化學(xué)分析。全巖及微量元素測(cè)試分析由西安地質(zhì)礦產(chǎn)研究所完成。主量元素除FeO和LOI采用標(biāo)準(zhǔn)濕化學(xué)法分析外,其他元素均采用PW4400型X螢光光譜儀XRF測(cè)定,分析誤差低于5%;微量元素和稀土元素采用X-Series II型電感耦合等離子質(zhì)譜儀ICP-MS測(cè)定,檢測(cè)限優(yōu)于5×10-9,相對(duì)標(biāo)準(zhǔn)偏差也優(yōu)于5%。

      1.第四紀(jì)沖洪積物;2.中下侏羅統(tǒng)水西溝群;3.漸新統(tǒng)桃樹(shù)園組;4.下二疊統(tǒng)石人子溝組;5.下二疊統(tǒng)三塘湖組;6.上石炭統(tǒng)柳樹(shù)溝組;7.下石炭統(tǒng)七角井組;8.晚二疊世鉀長(zhǎng)花崗巖;9.晚二疊世輝綠巖;10.早二疊世輝綠巖;11.早二疊世橄欖巖-輝長(zhǎng)巖;12.斷層及角度不整合;13.采樣位置圖1 博格達(dá)造山帶東段芨芨臺(tái)子地區(qū)地質(zhì)略圖(據(jù)1∶25萬(wàn)三道嶺幅建造構(gòu)造圖修改,2009)Fig.1 Schematic geological tectonic map of Jijitaizi area of Bogda suture zone (After reference 1 to 250 thousand Sandaoling construction of structural map, 2009)

      1.礫巖;2.含礫粗砂巖;3.砂巖;4.凝灰質(zhì)砂巖;5.粉砂巖;6.凝灰質(zhì)粉砂巖;7.晶屑巖屑凝灰?guī)r;8.玄武巖;9.流紋巖; 10.輝綠巖;11.斷層;12.產(chǎn)狀;13.采樣位置及編號(hào)圖2 博格達(dá)造山帶芨芨臺(tái)子地區(qū)早二疊統(tǒng)三塘湖組火山巖剖面Fig.2 Profile for volcanic rocks of the early Permian Santanghu Formation near Jijitaizi area of Bogda suture zone

      鋯石樣品在河北省地勘局廊坊實(shí)驗(yàn)室內(nèi)完成處理。首先經(jīng)過(guò)破碎,經(jīng)淘洗、浮選和電磁選方法富集鋯石,再在雙目鏡下用手工方法逐個(gè)挑選晶型完好、無(wú)裂隙、干凈透明的鋯石顆粒制作樣靶,用環(huán)氧樹(shù)脂固定,固化后將靶上的鋯石顆粒打磨至中心部位露出后,進(jìn)行拋光并進(jìn)行陰極發(fā)光(CL)研究和LA-ICP-MS鋯石U-Pb同位素組成分析。陰極發(fā)光在長(zhǎng)安大學(xué)西部礦產(chǎn)資源與地質(zhì)工程教育部重點(diǎn)實(shí)驗(yàn)室掃描電鏡加載陰極發(fā)光儀上完成。鋯石U-Pb同位素測(cè)定在天津地質(zhì)礦產(chǎn)研究所分析測(cè)試中心完成。分析儀器采用德國(guó)Microlas公司生產(chǎn)的GeoLas200M激光剝蝕系統(tǒng)與Elan6100DRC-ICP-MS聯(lián)機(jī)上進(jìn)行測(cè)定,分析采用的激光斑束直徑為30μm,激光脈沖為10Hz,能量為32~36mJ,激光剝蝕樣品的深度為20~40μm,鋯石年齡測(cè)定采用國(guó)際標(biāo)準(zhǔn)鋯石91500作為外部標(biāo)準(zhǔn)物質(zhì)。所得數(shù)據(jù)用Glitter(ver4.0, Mac Quarie University)程序進(jìn)行計(jì)算和處理并對(duì)其進(jìn)行普通鉛校正。所有樣品均采用206Pb/238U年齡,年齡計(jì)算及諧和圖采用Isoplot(ver3.0)完成。單個(gè)數(shù)據(jù)點(diǎn)的誤差均為1σ,其加權(quán)平均值的置信度為95%。

      2.2主量元素地球化學(xué)特征

      新疆博格達(dá)造山帶東段芨芨臺(tái)子北部地區(qū)早二疊世三塘湖組雙峰式火山巖樣品主量元素分析結(jié)果及特征參數(shù)見(jiàn)表1。

      由表1可以看出,全區(qū)火山巖樣品可明顯分為基性和酸性2個(gè)端元,其SiO2含量分別為47.70%~51.71%和73.58%~75.45%,具有明顯的Daly間斷,在時(shí)空上構(gòu)成經(jīng)典的雙峰式火山巖組合。

      根據(jù)Zr/TiO2-SiO2圖解(圖3a)和AFM圖解(圖3b)可以看出,研究區(qū)火山巖主要巖石類型為:亞堿性玄武巖和流紋巖,主體屬鈣堿性系列。玄武巖全堿含量較低(Na2O+K2O=4.11%~6.47%),Na2O含量為3.18%~6.10%,K2O含量為0.37%~1.63%,總體上具有富Na貧K的特點(diǎn)(Na2O/K2O=2.34~28.36);TiO2含量為1.26%~1.52%,總體上略高于N-MORB(WILSON, 1989)(TiO2≈1.15%);Al2O3含量(14.06%~20.93%)較高,MgO含量較低,為2.99%~8.62%,Mg#為27~52,低于典型的MORB的Mg#(RAPP, 1997)(Mg#=60)。與此相反,流紋巖具有較高的全堿含量(Na2O+K2O=8.56%~8.79%),相對(duì)富K(Na2O=3.79%~4.20%,K2O=4.36%~5.00%,Na2O/K2O=0.76~0.96),貧TiO2(TiO2=0.12%~0.18%)和MgO(MgO均值為0.21%,Mg#為6.36~11.57),以及較低的Al2O3(Al2O3=12.77%~13.24%)值。流紋巖樣品A/CNK值為1.06~1.07,屬弱過(guò)鋁質(zhì)系列,表現(xiàn)出A型花崗巖的地球化學(xué)特征。

      表1 博格達(dá)造山帶東段芨芨臺(tái)子地區(qū)早二疊世火山巖主量元素(%)和微量元素(10-6)分析結(jié)果

      續(xù)表1

      樣品號(hào)BD-67HBD-68HBD-69HBD-71HBD-35HBD-36HBD-38H巖性玄武巖玄武巖玄武巖玄武巖流紋巖流紋巖流紋巖TiO21.521.261.351.290.170.180.12P2O50.260.260.210.270.0200.0200.020MnO0.200.150.100.150.0700.0900.060LOI3.613.731.863.911.450.780.54TOTAL99.9999.97101.03100.13101.2099.99100.20Mg#99.8099.8599.9099.8599.9399.9199.94Cr26231616873.713.816.225.2Ni75.412243.625.47.135.638.51Co39.341.727.925.25.212.221.58Li21.924.56.3231.78.809.9813.6Rb2.8723.223.85.4710413498.1Cs0.714.880.510.651.461.470.76Sr40459342573310715885.6Ba125174429272113013101200V2862061712413.963.912.14Sc38.424.722.124.813.415.015.0Nb3.024.202.753.339.709.5810.6Ta0.220.340.240.270.760.740.85Zr10611711198.2243228214Hf2.862.962.872.977.016.726.68Ga16.318.417.619.017.315.515.1U0.490.570.190.813.623.483.08Th0.991.700.461.8010.810.712.1Y24.019.320.622.841.035.935.8La9.0413.46.7011.834.629.433.9Ce24.031.218.828.577.263.174.3Pr3.614.303.024.119.627.889.27Nd17.418.514.818.236.731.237.5Sm4.674.534.014.798.827.218.16Eu1.491.381.441.391.901.641.33Gd5.284.544.585.128.307.057.36Tb0.830.700.740.831.381.151.20Dy4.913.984.344.638.056.856.84Ho1.000.770.880.941.621.411.39Er2.762.082.372.614.644.054.02Tm0.420.320.360.400.740.660.64Yb2.742.002.302.655.044.464.26Lu0.400.310.350.390.780.740.69∑REE78.5588.0164.6986.36199.39166.80190.86δEu0.910.921.020.850.670.700.52

      圖3 (a)火山巖Zr/TiO2-SiO2和(b)TFeO-Na2O+K2O-MgO圖解(a)據(jù)WINCHESTER and FLOYD , 1977;(b)據(jù)PEARCE,1996Fig.3 (a)Zr/TiO2-SiO2 and (b)TFeO-Na2O+K2O-MgO diagrams of the volcanic rocks

      2.3稀土及微量元素地球化學(xué)特征

      芨芨臺(tái)子地區(qū)玄武巖稀土元素總量為64.69×10-6~88.01×10-6,ΣLREE/ΣHREE為3.06~4.99。在稀土元素球粒隕石標(biāo)準(zhǔn)化配分模式圖(圖4a)上表現(xiàn)為L(zhǎng)REE輕度富集,輕重稀土元素之間存在微弱的分異現(xiàn)象,(La/Yb)N為1.96~4.52,(La/Sm)N為1.05~1.86,(Gd/Yb)N為1.55~1.83,δEu為0.85~1.02,平均為0.93,Eu異常不明顯,整體上接近平坦型的配分模式。在微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(圖5a)上,研究區(qū)玄武巖總體呈現(xiàn)較為一致的分布模式,不相容元素Rb、Ba、Th、P等含量較高,Nb、Ta、Sr 、Ti等較相鄰元素顯示較弱的負(fù)異常,具有較低的HFSE/LREE值(Nb/La=0.28~0.41),表明其原始巖漿可能受到過(guò)一定程度的地殼混染,或表明幔源巖漿在殼內(nèi)次生巖漿房中曾發(fā)生過(guò)輝石和鈦氧化物的分離結(jié)晶(PIN et al.,1993),樣品具有一定的Sr虧損,表明這些地段的巖漿可能受到過(guò)地殼物質(zhì)的混染或曾經(jīng)在低壓下經(jīng)歷過(guò)斜長(zhǎng)石的分離結(jié)晶。這些地球化學(xué)特征類似于世界上典型的大陸溢流玄武巖、大陸裂谷玄武巖以及我國(guó)東部新生代大陸裂谷玄武巖(CONDIE,1989;WILSON,1989)。

      圖4 火山巖稀土元素球粒隕石標(biāo)準(zhǔn)化配分曲線(球粒隕石標(biāo)準(zhǔn)化數(shù)據(jù)據(jù)BOYNTON,1984)Fig.4 The rare earth elements distribution patterns of the volcanic rocks

      圖5 火山巖微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(原始地幔標(biāo)準(zhǔn)化值引自SUN and MCDONOUGH,1989)Fig.5 Primitive mantle normalized trace element spidergrams of the volcanic rocks

      流紋巖稀土元素總量相對(duì)于玄武巖較高且LREE相對(duì)富集,稀土總量為166.80×10-6~199.39×10-6,輕重稀土分異明顯,ΣLREE/ΣHREE為5.33~6.23,(La/Yb)N為4.44~5.37,(La/Sm)N為2.47~2.61,(Gd/Yb)N為1.28~1.39。在球粒隕石標(biāo)準(zhǔn)化稀土配分圖上(圖4b),具有右傾負(fù)斜率稀土配分模式,LREE相對(duì)富集,具顯著的Eu負(fù)異常(δEu為0.52~0.70),與典型的地殼重熔型花崗巖的稀土分配型式相似(WINCHESTER et al.,1977)。在流紋巖微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(圖5b)上,體現(xiàn)了明顯的大離子親石元素(LILE)(Rb、Ba、Th、Zr、Hf和LREE)富集,Sr、Nb、Ta、Ti和P虧損的特點(diǎn),具典型的A型花崗巖的地球化學(xué)特征,表明其是在伸展拉張背景下巖漿作用的結(jié)果(DAVIES et al.,1987;CONDIE,1986)。

      2.4鋯石CL分析和LA-ICP-MS法U-Pb測(cè)年

      筆者對(duì)芨芨臺(tái)子地區(qū)雙峰式火山巖中的流紋巖樣品(樣品號(hào)BD-36)進(jìn)行了鋯石U-Pb定年。該巖石中的鋯石大多無(wú)色透明,顆粒較大,呈短柱狀或長(zhǎng)條狀,長(zhǎng)約70~140μm,寬30~70μm,粒徑比約為2∶1,晶面清晰,CL圖像(圖6)顯示這些鋯石均發(fā)育有清晰的巖漿震蕩環(huán)帶,表明其為典型的巖漿鋯石。本次鋯石LA-ICP-MS法U-Pb測(cè)年獲得有效測(cè)試數(shù)據(jù)為9個(gè),具體分析結(jié)果見(jiàn)表2。在一致曲線圖中(圖7),獲得9個(gè)數(shù)據(jù)點(diǎn)的206Pb/238U加權(quán)平均年齡為(294.2±1.3)Ma(MSWD=0.30,置信度95%),代表了流紋巖的形成時(shí)代。野外剖面觀察表明,研究區(qū)玄武巖和流紋巖空間上緊密伴生,具有相近的形成時(shí)代,因此本套雙峰式火山巖形成時(shí)代應(yīng)屬于早二疊世早期。

      3 討論

      3.1巖石成因及其構(gòu)造環(huán)境

      在近代火山活動(dòng)及其形成巖系的研究中人們認(rèn)識(shí)到,各種各樣的火山巖及其共生組合在地球表面的分布具有很強(qiáng)的規(guī)律性,這種規(guī)律性首先決定于源巖的性質(zhì),其次受構(gòu)造環(huán)境的制約。不同的火山巖共生組合往往反映其生成的大地構(gòu)造背景,并代表著地殼演化的不同階段。筆者依據(jù)野外實(shí)際觀察,以及從主量、微量和稀土元素等方面進(jìn)行的地球化學(xué)研究,發(fā)現(xiàn)芨芨臺(tái)子地區(qū)早二疊世玄武巖和流紋巖在空間上緊密伴生,且前者分布范圍大于后者;地球化學(xué)方面,SiO2含量存在明顯的Daly間斷,各主要氧化物變化也都集中在兩個(gè)區(qū)域,微量和稀土元素含量特征也具有明顯的不連續(xù)性。這些特征表明,芨芨臺(tái)子地區(qū)基性熔巖和酸性熔巖組合為一套典型的雙峰式火山巖組合。通常利用已知噴發(fā)環(huán)境的年輕火山巖的主量元素和微量元素的特征來(lái)判別古老火山巖的形成環(huán)境已經(jīng)成為非常有用的切實(shí)可行的方法,尤其Ti、Zr、Y、Nb、REE等這些惰性元素已成功用于火山巖形成的構(gòu)造環(huán)境判別。由主量元素特征可以看出,研究區(qū)玄武巖富Na貧K(Na2O/K2O=2.34~28.36),TiO2含量(1.26%~1.52%)總體上略高于N-MORB(WILSON, 1989)(TiO2≈1.15%),具高Al(Al2O3含量為14.06%~20.93%)、低Mg(MgO含量為2.99%~8.62%,Mg#為27~52)的地球化學(xué)特征,暗示著其明顯不同于洋脊玄武巖和大陸裂谷堿性玄武巖,而與大陸裂谷玄武巖十分相似(HYNDMAN,1985),可能反映當(dāng)時(shí)地殼較薄、拉張速度較快,巖漿部分熔融程度較高(舒良樹(shù)等,2005)。從表1可以看出,研究區(qū)玄武巖主量元素K2O/TiO2=0.09~1.21,K2O/P2O5=0.54~7.76,表明其巖漿組分可能受到一定程度的陸殼物質(zhì)混染,而陸殼物質(zhì)混入通常會(huì)對(duì)基性熔巖Ta、Nb等元素的含量產(chǎn)生較大的影響,并導(dǎo)致巖石出現(xiàn)明顯的Nb、Ta負(fù)異常(圖5a),在構(gòu)造環(huán)境恢復(fù)的過(guò)程中可能會(huì)誤判為島弧環(huán)境(ERNST et al.,2005;夏林圻等,2007)。Zr、Y等元素的含量受地殼物質(zhì)混染影響不大,可以較準(zhǔn)確地反映玄武巖的形成環(huán)境(夏林圻等,2007),研究區(qū)玄武巖Zr含量為98.20×10-6~117.00×10-6,Y含量為19.30×10-6~24.00×10-6,Zr/Y值為4.31~6.06,在Zr-Zr/Y圖解(圖8)中,樣品主體均落入板內(nèi)玄武巖區(qū)域,表明其形成于板內(nèi)伸展環(huán)境。研究區(qū)流紋巖樣品富Si和全堿,相對(duì)富K,貧TiO2和MgO,以及較低的Al2O3值,A/CNK值為1.06~1.07,屬弱過(guò)鋁質(zhì)系列,與鋁質(zhì)A型花崗巖相似。依據(jù)Eby提出的A型花崗巖的地球化學(xué)分類,列如相對(duì)較低的Nb/Y值(0.13~0.22),研究區(qū)流紋巖屬于A2型花崗巖,應(yīng)為后碰撞伸展環(huán)境下巖漿作用產(chǎn)物,與玄武巖所顯示的陸內(nèi)伸展構(gòu)造環(huán)境也完全一致。

      圖6 芨芨臺(tái)子地區(qū)流紋巖樣品(樣號(hào)BD-36)的鋯石CL照片F(xiàn)ig.6 CL images diagram of the Jijitaizi rhyolite rocks (Sample No. BD-36)

      雙峰式火山巖的基性端元源自于地幔巖部分熔融的成因模式基本得到學(xué)術(shù)界認(rèn)同,研究區(qū)玄武巖微量元素Ni(25.40×10-6~122.00×10-6)和Cr(73.70×10-6~316.00×10-6)遠(yuǎn)低于判別原始巖漿的參考數(shù)值(WENDLANDT et al.,1995)(Ni≈250.00×10-6,Cr≈300.00×10-6),暗示著它們并非代表原始巖漿,很有可能在巖漿房或者巖漿通道中出現(xiàn)了橄欖石和輝石的分離結(jié)晶,這也與巖石斑晶中出現(xiàn)輝石斑晶及較低的Mg#值結(jié)果相吻合。微量元素比值特征通常是判別巖漿源區(qū)的常用手段之一,該區(qū)玄武巖Zr/Nb值為0.96~3.85(均小于16),從火山巖Zr-Nb圖解(圖9a)分析表明玄武巖的母巖巖漿可能來(lái)自于較為虧損的地幔(CONDIE,1989)。

      表2 博格達(dá)造山帶芨芨臺(tái)子地區(qū)早二疊世雙峰式火山巖LA-ICP-MS U-Pb測(cè)試結(jié)果

      圖7 芨芨臺(tái)子地區(qū)流紋巖樣品(樣號(hào)BD-36)的LA-ICP-MS鋯石U-Pb年齡諧和圖Fig.7 LA-ICP-MS zircon U-Pb condordia diagram of the Jijitaizi rhyolite rocks (Sample No. BD-36)

      另外值得注意的是,由于地殼巖石或其熔融體中具有較低的Nb、Ta含量,因此地殼混染作用會(huì)導(dǎo)致巖漿中的Nb、Ta等元素含量降低,從而給出明顯的Nb、Ta負(fù)異常等信息。在微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(圖5a)上,研究區(qū)玄武巖Nb、Ta等元素相對(duì)虧損,表明源區(qū)可能有地殼物質(zhì)的加入(ROLILNSON,1993;TAYLOR et al.,1985;RUDNICK et al.,1995;CAROLINE et al.,2006)。此外,較高的La/Nb、Ba/Nb和Ba/La值(WEAVER et al.,1984;WEDEPOHL,1995),通常也是地殼混染作用的有效指標(biāo),如果幔源玄武質(zhì)巖漿遭受到大陸地殼物質(zhì)的混染,巖漿中的不相容元素如La或Ba就會(huì)相對(duì)于Nb明顯增高,從而具有高的La/Nb、Ba/Nb和Ba/La值,研究區(qū)玄武巖La/Nb為2.44~3.54,Ba/Nb為41.43~156.00,Ba/La為12.99~64.03,遠(yuǎn)大于原始地幔(Weaver,1991)(La/Nb≈0.94,Ba/Nb≈9.00,Ba/La≈9.60)和N-MORB(WEAVER,1991)(La/Nb≈1.07,Ba/Nb≈4.30,Ba/La≈4.00),且在微量元素La/Nb-La/Ba對(duì)比圖解(圖9b)中,樣品所投區(qū)域均顯示巖漿來(lái)自于地殼混染的巖石圈地幔,表明幔源玄武質(zhì)巖漿在后期上升過(guò)程中可能受到一定程度的地殼物質(zhì)混染。弧陸碰撞帶是新生地幔物質(zhì)與古老地殼相結(jié)合的最佳場(chǎng)所,而發(fā)生在晚石炭世的東天山弧陸碰撞正好提供了這樣的條件。另外通過(guò)主量元素對(duì)比推斷,研究區(qū)玄武巖漿可能來(lái)自于交代的巖石圈地幔而不是軟流圈地幔,不同的地幔橄欖巖的部分熔融產(chǎn)生的基性巖漿中TiO2含量不同,該區(qū)玄武質(zhì)巖石TiO2含量為1.26%~1.52%,總體上略高于N-MORB(WILSON, 1989)(TiO2≈1.15%),遠(yuǎn)低于軟流圈地幔來(lái)源的對(duì)比值,比較類似于LIEGEOIS et al.(1998)所歸納的形成于后碰撞背景下的玄武巖。

      圖8 火山巖Zr-Zr/Y構(gòu)造環(huán)境判別圖解(據(jù)PEARCE,1982)Fig.8 Zr-Zr/Y tectonic environments discrimination diagram of the volcanic rocks(After Pearce, 1982)

      通常認(rèn)為雙峰式火山巖中酸性端元有兩種成因,即基性巖漿分離結(jié)晶成因和地殼物質(zhì)部分熔融成因?;詭r漿分離結(jié)晶成因是指酸性端元和基性端元具有共同的幔源母巖漿,在分離結(jié)晶過(guò)程中幾乎沒(méi)有陸殼物質(zhì)的加入(GROVE et al.,1986;MACDONALD et al.,1987),兩個(gè)端元巖石具有相似的微量元素特征(BROUXEL et al.,1987),且基性端元比例較大;地殼物質(zhì)部分熔融成因是指基性巖漿在侵入地殼的過(guò)程中,使地殼物質(zhì)發(fā)生部分熔融而產(chǎn)生酸性巖漿(HOLMS,1931;SIGURDSSON,1997),酸性端元通常比基性端元產(chǎn)出面積大的多(DAVIES et al.,1987;HUPPERT et al.,1988)。通過(guò)對(duì)芨芨臺(tái)子地區(qū)早二疊世三塘湖組雙峰式火山巖野外實(shí)際觀察,玄武巖分布面積明顯大于流紋巖(分布比例約為3∶1);在巖石地球化學(xué)方面,兩端元巖石微量元素含量及微量元素標(biāo)準(zhǔn)化曲線形態(tài)相似,反映了兩者之間具有一定的成因聯(lián)系。研究區(qū)流紋巖具有典型的A型花崗巖的地球化學(xué)特征,對(duì)于A型花崗巖的巖石成因有以下幾種解釋:①長(zhǎng)英質(zhì)地殼的部分熔融。②地幔起源的拉斑質(zhì)和堿性巖漿的直接分離結(jié)晶。③地殼起源的長(zhǎng)英質(zhì)巖漿和地幔起源的鎂鐵質(zhì)巖漿的混合。地殼和地幔的相互作用已廣泛成為解釋A型花崗巖源區(qū)的理論,地幔端元既可以作為熱能又可以作為重要的儲(chǔ)層。這也就成為解釋高鉀流紋巖成因的一個(gè)通用的特定多端元模型,指示研究區(qū)流紋巖來(lái)源于區(qū)域伸展背景下底侵玄武巖漿的部分熔融。因此,博格達(dá)造山帶東段芨芨臺(tái)子地區(qū)早二疊世雙峰式火山巖的玄武巖漿可能起源于交代巖石圈地幔的部分熔融,流紋巖起源于玄武質(zhì)巖漿的分離結(jié)晶。

      3.2地質(zhì)意義

      中國(guó)天山造山帶經(jīng)歷了一個(gè)錯(cuò)綜復(fù)雜的構(gòu)造演化過(guò)程,包括晚古生代增生和碰撞,中生代熱沉降和新生代逆沖推覆和隆升。碰撞后的走滑和轉(zhuǎn)換拉伸作用改造了造山帶原始的地質(zhì)構(gòu)造,使得原始的地質(zhì)構(gòu)造特征很難辨認(rèn)。

      前期研究表明,天山地區(qū)在晚泥盆紀(jì)到早二疊紀(jì)期間經(jīng)歷了西伯利亞板塊和塔里木板塊的碰撞,且早二疊紀(jì)之后進(jìn)入了碰撞后構(gòu)造巖漿作用。這個(gè)構(gòu)造機(jī)制的轉(zhuǎn)變應(yīng)發(fā)生在大陸碰撞和俯沖結(jié)束之后。碰撞后的地質(zhì)作用以大規(guī)模的走滑斷裂和雙峰式火山巖漿為主。有效的地質(zhì)學(xué)資料、運(yùn)動(dòng)學(xué)觀測(cè)和古地磁證據(jù)表明研究區(qū)石炭紀(jì)匯聚事件之后進(jìn)入二疊紀(jì)大規(guī)模后碰撞轉(zhuǎn)換拉伸構(gòu)造演化階段。博格達(dá)造山帶東段芨芨臺(tái)子地區(qū)早二疊世雙峰式火山巖的地球化學(xué)特征顯示該套火山巖可能為弧火山巖在造山后期伸展裂陷環(huán)境中的火山作用產(chǎn)物,具有板內(nèi)成因的特點(diǎn),進(jìn)一步證實(shí)了博格達(dá)造山帶在經(jīng)歷石炭紀(jì)匯聚事件之后進(jìn)入大規(guī)模后碰撞轉(zhuǎn)換拉伸構(gòu)造演化階段,也代表著博格達(dá)地區(qū)由碰撞匯聚到伸展拉張這個(gè)地球動(dòng)力學(xué)環(huán)境的重大轉(zhuǎn)折,也為進(jìn)一步理解天山地區(qū)晚古生代構(gòu)造格局及板塊構(gòu)造體制提供了重要的地質(zhì)依據(jù)。

      圖9 (a)玄武巖Zr-Nb圖解和(b)La/Nb-La/Ba圖Fig.9 (a) Zr-Nb and (b) La/Nb-La/Ba diagrams of the basalt rocks

      4 結(jié)論

      (1)博格達(dá)造山帶東段芨芨臺(tái)子地區(qū)早二疊世三塘湖組火山巖可明顯分為基性和酸性兩個(gè)端元,其SiO2含量分別為47.70%~51.71%和73.58%~75.45%,具有明顯的Daly間斷,在時(shí)空上構(gòu)成經(jīng)典的雙峰式火山巖組合,通過(guò)精確的LA-ICP-MS鋯石U-Pb方法,獲得其形成年齡為(294.2±1.3)Ma,屬于早二疊世早期。

      (2)根據(jù)詳細(xì)的巖石學(xué)和地球化學(xué)研究,芨芨臺(tái)子地區(qū)早二疊世雙峰式火山巖可能為弧火山巖在造山后期伸展裂陷環(huán)境中的火山作用產(chǎn)物,具有板內(nèi)成因的特點(diǎn),其玄武巖漿可能起源于虧損巖石圈地幔的部分熔融,且在其上升過(guò)程中可能受到一定程度的地殼物質(zhì)混染,流紋巖起源于玄武質(zhì)巖漿的分離結(jié)晶。

      (3)芨芨臺(tái)子地區(qū)早二疊世雙峰式火山巖的厘定進(jìn)一步證實(shí)了博格達(dá)造山帶在石炭紀(jì)匯聚碰撞事件之后進(jìn)入大規(guī)模后碰撞轉(zhuǎn)換拉伸構(gòu)造演化階段,也代表著其地球動(dòng)力學(xué)環(huán)境由碰撞擠壓到伸展拉張的重大轉(zhuǎn)折,為進(jìn)一步理解博格達(dá)地區(qū)晚古生代構(gòu)造格局及板塊構(gòu)造體制提供了重要的地質(zhì)依據(jù)。

      方國(guó)慶.博格達(dá)晚古生代島弧的沉積巖石學(xué)證據(jù)[J].沉積學(xué)報(bào),1993,11(3):31-36.

      FANG Guoqing. Sedimentological evidence of late Paleozoic Bogda island arc[J]. Acta Sedimentologica Sinica, 1993, 11(3): 31-36 (in Chinese with English abstract).

      顧連興,胡受奚,于春水,等.博格達(dá)陸內(nèi)碰撞造山帶擠壓-拉張構(gòu)造轉(zhuǎn)折期的侵入活動(dòng)[J].巖石學(xué)報(bào), 2001a, 17(2): 187-198.

      GU Lianxing, HU Shouxi, YU Chunshui, et al. Intrusive activities during compression-extension tectonic conversion in the Bogda intracontinental orogen[J]. Acta Petrologica Sinica, 2001a, 17(2): 187-198 (in Chinese with English abstract).

      顧連興,胡受奚,于春水,等. 論博格達(dá)俯沖撕裂型裂谷的形成與演化[J]. 巖石學(xué)報(bào), 2001b, 17(4): 585-597.

      GU Lianxing, HU Shouxi, YU Chunshui, et al. Initiation and evolution of the Bogda subduction-torn-type rift[J]. Acta Petrologica Sinica, 2001b, 17(4): 585-597 (in Chinese with English abstract).

      何國(guó)琦, 李茂松, 劉德權(quán), 等. 中國(guó)新疆古生代地殼演化及成礦[M]. 烏魯木齊: 新疆人民出版社, 1994.

      HE Guoqi, LI Maosong, LIU Dequan, et al. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China[M]. Urumiqi: Xinjiang People’s Publication Press, 1994 (in Chinese with English abstract).

      李錦軼, 王克卓, 李文鉛, 等. 新疆東部新元古代晚期和古生代構(gòu)造格局及其演變[J]. 地質(zhì)論評(píng), 2004, 50(3): 304-322.

      LI Jinyi, WANG Kezhuo, LI Wenqian, et al. Late Neoproterozoic and Paleozoic framework and evolution of eastern Xinjiang, northwestern China[J]. Scientia Geologica Sinica, 2004, 50(3): 304-322 (in Chinese with English abstract).

      馬瑞士, 舒良樹(shù), 孫家齊, 等. 東天山構(gòu)造演化與成礦[M]. 北京: 地質(zhì)出版社, 1997: 1-202.

      MA Ruishi, SHU Liangshu, SUN Jiaqi, et al. Tectonic Evolution and Metallogeny of Eastern Tianshan Mountains[M]. Beijing: Geological Publishing House, 1997: 1-202 (in Chinese with English abstract).

      舒良樹(shù), 朱文斌, 王博, 等. 新疆博格達(dá)南緣后碰撞期陸內(nèi)裂谷和水下滑塌構(gòu)造[J]. 巖石學(xué)報(bào), 2005, 21(1): 25-36.

      SHU Liangshu, ZHU Wenbin, WANG Bo, et al. The post-collision intracontinental rifting and olistostrome on the southern slope of Bogda mountains, Xinjiang[J]. Acta Petrologica Sinica, 2005, 21(1): 25-36 (in Chinese with English abstract).

      孫桂華, 李錦軼, 朱志新, 等. 新疆東部哈爾里克山南麓石炭紀(jì)砂巖碎屑鋯石SHRIMP U-Pb定年及其地質(zhì)意義[J]. 中國(guó)地質(zhì), 2007, 34(5): 778-789.

      SUN Guihua, LI Jinyi, ZHU Zhixin, et al. Detrital zircon SHRIMP U-Pb dating of Carboniferous sandstone from the southern foot of the Harlik Mountains, eastern Xinjiang and its geological implications[J]. Geology in China, 2007, 34(5): 778-789 (in Chinese with English abstract).

      田黎萍, 王金榮, 湯中立, 等. 新疆博格達(dá)山東段早石炭世火山巖地球化學(xué)特征及其構(gòu)造意義[J]. 蘭州大學(xué)學(xué)報(bào), 2010, 46(4): 30-41.

      TIAN Liping, WANG Jinrong, TANG Zhongli, et al. Geochemical characteristic and tectonic significance of the early Carboniferous volcanic rocks in eastern Bogda mountains of Xinjiang region[J]. Journal of Lanzhou University, 2010, 46(4): 30-41 (in Chinese with English abstract).

      王金榮, 李泰德, 田黎萍, 等. 新疆博格達(dá)造山帶東段晚古生代構(gòu)造-巖漿演化過(guò)程: 火山巖組合及其地球化學(xué)證據(jù)[J]. 巖石學(xué)報(bào), 2010, 26(4): 1103-1115.

      WANG Jinrong, LI Taide, TIAN Liping, et al. Late Paleozoic tectono-magmatic evolution in Bogda Orogenic Belt, Xinjiang: Evidence from geochemistry of volcanic rocks[J]. Acta Petrologica Sinica, 2010, 26(4): 1103-1115 (in Chinese with English abstract).

      王銀喜, 顧連興, 張遵忠, 等. 博格達(dá)裂谷雙峰式火山巖地質(zhì)年代學(xué)與Nd-Sr-Pb同位素地球化學(xué)特征[J]. 巖石學(xué)報(bào), 2006, 22(5): 1215-1224.

      WANG Yinxi, GU Lianxing, ZHANG Zunzong, et al. Geochemistry and Nd-Sr-Pb isotopic of the bimodal volcanic rocks of the Bogda rift[J]. Acta Petrologica Sinica, 2006, 22(5): 1215-1224 (in Chinese with English abstract).

      王銀喜, 顧連興, 張遵忠, 等. 博格達(dá)裂谷閉合和區(qū)域隆起的同位素年代學(xué)證據(jù)及地質(zhì)意義[J]. 地球?qū)W報(bào), 2005, 26(增刊): 102-104.

      WANG Yinxi, GU Lianxing, ZHANG Zunzong, et al. Isotopic chronology evidence of Bogda rift closure and regional uplift and geological significance[J]. Acta Geoscientica Sinica, 2005, 26(Suppl.): 102-104 (in Chinese with English abstract).

      王利利, 張凱, 高明遠(yuǎn). 準(zhǔn)噶爾盆地南緣的構(gòu)造演化特征及含油氣預(yù)測(cè)[J]. 新疆石油地質(zhì), 1986, 7(2): 1-9.

      WANG Lili, ZHANG Kai, GAO Mingyuan. Characteristics of structural evolution and oil-gas potential prediction in southern margin area of Junggar basin[J]. Xinjiang Petroleum Geology, 1986, 7(2): 1-9 (in Chinese with English abstract).

      吳慶福. 準(zhǔn)噶爾盆地構(gòu)造演化及含油氣遠(yuǎn)景[J]. 新疆地質(zhì), 1986, 4(3): 1-19.

      WU Qingfu. Structural evolution and prospects of Junggar basin[J]. Xinjiang Geology, 1986, 4(3): 1-19 (in Chinese with English abstract).

      夏林圻, 夏祖春, 徐學(xué)義, 等. 天山石炭紀(jì)大火成巖省與地幔柱[J]. 地質(zhì)通報(bào), 2004, 23(9-10): 903-910.

      XIA Lin Qi, XIA Zu Chun, XU Xue Yi, et al. Carboniferous Tianshan igneous megaprovince and mantle plume[J]. Geological Bulletin of China, 2004, 23(9-10): 903-910(in Chinese with English abstract).

      夏林圻, 夏祖春, 徐學(xué)義, 等. 利用地球化學(xué)方法判別大陸玄武巖和島弧玄武巖[J]. 巖石礦物學(xué)雜志, 2007, 26(1): 77-88.

      XIA Linqi, XIA Zuchun, XU Xueyi, et al. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et Mineralogica, 2007, 26(1): 77-88 (in Chinese with English abstract).

      XIAO W J, ZHANG L C, QIN K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4): 370-395.

      BADARCH G, CUNNINGHAM W D, WINDLEY B F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Science, 2002, 21(1): 87-110.

      BONIN B. Do coeval mafic and felsic magmas in post-collision to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources[J]. Lithos, 2004, 78: 1-24.

      BOYNTON W V. Cosmochemistry of the rare earth elements[J]. Meteorite Studies Dev, Geochemistry, 1984, 2: 63-114.

      BROUXEL M, LAPIERRE H, MICHARD A, et al. The deep layers of a Paleozoic arc: geochemistry of the Copley-Blaklala series, northern California[J]. Earth Planetary Science Letters, 1987, 85: 386-400.

      CAROLINE J, STEFAN J, EDGAR H, et al. Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel[J]. Germany Journal of Petrology, 2006, 47(8): 1637-1667.

      CHEN B, JAHN B M, WILDE S, et al. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications[J]. Tectonophysics, 2000, 328(1-2): 157-182.

      CIVETTA L, D’Antonio M, Orsi G, et al. The geochemistry of volcanic rocks from Pantelleria Island, Sicily Channel: petrogenesis and characteristics of the mantle source region[J]. Journal of Petrology, 1998, 39: 1453-1491.

      CONDIE K C. Geochemistry and tectonic setting of Early Proterozoic supercrustal rocks in the Southern United states[J]. Journal of Geology, 1986, 94: 845-864.

      CONDIE K C. Geochemical changes in basalts and andesites across the Archaean-Proterozoic boundary: Identification and significance[J]. Lithos, 1989, 23: 1-18.

      COULON C, MEGARTSI M, FOURCADE S, et al. Post-collision transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie(Algeria): magmatic expression of a slab break off[J]. Lithos, 2002, 62: 87-110.

      DAVIES G R, MACDONALD R. Crustal influences in the petrogenesis of the Naivasha basalt-comendite complex: Combined trace element and Sr-Nd-Pb isotope constraints[J]. Journal of Petrology, 1987, 28(6): 1009-1031.

      DOBRETSOV N L, BERZIN N A, BUSLOV M M. Opening and tectonic evolution of the Paleo-Asian Ocean[J]. International Geology Review, 1995, 37(4): 335-360.

      ERNST R E, BUCHAN K L, CAMPBELL I H. Frontiers in large igneous province research[J]. Lithos, 2005, 79: 271-297.

      FROST C D, BELL J M, FROST B R, et al. Crustal growth by magmatic underplating: isotopic evidence from the northern Sherman batholith[J]. Geology, 2001, 29: 515-518.

      GROVE T L, DONNELLY N J M. The evolution of young silicic lavas Medicine Lake Volcano, Califonia: Implications for the origin of compositional gaps in calc-alkaline series lavas[J]. Contrib Mineral Petrol, 1986, 92: 281-302.

      HOLMS A. The problem of the association of acid and basic rocks in central complexes[J]. Geol. Mag., 1931, 68: 241-255.

      HUPPERTH E, SPARKS R S J. The generation of granitic magmas by intrusion of basalt into continental crust[J]. J Petrle. , 1988, 29: 599-624.

      HYNDMAN D W. Petrology of igneous and metamorphic rocks[J]. NewYork: McGraw-Hill, 1985: 135-141.

      LIEGEOIS J P. Preface-Some words on the post-collisional magmatism[J]. Lithos, 1998, 45: 15-17.

      MACDONALD R, SPARKS R S J, SIGURDSSON H, et al. The 1875 eruption of Askja volcano, Iceland: combined fractional crystallization and selective contamination in the generation of rhyolitic magma [J]. Mineral. Mag., 1987, 51: 183-202.

      PEARCE J A. Trace element characteristics of lavas from destructive plate boundaries[A]. In: Thorps, R S(ed.), Andesites[C]. New York: John Wiley and Sons, 1982: 525-548.

      PEARCE J A. A user’s guide to basalt discrimination diagrams. In: Wyman D A(ed.). Trace element Geochemistry of Volcanic Rocks. Applications for Massive Sulphide Exploration Geological Association of Canada, vol. 12[J]. Short Course Notes, 1996: 79-113.

      PIN C, Marinl F. Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the southern Massif Central, France[J]. Lithos, 1993, 29: 177-196.

      RAPP R P. Heterogeneous source regions for Archean granitoids. In: Wit M J and Ashwal L D (ed.). Green Stone Belts[J]. Oxford: Oxford University Press, 1997: 35-37.

      ROLILNSON H R, Using geochemical data: Evolution, presentation, interpretation[M]. Singapore Longman Singapore Publishers, 1993, 160-170.

      RUDNICK R L, LAND F D M. Nature and composition of the continental crust: A lower crustal perspective[J]. Reviews in Geophysics, 1995, 33: 267-309.

      SIGURDSSON H. Generation of Icelandic rhyolites by melting of plagiogranites in the oceanic layer[J]. Nature, 1997, 269: 26-28.

      SHU L S, CHEN Y T, LU H F, et al. Paleozoic accretionary[J]. Science in China Series D: Earth Sciences, 1999, 42(2): 113-119.

      SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[A]. In Magmatism in the Ocean Basins[C], Saunders A. D. and Norry M. J(eds.), Geological Society, Special Publication, 1989, 42: 313-345.

      TAYLOR S R, MC L S M. The continental crust: Its composition and devolution[J]. Oxford: Blackwell Scientific, 1985: 1-312.

      WEAVER B L. The origin of ocean island basalt end-member composition: Trace element and isotopic constrains[J]. Earth and Planetary Science Letters, 1991, 104: 381-397.

      WEAVER B L, TARNEY J. Empirical approach to estimating the composition of the continental crust[J]. Nature, 1984, 310: 575-577.

      WEDEPOHL K H. The composition of the continental crust[J]. Geochim. Cosmochim. Acta, 1995, 59: 1217-1232.

      WENDLANDT R F, ALTHERR R, NEUMANN E R, et al. Ptrology, geochemistry, isotopes. In: Olsen KH(ed.). Continental Rifts: Evolution, Structure, Tectonics[J]. Amsterdam: Elsevier, 1995: 47-60.

      WILSON M. Igneous Petrogenesis[M]. London: Unwin Hyman Press, 1989: 1-464.

      WINCHESTER J A , FLOYD P A. Geochemical discrimination of different magmas series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343.

      Geochemical Characteristics and its Significance of the Early Permian Bimodal Volcanic Rocks in Jijitaizi Area, East of the Bogda Orogenic Belt

      WANG Xiaowei1,2,CUI Fanglei1,2, SUN Jiming2, ZHU Xiaohui2, BAI Jianke2, Zhu Tao2

      (1.Collegeof Earth Science and Resources of Chang' an University, Xi'an 710054, Shaanxi, China;2.Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, Shaanxi, China)

      The early Permian Bogda orogenic basalts and acidic volcanic rocks, developed in the Jijitaizi area of the eastern section of Bogda orogenic belt, are bimodal volcanic rocks, which are composed by sub-alkaline basalt and rhyolite, mainly belonging to the calc-alkaline series. The basalts have high values of Al(Al2O3=14.06%-20.93%), Na2O/K2O(2.34-28.36) and TiO2(1.26%-1.52%), which are slightly higher than the ones of N-MORB, and they have low contents of Mg(MgO=2.99%-8.62%, Mg#=27-52). These major element characteristics indicate that these basalts had experienced an obvious fractional crystallization of olive and pyroxene during basaltic magmatism, which were the evolution products of original magma’s fractional crystallization. The basalts are slightly enriched in trace elements (such as Rb, Ba and P), with no Eu anormalies(δEu=0.85-1.02), but are relatively depleted in Nb, Ta, Sr and Ti. These trace element characteristics of volcanic rocks suggest that,these basalts were originated from the partial melting of the depleted lithospheric peridotite mantle and had suffered a certain degree of crustal contamination, showing the geochemical features of intraplate basalts formed within the intracontinental extensional environment. The rhyolites of bimodal volcanic rocks have high values of SiO2(73.58%-75.45%) and ALK(Na2O+K2O=8.56%-8.79%), but low contents of TiO2(0.12%-0.18%), Al2O3(12.77%-13.24%) and MgO(average about 0.21%).Their trace elements generally have the enrichment features of Rb, Th and Ba, obvious depletion of Nb, Ta, Sr, P and Ti, and the REE distribution patterns are characterized by LREE enrichment, right-deviation type and obvious depletion of Eu(δEu=0.52-0.70). The REE characteristics indicate that, the rhyolites have similar geochemical characteristics of A-type granite, suggesting that the rhyolites were originated from the fractionation of underplating basaltic magma. The geochemical characteristic of the bimodal volcanic rocks in Jijitaizi area of the eastern section of Bogda orogenic belt indicate that,these volcanic rocks were formed in a post-collisional extensional environment.The LA-ICP-MS zircon U-Pb ages of rhyolites are (294.2±1.3) Ma, suggesting that this set of volcanic rocks was formed in the beginning of early Permian. Our study of the bimodal volcanic rocks in Jijitaizi area indicate that, the research area had witnessed the transitional period of geodynamic environment from Carboniferous collision and compression to Permian stretching and extension, and it could provide an evidence for understanding the tectonic evolution and plate system of the Bogda orogenic belt of the late Paleozoic.

      Bogda orogenic belt;early Permian; bimodal volcanic rocks; petrogenesis; post-collisional extensional environment

      2015-05-25;

      2015-08-20

      中國(guó)地質(zhì)調(diào)查局項(xiàng)目(1212011220649),國(guó)家自然科學(xué)基金項(xiàng)目(41202077),長(zhǎng)安大學(xué)優(yōu)秀博士論文培育資助項(xiàng)目(310827150013)

      汪曉偉(1988-),男,陜西西安人,礦物學(xué)、巖石學(xué)、礦床學(xué)專業(yè)在讀博士,主要從事火成巖成因研究。E-mail:wxw04121555@163.com

      P595

      A

      1009-6248(2015)04-0100-15

      猜你喜歡
      博格達(dá)流紋巖臺(tái)子
      伊寧地塊阿騰套山東晚石炭世伊什基里克組流紋巖年代學(xué)、地球化學(xué)及巖石成因
      大興安嶺北段古利庫(kù)金銀礦區(qū)流紋巖年代學(xué)、巖石地球化學(xué)特征及地質(zhì)意義
      黃金(2020年8期)2020-09-10 07:22:44
      朝陽(yáng)袁臺(tái)子墓地燕文化墓葬分期再研究
      草原文物(2020年1期)2020-04-13 00:49:00
      駱駝救主
      東寧暖泉金礦床地質(zhì)特征與成礦關(guān)系探討
      臺(tái)子
      特別文摘(2018年6期)2018-08-14 09:25:14
      博格達(dá) 五峰連穿
      準(zhǔn)東區(qū)塊博格達(dá)山前帶推覆體地層及含油性認(rèn)識(shí)
      錄井工程(2017年4期)2017-03-16 06:10:50
      哈密沁城地區(qū)紅柳溝組流紋巖LA-ICP-MS鋯石U-Pb年代學(xué)及地質(zhì)意義
      新疆博格達(dá)地區(qū)發(fā)現(xiàn)類似稀土四分組效應(yīng)的輝綠巖
      呼玛县| 聂荣县| 本溪市| 嘉善县| 娱乐| 友谊县| 广西| 临城县| 大理市| 香河县| 铜鼓县| 高要市| 鹿泉市| 金昌市| 深水埗区| 山东省| 鄂尔多斯市| 连江县| 阳新县| 卓尼县| 东源县| 曲靖市| 田阳县| 沈丘县| 永济市| 信阳市| 行唐县| 正定县| 收藏| 黔西| 昔阳县| 江达县| 信丰县| 伊春市| 渝中区| 崇礼县| 永城市| 卓资县| 嘉善县| 太和县| 大渡口区|