• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    膠質(zhì)母細(xì)胞瘤的遺傳特性:異質(zhì)性及臨床意義

    2015-08-03 05:59:30涂艷陽張永生第四軍醫(yī)大學(xué)唐都醫(yī)院實驗外科唐都醫(yī)院陜西西安70038
    關(guān)鍵詞:母細(xì)胞膠質(zhì)膠質(zhì)瘤

    涂艷陽,李 倩,張永生 (第四軍醫(yī)大學(xué):唐都醫(yī)院實驗外科,唐都醫(yī)院,陜西 西安70038)

    0 引言

    膠質(zhì)母細(xì)胞瘤(glioblastomamultiforme,GBM)是最常見的、致死率最高的成人腦腫瘤,約占所有膠質(zhì)瘤的60%~70%.雖然對膠質(zhì)母細(xì)胞瘤的治療取得了進(jìn)步,但GBM患者的平均存活時間仍然較短,約為15個月[1].根據(jù)其臨床特點,GBM被劃分為原發(fā)性和繼發(fā)性膠質(zhì)母細(xì)胞瘤.原發(fā)性膠質(zhì)母細(xì)胞瘤進(jìn)展迅速,無癌前病變;繼發(fā)性膠質(zhì)母細(xì)胞瘤可進(jìn)展為彌漫性星形細(xì)胞瘤(WHOⅡ級)或間變性星形細(xì)胞瘤(WHOⅢ級)[2].最近GBM基因譜研究發(fā)現(xiàn)了一些對診斷和預(yù)后評估有用的“生物標(biāo)記物”,如異檸檬酸脫氫酶1(isocitrate dehydrogenase 1,IDH1)突變,該突變在繼發(fā)性膠質(zhì)母細(xì)胞瘤中較常見(>80%),但在原發(fā)性膠質(zhì)母細(xì)胞瘤中很少見(<5%)[3-5].癌癥基因組圖譜(Cancer Genome Atlas,TCGA)研究基于基因表達(dá)水平把GBM分為四類分子分型:前神經(jīng)元(proneural)、神經(jīng)元(neural)、經(jīng)典(classical)和間葉(mesenchymal)[6],加深了對原發(fā)性和繼發(fā)性膠質(zhì)母細(xì)胞瘤基因組改變的認(rèn)識(表1).

    1 分子異質(zhì)性

    最近大規(guī)模基因組分析明確了GBM的瘤內(nèi)異質(zhì)性,從而進(jìn)一步細(xì)化了該病的病理組織學(xué)分類.TCGA研究揭示了GBM的遺傳和表觀遺傳改變,及具有潛在預(yù)后或診斷價值的生物標(biāo)記物,如TP53突變、IDH1突變、表皮生長因子受體(epidermal growth factor receptor,EGFR)的擴(kuò)增或突變以及氧(6)-甲基鳥嘌呤-DNA甲基轉(zhuǎn)移酶(O(6)-methylguanine-DNA methyltransferase,MGMT)啟動子甲基化[7].

    瘤內(nèi)分子異質(zhì)性是臨床上對抗腫瘤復(fù)發(fā)、侵襲所面臨的主要挑戰(zhàn).而靶向治療能夠針對性地作用于高表達(dá)特定蛋白的一類細(xì)胞亞群,而不影響其它細(xì)胞,通過這種篩選,其它細(xì)胞亞群則繼續(xù)增殖[8].兩個廣泛應(yīng)用的靶向治療方案為:靶向EGFR或血管內(nèi)皮生長因子的抑制劑.

    基因表達(dá)譜分析表明GBM中存在與腫瘤發(fā)生相關(guān)的不同的分子和遺傳變異,并可依據(jù)其匹配的標(biāo)準(zhǔn)分級再次細(xì)分.Verhaak等[6]依據(jù)其不同的遺傳、表觀遺傳和轉(zhuǎn)錄修飾特點以及預(yù)測和診斷價值提出了四種分子亞型,包括前神經(jīng)元、神經(jīng)元、經(jīng)典和間葉,如IDH1/2突變?yōu)榍吧窠?jīng)元,EGFR擴(kuò)增為經(jīng)典亞型、NF1缺失為間葉亞型[9].EGFR擴(kuò)增、IDH1/2突變、MGMT啟動子甲基化、1p/19q共缺失是目前主要的生物標(biāo)志物.

    表1 原發(fā)性和繼發(fā)性膠質(zhì)母細(xì)胞瘤不同的遺傳和臨床特征

    2 分子標(biāo)志物

    2.1 表皮生長因子受體的擴(kuò)增/突變體 EGFR是膠質(zhì)細(xì)胞瘤最常見的治療靶點,40%~60%患者存在該基因擴(kuò)增[10-11].EGFR修飾激活多種細(xì)胞信號傳導(dǎo)通路,并最終促進(jìn)腫瘤的生長和進(jìn)展.最常見的EGFR變異體是EGFRvIII,它是以配體非依賴的方式組成性激活EGFR,其對預(yù)后影響具有爭議.Heimberger等[11]稱EGFRvIII變異體與患者的治療結(jié)果不具有相關(guān)性.Pelloski等[12]的研究結(jié)果顯示其與預(yù)后不良相關(guān),或是可作為較長存活期的預(yù)測分子[13],即使經(jīng)過患者的分子預(yù)篩選,諸如厄洛替尼、吉非替尼或單克隆抗體等小分子抑制劑亦無法阻斷EGFR信號通路[14].因此,EGFR靶向治療的抗性機(jī)制及其基因擴(kuò)增或變異體的預(yù)后價值仍需闡明[15].

    2.2 異檸檬酸脫氫酶-1/異檸檬酸脫氫酶-2基因突變 IDH1和IDH2突變常見于II級、III級膠質(zhì)瘤和繼發(fā)性膠質(zhì)母細(xì)胞瘤,高達(dá)70%~75%,在原發(fā)性膠質(zhì)母細(xì)胞瘤中較罕見,只有5%.IDH1突變與TP53突變、1P/19q缺失呈強(qiáng)相關(guān)性[3].IDH1突變通常存在于TP53突變的年輕患者中,且預(yù)后良好.IDH1/2突變也與表觀遺傳改變密切相關(guān)[4,16].IDH 突變、1p/19q共缺失及神經(jīng)膠質(zhì)瘤CpG島高甲基化表型(glioma-CpG island hypermethylator phenotype,G-CIMP)被認(rèn)為是預(yù)后良好的標(biāo)記物,也被用來預(yù)測化療反應(yīng)[17].

    2.3 氧(6)-甲基鳥嘌呤-DNA甲基轉(zhuǎn)移酶啟動子甲基化 MGMT編碼DNA修復(fù)酶能修復(fù)使用替莫唑胺烷化物化療而產(chǎn)生的細(xì)胞毒性產(chǎn)物.MGMT的高甲基化或表觀遺傳沉默失活了DNA修復(fù)能力,使腫瘤細(xì)胞對治療更敏感[18].MGMT啟動子甲基化是IDH1/2突變/G-CIMP陽性神經(jīng)膠質(zhì)瘤的常見特征,而在G-CIMP陰性的原發(fā)性膠質(zhì)母細(xì)胞瘤中不太普遍[19].

    2.4 1型神經(jīng)纖維瘤蛋白 NF1基因編碼1型神經(jīng)纖維瘤蛋白,這是一種腫瘤抑癌基因,負(fù)向調(diào)節(jié)Ras和哺乳動物星形細(xì)胞瘤的雷帕霉素靶點[20].NF1基因突變是膠質(zhì)母細(xì)胞瘤間葉亞型最常見的特征[6].降解增加和蛋白激酶C的過度活化均能導(dǎo)致NF1蛋白失活[21].NF1缺失可以通過Ras信號通路的介導(dǎo)過度激活(mammalian target of rapamycin,mTOR),從而促進(jìn)細(xì)胞增殖和遷移[22].雖然NF1的純合缺失在體內(nèi)體外均能促進(jìn)細(xì)胞增殖,但這一單一因素不足以誘導(dǎo)遺傳工程小鼠模型的腫瘤形成[23].一些研究報道利用基因工程小鼠模型顯示,當(dāng)神經(jīng)膠質(zhì)細(xì)胞的NF1純合性丟失與TP53突變相關(guān)聯(lián)時會誘導(dǎo)形成惡性星形細(xì)胞瘤[24],并且當(dāng)同時發(fā)生磷酸酶、張力蛋白同源缺失,則會進(jìn)一步進(jìn)展為膠質(zhì)母細(xì)胞瘤[25].

    2.5 血小板衍生的生長因子受體α擴(kuò)增 血小板衍生的生長因子受體α(platelet-derived growth factor receptor alpha,PDGFRA)基因在約13%的GBM中都有擴(kuò)增,主要存在于前神經(jīng)元亞型[6,9].PDGF 和PDGFR擴(kuò)增已被證明與侵襲性腦膠質(zhì)瘤生長相關(guān).PDGFR和(或)其配體表達(dá)可通過自分泌、旁分泌途徑促進(jìn)腫瘤發(fā)生發(fā)展[26].此外,PDGFR可以非配體依賴的方式激活.PDGFRAΔ8,9是一種 PDGFRA的基因內(nèi)缺失,與非配體依賴的下游c-Jun磷酸化相關(guān)聯(lián)[27].點突變只能在Ⅳ級膠質(zhì)瘤中檢測到,表明PDGFRA是這類患者潛在的治療靶點.

    3 異質(zhì)性臨床意義

    瘤內(nèi)異質(zhì)性具有兩面性:一方面可作為預(yù)測預(yù)后的生物標(biāo)記物來指導(dǎo)個體化治療,另一方面它又是靶向治療失敗的誘導(dǎo)因素.GBM的遺傳改變主要涉及三大信號通路包括:RTK/RAS/PI3K,P53/MDM2/MDM4和 RB/CDK4/INK4A[18].表 2 列出了一些臨床試驗中常見的靶向治療.但是,諸如貝伐單抗的靶向藥物和目前臨床上的標(biāo)準(zhǔn)治療相比并沒有顯現(xiàn)出較好的療效,患者總生存期也未見延長[28].腫瘤亞克隆多樣性、藥物滲透性差和其他代償途徑的激活均會造成治療的失利[29].

    表2 常見的突變基因和治療藥物

    總之,細(xì)胞亞型和新的生物標(biāo)記物的鑒定,例如IDH1,有效地補(bǔ)充了傳統(tǒng)的病理組織學(xué)分級,有助于進(jìn)一步提高疾病的預(yù)后預(yù)測能力.然而,由于診斷方法的局限性以及腫瘤進(jìn)展過程中的復(fù)雜變化,使得從根本上預(yù)測此類腫瘤的治療效果仍有難度.因此,個體化治療從一個理念到真正轉(zhuǎn)化成臨床實踐,滿足臨床治療需求仍有很長的路要走.采用靶向不同信號通路的多種抑制劑聯(lián)合治療或調(diào)控分子靶向劑都可能是未來膠質(zhì)母細(xì)胞瘤治療的發(fā)展方向.

    [1]Ohgaki H,Kleihues P.Epidemiology and etiology of gliomas[J].Acta Neuropathol,2005,109(1):93-108.

    [2]Peiffer J,Kleihues P.Hans-Joachim Scherer(1906-1945),pioneer in glioma research[J].Brain Pathol,1999,9(2):241-245.

    [3]Watanabe T,Nobusawa S,Kleihues P,et al.IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas[J].Am J Pathol,2009,174(4):1149-1153.

    [4]Nobusawa S,Watanabe T,Kleihues P,et al.IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas[J].Clin Cancer Res,2009,15(19):6002-6007.

    [5]Killela PJ,Pirozzi CJ,Healy P,et al.Mutations in IDH1,IDH2,and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas[J].Oncotarget,2014,5(6):1515-1525.

    [6]Verhaak RG,Hoadley KA,Purdom E,et al.Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,IDH1,EGFR,and NF1[J].Cancer Cell,2010,17(1):98-110.

    [7]The Cancer Genome AtlasResearch Network.Comprehensive genomic characterization defines human glioblastoma genes and core pathways[J].Nature,2008,455(7216):1061-1068.

    [8]Bonavia R,Inda MM,Cavenee WK,et al.Heterogeneity maintenance in glioblastoma:a social network[J].Cancer Res,2011,71(12):4055-4060.

    [9]Phillips HS,Kharbanda S,Chen R,et al.Molecular subclasses of high-grade glioma predict prognosis,delineate a pattern of disease progression,and resemble stages in neurogenesis[J].Cancer Cell,2006,9(3):157-173.

    [10]Patel M,Vogelbaum MA,Barnett GH,et al.Molecular targeted therapy in recurrent glioblastoma:current challenges and future directions[J].Expert Opin Investig Drugs,2012,21(9):1247-1266.

    [11]Heimberger AB,Hlatky R,Suki D,et al.Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients[J].Clin Cancer Res,2005,11(4):1462-1466.

    [12]Pelloski CE,Ballman KV,F(xiàn)urth AF,et al.Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma[J].J Clin Oncol,2007,25(16):2288-2294.

    [13]Montano N,Cenci T,Martini M,et al.Expression of EGFRvIII in glioblastoma:prognostic significance revisited[J]. Neoplasia,2011,13(12):1113-1121.

    [14]Hegi ME,Rajakannu P,Weller M.Epidermal growth factor receptor:a re-emerging target in glioblastoma[J].Curr Opin Neurol,2012,25(6):774-779.

    [15]Gan HK,Cvrljevic AN,Johns TG.The epidermal growth factor receptor variant III(EGFRvIII):where wild things are altered[J].FEBS J,2013,280(21):5350-5370.

    [16]Weller M,F(xiàn)elsberg J,Hartmann C,et al.Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma:a prospective translational study of the German Glioma Network[J].J Clin Oncol,2009,27(34):5743-5750.

    [17]Cairncross G,Wang M,Shaw E,et al.Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma:long-term results of RTOG 9402[J].J Clin Oncol,2013,31(3):337-343.

    [18]Brennan CW,Verhaak RG,McKenna A,et al.The somatic genomic landscape of glioblastoma[J].Cell,2013,155(2):462-477.

    [19]Wick W,Weller M,van den Bent M,et al.MGMT testing--the challenges for biomarker-based glioma treatment[J].Nat Rev Neurol,2014,10(7):372-385.

    [20]Nissan MH,Pratilas CA,Jones AM,et al.Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence[J].Cancer Res,2014,74(8):2340-2350.

    [21]McGillicuddy LT,F(xiàn)romm JA,Hollstein PE,et al.Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis[J].Cancer Cell,2009,16(1):44-54.

    [22]Sandsmark DK,Zhang H,Hegedus B,et al.Nucleophosmin mediates mammalian target of rapamycin-dependent actin cytoskeleton dynamics and proliferation in neurofibromin-deficient astrocytes[J].Cancer Res,2007,67(10):4790-4799.

    [23]Bajenaru ML,Zhu Y,Hedrick NM,et al.Astrocyte-specific inactivation of the neurofibromatosis 1 gene(NF1)is insufficient for astrocytoma formation[J].Mol Cell Biol,2002,22(14):5100-5113.

    [24]Zhu Y,Guignard F,Zhao D,et al.Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma[J].Cancer Cell,2005,8(2):119-130.

    [25]Kwon CH,Zhao D,Chen J,et al.Pten haploinsufficiency acceleratesformation of high-grade astrocytomas[J].Cancer Res,2008,68(9):3286-3294.

    [26]Assanah MC,Bruce JN,Suzuki SO,et al.PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain[J].Glia,2009,57(16):1835-1847.

    [27]Clarke ID,Dirks PB.A human brain tumor-derived PDGFR-alpha deletion mutant is transforming[J].Oncogene,2003,22(5):722-733.

    [28]Chinot OL,Wick W,Mason W,et al.Bevacizumab plus radiotherapytemozolomide for newly diagnosed glioblastoma[J].N Engl J Med,2014,370(8):709-722.

    [29]Wen PY,Chang SM,Lamborn KR,et al.Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas:North American Brain Tumor Consortium trial 04-02[J].Neuro Oncol,2014,16(4):567-578.

    [30]Gallego O,Cuatrecasas M,Benavides M,et al.Efficacy of erlotinib in patients with relapsed gliobastoma multiforme who expressed EGFRVIII and PTEN determined by immunohistochemistry[J].J Neurooncol,2014,116(2):413-419.

    [31]Chakravarti A,Wang M,Robins HI,et al.RTOG 0211:a phase 1/2 study of radiation therapy with concurrent gefitinib for newly diagnosed glioblastoma patients[J].Int J Radiat Oncol Biol Phys,2013,85(5):1206-1211.

    [32]Peereboom DM,Ahluwalia MS,Ye X,et al.NABTT 0502:a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme[J].Neuro Oncol,2013,15(4):490-496.

    [33]Dresemann G,Weller M,Rosenthal MA,et al.Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide[J].J Neurooncol,2010,96(3):393-402.

    [34]See WL,Tan IL,Mukherjee J,et al.Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency[J].Cancer Res,2012,72(13):3350-3359.

    [35]ClinicalTrials.gov[Internet].Bethesda(MD):National Library of Medicine.[cited 2014 Jun 5].Available from:http://clinicaltrials.gov/ct2/show/NCT01227434.

    猜你喜歡
    母細(xì)胞膠質(zhì)膠質(zhì)瘤
    成人幕上髓母細(xì)胞瘤1例誤診分析
    頂骨炎性肌纖維母細(xì)胞瘤一例
    人類星形膠質(zhì)細(xì)胞和NG2膠質(zhì)細(xì)胞的特性
    談?wù)勀讣?xì)胞瘤
    預(yù)防小兒母細(xì)胞瘤,10個細(xì)節(jié)別忽視
    視網(wǎng)膜小膠質(zhì)細(xì)胞的研究進(jìn)展
    DCE-MRI在高、低級別腦膠質(zhì)瘤及腦膜瘤中的鑒別診斷
    磁共振成像(2015年8期)2015-12-23 08:53:14
    側(cè)腦室內(nèi)罕見膠質(zhì)肉瘤一例
    磁共振成像(2015年1期)2015-12-23 08:52:21
    P21和survivin蛋白在腦膠質(zhì)瘤組織中的表達(dá)及其臨床意義
    Sox2和Oct4在人腦膠質(zhì)瘤組織中的表達(dá)及意義
    彰化市| 保靖县| 陕西省| 巴马| 龙口市| 诸城市| 利川市| 堆龙德庆县| 休宁县| 武平县| 凤城市| 确山县| 连州市| 满城县| 铜川市| 巩留县| 济宁市| 仲巴县| 旬阳县| 江油市| 苍梧县| 双牌县| 襄城县| 新郑市| 寿宁县| 南开区| 加查县| 桂阳县| 芜湖县| 正定县| 通渭县| 堆龙德庆县| 崇义县| 嘉鱼县| 福泉市| 东宁县| 商河县| 拉萨市| 阿合奇县| 商丘市| 岳阳县|