• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Action recognition using a hierarchy of feature groups

    2015-07-25 06:04:37
    關鍵詞:連貫識別率尺度

    (School of Information Science and Engineering,Southeast University,Nanjing 210096,China)

    Action recognition using a hierarchy of feature groups

    Zhou Tongchi Cheng Xu Li Nijun Xu Qinjun Zhou Lin Wu Zhenyang

    (School of Information Science and Engineering,Southeast University,Nanjing 210096,China)

    To improve the recognition performance of video human actions,an approach thatmodels the video actions in a hierarchical way is proposed.This hierarchical model summarizes the action contents w ith different spatio-temporal domains according to the properties of human body movement.First,the temporal gradient combined with the constraint of coherent motion pattern is utilized to extract stable and dense motion features that are viewed as point features,then the mean-shift clustering algorithm with the adaptive scale kernel is used to label these features.After pooling the featuresw ith the same label to generate part-based representation,the visual word responses within one large scale volume are collected as video object representation.On the benchmark KTH(Kungliga Tekniska H?gskolan)and UCF(University of Central Florida)-sports action datasets,the experimental results show that the proposed method enhances the representative and discriminative power of action features,and improves recognition rates.Compared with other related literature,the proposed method obtains superior performance.

    action recognition;coherent motion pattern;feature groups;part-based representation

    H uman action recognition(HAR)is one of the hot topics in the fields of computer vision and pattern recognition due to its w idespread applications in video surveillance,human computer interaction and video retrieval.However,its research is influenced by significant cameramotion,background clutter,and changes in object appearance,scale,illum ination conditions and viewpoint.Overall,HAR has become a difficult but also an important task.

    Local features together w ith bag-of-visual words[13](BoVW)have gained good recognition performance.Kovashka et al.[1]employed the Euclidean metric to construct variable-sized configurations of local features and learned compound features,and each action video is modelled by the learned compound features in a hierarchical way.A lso,Yuan et al.[4]used the same metric to measure the distance between features,and counted the co-occurrence frequency of pair features w ithin some spatial-temporal extents.Considering the activity data containing information at various temporal resolutions,Song et al.[5]presented a hierarchical sequence summarization and learned multiple layers of discrim inative feature representations.In fact,the methods in Refs.[1,4]w ith the popular spatio-temporal interest points(STIPs),like cuboids,and 3D Harris etc.a(chǎn)re easily influenced by the camera m_otion and background clutter,so the learned context[15]lacks the representativeness.To extract stable features for action recognition,the motion compensation technique[6]is introduced to suppress the camera motion.Chakraborty et al.[7]selected STIPs by surrounding suppression combined with local and temporal constraints.Moreover,to reduce the quantization error and preserve the nonlinear manifold structure,Refs.[8- 9]adopted structured sparse coding to encode the local features for recognition tasks.

    Inspired by the ideals of Refs.[1,5- 8],we learn a spatial-temporal context w ith an ascending order of abstraction in a hierarchicalway.We first compensate cameramotion,and then utilize temporal gradients to extract stablemotion features.To learn local context and model body parts,we utilize the clustering algorithm instead of the ranked metric.A fter encoding the underlying features w ith locality-and group-sensitive sparse representation(LGSR)[9]and learning part-based representation,the large scale context for the constructed volumetric region is sequentially modelled.From experiments,our representation enhances the discrim inative power of action features and achieves excellent recognition performance on the benchmark KTH(Kungliga Tekniska H?gskolan)and UCF(University of Central Florida)-sports action datasets.

    1 Proposed M ethod

    The hierarchical feature representation model for action recognition proposed in this paper is semantic structures from motion including region,part and object,as shown in Fig.1(c).The initial layer is the low-level features extracted from salient3D motion regions.The second layer is a pool group features labelled by themean-shift clustering algorithm.The top layer is explored to construct body movement representations.Using ourmethod to represent the irregular 3D regions is more flexible than those w ith fixed grids[10]or nearest rank[1,4],as shown inFigs.1(a)and(b),respectively.

    Fig.1 The learned spatial-temporal relationships.(a)Multi-level fixed grids[10];(b)Nearest rank[1,4];(c)Ourmethod

    1.1 Extracting and encoding features

    Each video is first segmented to narrow clips.According to themotion compensation[6],the 2D polynom ial affinemotionmodels are considered for estimating the dominantmotion,and the adjacent frames from a narrow clip are aligned.Fig.2(a)shows an example w ith the high score matching corner points in the region of interest(ROI),where the corresponding dots are in the first and second columns,and the circles in the second and third columns.A fter the processes of motion compensation,temporal gradient and the adaptive threshold,the saliency map shown in Fig.2(b)is obtained by

    where Di(x,y)means the pixel value;I′i-1is the compensated ROI image corresponding to Ii-1;and v is the saliency maximum of the absolute difference image Di.

    Fig.2 Processes of saliency motion extraction.(a)Matching points;(b)Difference images;(c)Saliency motion cumulative image

    Unfortunately,some noise still persists,and the processmentioned above may lead to leak detection.To handle these problems,the constraints of some context clues including coherentmotion patterns,changes of displacement and phase,color value invariance in short duration are adopted to select saliency motion sub-regions.According to the central coordinate set{r′1,r′2,…,r′n}obtained by 8-connected regions of the difference cumulative image,we sample sub-volume w ithin the difference volume constructed by difference images.For one subvolume,the spatial window for KTH and UCF-sports is empirically set to be 10×10 and 30×30,respectively,and temporal scale L is the number of difference images.The process to extractmotion features is followed by

    where Pi(x,y)is the pixel value at coordinate(x,y)of the i-th patch of a sub-volume;w and M are defined as the Boolean-valued function;w is used to distinguish whether themotion exists in some patch and M is used to distinguish whether the spatial-temporal feature is valid.After pruning,the new center coordinate set{r1,r2,…, rm}is viewed as STIPs,and the new difference cumulative image shown in Fig.2(c)is defined as

    where D′pmeans the difference image after pruning Dp.After describing volumes,we transform the HoG/HoF descriptors(HoG:4 bins;HoF:5 bins)into structured sparse representations by LGSR.This encoding method takes advantages from both group sparsity and data locality structure in determ ining the discrim inative representation for classification[9].Cgcan be solved by the following optim ization problem:

    where D=[D1,D2,…,Dn]∈RD×dis the codebook;λ1andλ2are the weights for the group sparsity and locality constrains,respectively;and the vector v∈Rd×1is the distancemeasurement between Hg,jand each visualword.

    1.2 Group feature generation by clustering

    In this section,we use the mean-shift clustering algorithm to construct group features,and then adopt amaxpooling operator to generate part-based representation.For themean-shift clustering,3D templatew ith the adaptive scale is used instead of the fixed bandw idth kernel that is unsuitable to model the irregular movement part.The temporal scale of 3D kernel is L frames.The 3D kernel’s spatial scale(rx,ry)controlling the ranges of motion sub-region centers is a parameterized function,which can adaptively change by zooming in or out of thebody scope(O-x,O-y)as follows by the given annotation.The scale(rx,ry)is defined as

    where R-xand R-yare set to be(80,50),and they are the reference sizes of body scope;rref-xand rref-y,the spatial sizes of template,are set to be(20,20)in our experiments.Moreover,if the features deviate from the clustering center,the extracted color information(gray image:illum ination)is used to re-label them.After the above two stages,some action features w ith the same label can give an enough coverage of the body part,as shown in Fig.3,where the defined ROIs are represented by large blue boxes.The body movement parts are described by small red boxes,and the centers of 8-connected motion regions are denoted by green points in red boxes.

    Fig.3 Clustering results ofmotion features for some action video frames.(a)Dive;(b)Kick;(c)Skate;(d)Swing 2;(e)Walk

    A fter clustering,the coefficient set Cg∈Rd×kcorresponding to the descriptor set Hgis represented as

    Themax-pooling[10]operator for Cgis defined by

    where S(i)represents the maximum absolute response of the i-th atom,and S is the descriptor for certain body part.

    1.3 Object-level context

    Due to the lim ited scale of body parts,it is not enough to capture large scale co-occurrence relationships.We use ROIs of narrow clips to construct volumes which can adaptively adjust the spatial scales follow ing the changing human body scope,and then accumulate each element of all part descriptors as volume descriptors.The produced vector is computed as

    where V(i)is the weight accumulation of the i-th atom response,and Sgdenotes the g-th body part descriptor.

    2 Action Representation and Recognition

    After describing feature groups and object context,each video is represented by the descriptors of linear quantization corresponding to different levels,and the lengths are all NatomsNbin,where Natomsdenotes the dictionary size,and Nbinrepresents the quantization bins.

    Recognition is performed by the nearest neighbour classifier(NNC)and support vector machine(SVM).The NNC is a simple and effective classifier and the absolute distance is used to measure the sim ilarity.For the SVM classifiers,we adoptχ2 kernel[11]which is an extension form ofχ2 distance[11]and the Gaussian radial basis function[12](G-RBF),respectively.The two kernels are commonly used for classification task.The Gaussian radial kernel andχ2 kernel are,respectively,defined by

    where Hiand Hjrepresent the histograms of video representations.In the cases of the G-RBF kernel,the r values are selected heuristically.

    3 Experimental Results

    3.1 Action dataset

    We adopt KTH[1,78]and UCF-sports[12,10,1214]action datasets to validate our proposedmethod.The KTH dataset contains 599 videos of 25 actors perform ing six types of human actions,box,clap,wave,jog,run,and walk.Each action is repeated in four different scenarios:outdoors,outdoorswith scale variation,outdoors with clothing variation and indoors.All sequences with low resolution are recorded.The UCF-sports dataset consists of 150 video clips acquired from sports broadcast networks.The videos have cameramotion and jitter,highly cluttered and dynam ic backgrounds,compression artifacts and variable illumination settings at variable spatial resolutions.Fig.4 shows the classof 10 action samples on the UCF-sports action dataset.

    3.2 Experim ental settings

    Fig.4 Sample action frames from video sequences of the UCF-sports dataset.(a)Dive;(b)Golf;(c)Kick;(e)Lift;(f)Walk;(g)Run;(h)Ride;(i)Sw ing 1;(j)Skate;(k)Sw ing 2

    The narrow clip length is set to be 3.λ1andλ2are set to be 0.3 and 0.1,respectively.Video frames in the KTH dataset have a simple background and slight camera motion,so we do not need to align adjacent frames.The dictionary with 936 atoms is constructed by random ly selected 280 sets of group features.For the KTH dataset,we follow the leave-one-out cross-validation(LOOCV)evaluation scheme,and adopt themost simple NNC w ith k=3.For UCF-sports dataset,the defined ROIs’scale is zoomed in 20%under the original center-frame ROI.The dictionary w ith 839 atoms is built by a random ly selected 105 group of descriptors._Ourmethod is validated by the five-fold cross-validation[1314]and the split evaluation scheme[2].For the NNC,the neighbour parameter is set to be 5.W ith the SVM classifier,we adopt a oneagainst-rest training approach.For the G-RBF kernel,by cross-validation,the optimal values of two controlling parameters are set to be C=380 and r=0.2.For theχ2 kernel,the parameter C is set to be 380.The recognition accuracy is average result over 100 runs.

    3.3 Evaluation on KTH dataset

    Fig.5 shows the recognition accuracy for the KTH dataset in the form of confusion matrix.From Fig.5,the majority of the confusion between“jog”and“run”is expected due to sim ilar nature between their local features.Tab.1 shows performance comparison w ith other methods.Among theusing local features to model actions,ourmethod achieves 96.11%recognition accuracy.

    Fig.5 Confusionmatrix for KTH dataset

    Tab.1 Performance comparison w ith othermeth___ods

    3.4 Evaluation on UCF-sports dataset

    We first adopt the simple NNC to validate our proposed method.Under the five-fold cross-validation and split evaluation scheme,all class average recognition accuracies are shown in Figs.6(a)and(b),respectively.For the SVM classifier,under the split scheme,the recognition results for all action videos are shown in Figs.7(a)and(b)corresponding to theχ2 kernel and G-RBF kernel,respectively.From Figs.6 and 7,we can see that the majorities of recognition error are among“Golf”,“Skate”and“Run”.

    To evaluate performance at different levelsw ith respect to histogram bins,we use the simple NNC w ith five-fold cross-validationmanner.Fig.8 shows the recognition accuracy plot varying w ith the histogram bins,where each point on the curves corresponds to an average result.At some bins,recognition accuracies w ith object representation are lower than thatof the part representation,but recognition rates tend to be insensitive to the quantization bins.The recognition results w ith the part representation can reach 100%in some quantization bins.

    Fig.6 Confusion matrices w ith NNC for UCF-sports dataset.(a)Five-fold cross validation;(b)Splitting

    Fig.7 Confusion matrices w ith SVM for UCF-sports dataset.(a)χ2 kernel;(b)G-RBF kernel

    Fig.8 Recognition results at different levels

    Tab.2 lists performance comparison of our method w ith othermethods on the UCF-sports dataset.Compared w ith the literature using local features to model actions,the recognition rates of ourmethod using object representation are higher than those of other methods.The obtained better performance benefits from three aspects,having stable and densemotion features,a semantic context and robust LGSR-based sparse representation.In addition,the recognition performance with the SVM classifier is better than that based on the NNC.Note that Sanin et al.[15]designed dense spatio-temporal covariance descriptors and adopted the LogitBoost classifier to recognize actions.M ichalis et al.[14]utilized the dense trajectories to learn discrim inative action parts in terms of an MRF score.Lan etal.[2]employed a figure-centric visual word representation for joint action localization and recognition.

    Tab.2 Performance comparison w ith othermethods

    4 Conclusion

    In this paper,we propose an action hierarchicalmodel,which can capture the discrim inative statistics of co-occurring motion features at multiple levels.A fter extracting the stable and densemotion features by motion compensation techniques together w ith temporal gradient and coherentmotion pattern constraints,we use the structured sparse representations of HoG/HoF descriptors as underlying features.Then the orderly hierarchical spatial-temporal context for different scale volumes is represented by aggregating group features generated bymean-shift clustering,and accumulating each element of visual word responses,respectively.On the KTH and UCF-sports action datasets,the experimental results show that our method obtains good performance.

    [1]Kovashka A,Grauman K.Learning a hierarchy of discrim inative space-time neighborhood features for human action recognition[C]//Proc of the International Conference on Computer Vision and Pattern Recognition.San Francisco,CA,USA,2010:2046- 2053.

    [2]Lan T,Wang Y,Mori G.Discrim inative figure-centric models for joint action localization and recognition[C]//Proc of the International Conference on Computer Vision.Colorado,USA,2011:2003- 2010.

    [3]Hu Q,Qin L,Huang Q,et al.Action recognition using spatial-temporal context[C]//Proc of the 20th International Conference of Pattern Recognition.Istanbul,Turkey,2010:1521- 1524.

    [4]Yuan C,Hu W,Wang H,etal.Spatio-temporal proximity distribution kernels for action recognition[C]//Proc of the International Conference of Acoustics,Speech and Signal Processing.Dallas,TX,USA,2010:1126-1129.

    [5]Song Y,Morency L P,Davis R.Action recognition by hierarchical sequence summarization[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition.Portland,OR,USA,2013:3562- 3569.

    [6]Jain M,Jegou H,Bouthemy P.Better exploiting motion for better action recognition[C]//Proc of the International Conference of Computer Vision and Pattern Recognition.Portland,OR,USA,2013:2555- 2562.

    [7]Chakraborty B,Holte M B,Moeslund T B,et al.Selective spatio-temporal interest points[J].Computer Vision and Image Understanding,2012,116(3):396- 410.

    [8]Zhou T C,Chen X,Wu Z Y.Action recognition using hierarchically tree-structured dictionary encoding[J].Journal of Image and Graphics,2014,19(7):1054-1061.(in Chinese)

    [9]Chao Y W,Yeh Y R,Chen Y W,et al.Locality-constrained group sparse representation for robust face recognition[C]//Proc of the International Conference on Image Processing.Brussels,Belgium,2011:761- 764.

    [10]Xiao W H,Wang B,Liu Y,et al.Action recognition using feature position constrained linear coding[C]//Proc of the International Conference on Multimedia and Expo.San Jose,CA,USA,2013:1- 6.

    [11]Vedaldi,A,Zisserman A.Efficient additive kernels via explicit featuremaps[C]//Proc of the International Conference on Computer Vision and Pattern Recognition.San Francisco,CA,USA,2010:2046- 2053.

    [12]Chapelle O,Haffner P,Vapnik V N.Support vectormachines for histogram-based image classification[J].IEEE Transactions on Neural Networks,1999,10(5):1055-1064.

    [13]Castrodad A,Sapiro G.Sparse modeling of human actions from motion imagery[J].International Journal of Computer Vision,2012,100(1):1- 15.

    [14]M ichalis R,Iasonas K,Stefano S.Discovering discrim inative action parts from m id-level video representations[C]//Proc of the International Conference of Computer Vision and Pattern Recognition.Rhode Island,USA,2012:1242- 1249.

    [15]Sanin A,Sanderson C,Harandi M T,et al.Spatio-temporal covariance descriptors for action and gesture recognition[C]//Proc of International conference on Application of Computer Vision Workshop.Sydney,Australia,2013:103- 110.

    分層特征組的行為識別

    周同馳 程 旭 李擬珺 徐勤軍 周 琳 吳鎮(zhèn)揚

    (東南大學信息科學與工程學院,南京210096)

    為提高視頻人體行為識別的性能,提出了一種分層建模行為的方法.該分層模型根據(jù)人體運動的屬性概述不同時空域的行為內容.首先,利用時間梯度并結合連貫的運動模式約束提取穩(wěn)定、密集的運動特征作為點特征;然后,采用自適應尺度核的mean-shift聚類算法標定這些特征.具有同一標簽的特征組通過最大池運算產(chǎn)生身體部分表示后,累積大尺度的視頻體內視覺詞響應作為視頻對象的表示.在基準的KTH和UCF-sports行為數(shù)據(jù)庫上,實驗結果表明所提方法增強了行為特征的代表性和判別能力,同時提高了識別率.與其他相關文獻相比,所提方法獲得了優(yōu)越的識別性能.

    行為識別;連貫的運動模式;特征組;部位表示

    TP391.4

    10.3969/j.issn.1003-7985.2015.03.005

    2015-01-04.

    Biographies:Zhou Tongchi(1979—),male,graduate;Wu Zhenyang(corresponding author),male,doctor,professor,zhenyang@seu.edu.cn.

    The National Natural Science Foundation of China(No.60971098,61201345).

    :Zhou Tongchi,Cheng Xu,LiNijun,etal.Action recognition using a hierarchy of feature groups[J].Journal of Southeast University(English Edition),2015,31(3):327- 332.

    10.3969/j.issn.1003-7985.2015.03.005

    猜你喜歡
    連貫識別率尺度
    語意巧連貫,舊“貌”換新“顏”——從“八省聯(lián)考”卷探析高考語意連貫題
    財產(chǎn)的五大尺度和五重應對
    基于類圖像處理與向量化的大數(shù)據(jù)腳本攻擊智能檢測
    計算機工程(2020年3期)2020-03-19 12:24:50
    基于真耳分析的助聽器配戴者言語可懂度指數(shù)與言語識別率的關系
    銜接連貫題的復習備考注意點
    提升高速公路MTC二次抓拍車牌識別率方案研究
    將句子寫連貫
    宇宙的尺度
    太空探索(2016年5期)2016-07-12 15:17:55
    高速公路機電日常維護中車牌識別率分析系統(tǒng)的應用
    9
    午夜福利视频精品| a级毛片在线看网站| 久久精品国产a三级三级三级| 黄色 视频免费看| 亚洲精品一卡2卡三卡4卡5卡 | 欧美97在线视频| 在线观看人妻少妇| 国产精品麻豆人妻色哟哟久久| av天堂在线播放| 日韩一区二区三区影片| 国产精品一区二区精品视频观看| 老司机深夜福利视频在线观看 | 2021少妇久久久久久久久久久| 在线 av 中文字幕| 一区二区三区激情视频| 精品少妇一区二区三区视频日本电影| 亚洲专区国产一区二区| 免费日韩欧美在线观看| 高清欧美精品videossex| 婷婷色综合www| 午夜激情av网站| 99热全是精品| 黄网站色视频无遮挡免费观看| 国产一级毛片在线| 天天影视国产精品| 欧美日本中文国产一区发布| 亚洲一码二码三码区别大吗| 日本av免费视频播放| 18禁裸乳无遮挡动漫免费视频| 国产99久久九九免费精品| 人妻人人澡人人爽人人| 亚洲精品国产av成人精品| 99国产精品99久久久久| 国产精品99久久99久久久不卡| 黑人巨大精品欧美一区二区蜜桃| 国产av一区二区精品久久| 考比视频在线观看| 99国产综合亚洲精品| 免费看十八禁软件| 亚洲国产av影院在线观看| 日韩av免费高清视频| 亚洲色图综合在线观看| 不卡av一区二区三区| 蜜桃国产av成人99| 欧美黑人精品巨大| 最近中文字幕2019免费版| 亚洲av欧美aⅴ国产| 成年人黄色毛片网站| 久久久精品国产亚洲av高清涩受| 亚洲av成人精品一二三区| 久久这里只有精品19| 日本午夜av视频| 午夜av观看不卡| 成年人黄色毛片网站| 国产熟女午夜一区二区三区| 精品国产乱码久久久久久小说| 免费观看a级毛片全部| 老司机午夜十八禁免费视频| 久久综合国产亚洲精品| 亚洲精品一卡2卡三卡4卡5卡 | 一边摸一边做爽爽视频免费| 欧美日韩黄片免| 中文乱码字字幕精品一区二区三区| 国产精品久久久久成人av| 无限看片的www在线观看| 欧美精品亚洲一区二区| 激情视频va一区二区三区| 亚洲五月色婷婷综合| 97人妻天天添夜夜摸| 狂野欧美激情性bbbbbb| 国产视频一区二区在线看| 亚洲第一av免费看| 成在线人永久免费视频| 天天躁夜夜躁狠狠久久av| 中文字幕人妻熟女乱码| 亚洲欧洲精品一区二区精品久久久| 久久热在线av| 真人做人爱边吃奶动态| 午夜福利影视在线免费观看| 曰老女人黄片| 另类精品久久| 婷婷色av中文字幕| 国产日韩欧美亚洲二区| 国产又爽黄色视频| av视频免费观看在线观看| 日本黄色日本黄色录像| 满18在线观看网站| 青草久久国产| 亚洲成国产人片在线观看| 色综合欧美亚洲国产小说| 性色av一级| 中文字幕精品免费在线观看视频| 久久久久国产精品人妻一区二区| 妹子高潮喷水视频| 午夜免费成人在线视频| 丝袜喷水一区| 亚洲成人国产一区在线观看 | 丰满人妻熟妇乱又伦精品不卡| 久久久久精品国产欧美久久久 | 亚洲综合色网址| 啦啦啦视频在线资源免费观看| 欧美性长视频在线观看| 欧美日韩精品网址| 乱人伦中国视频| 国产伦理片在线播放av一区| 精品福利永久在线观看| 男人操女人黄网站| 久久久国产一区二区| 多毛熟女@视频| 精品一区二区三区av网在线观看 | 欧美精品高潮呻吟av久久| 赤兔流量卡办理| 大香蕉久久网| 免费女性裸体啪啪无遮挡网站| 男女边摸边吃奶| 99精品久久久久人妻精品| 女人精品久久久久毛片| 自拍欧美九色日韩亚洲蝌蚪91| 精品一区在线观看国产| 免费一级毛片在线播放高清视频 | 在线观看一区二区三区激情| 一区二区日韩欧美中文字幕| 深夜精品福利| 少妇裸体淫交视频免费看高清 | 久久99热这里只频精品6学生| 2021少妇久久久久久久久久久| www.自偷自拍.com| 免费在线观看完整版高清| 大陆偷拍与自拍| 国产黄色免费在线视频| 日韩伦理黄色片| 久久久久久久久免费视频了| 欧美精品啪啪一区二区三区 | 午夜91福利影院| 纯流量卡能插随身wifi吗| 国产欧美日韩一区二区三 | 国产无遮挡羞羞视频在线观看| 日韩制服丝袜自拍偷拍| 国产精品麻豆人妻色哟哟久久| 久久亚洲国产成人精品v| 美女高潮到喷水免费观看| 母亲3免费完整高清在线观看| 在线观看免费日韩欧美大片| 国产成人免费观看mmmm| 精品第一国产精品| 好男人视频免费观看在线| 久久人人爽人人片av| 日韩制服丝袜自拍偷拍| 亚洲精品久久成人aⅴ小说| 久久久久精品人妻al黑| 中国美女看黄片| 免费在线观看日本一区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美一区二区综合| 久久精品久久精品一区二区三区| 国产日韩欧美亚洲二区| 中文欧美无线码| 好男人视频免费观看在线| 精品视频人人做人人爽| 欧美日韩一级在线毛片| a 毛片基地| 精品人妻熟女毛片av久久网站| 日韩制服骚丝袜av| 97人妻天天添夜夜摸| 99国产精品免费福利视频| 99久久精品国产亚洲精品| 美女国产高潮福利片在线看| 人人妻人人爽人人添夜夜欢视频| 日本vs欧美在线观看视频| 日韩 亚洲 欧美在线| 黄色视频不卡| 久久ye,这里只有精品| 999久久久国产精品视频| 亚洲欧美精品自产自拍| 亚洲色图综合在线观看| 欧美黑人精品巨大| 两人在一起打扑克的视频| 老司机在亚洲福利影院| 天天添夜夜摸| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩一区二区三区在线| 在线看a的网站| 天堂8中文在线网| 97在线人人人人妻| 后天国语完整版免费观看| 99久久99久久久精品蜜桃| 在线观看免费视频网站a站| 久9热在线精品视频| 99国产精品一区二区三区| 宅男免费午夜| 欧美黄色淫秽网站| 晚上一个人看的免费电影| 久久人妻熟女aⅴ| 欧美久久黑人一区二区| 亚洲国产看品久久| 久久这里只有精品19| 狂野欧美激情性bbbbbb| 国产免费现黄频在线看| 国产片内射在线| 男人舔女人的私密视频| 欧美亚洲 丝袜 人妻 在线| 丰满少妇做爰视频| 成年人免费黄色播放视频| 少妇人妻 视频| 国产老妇伦熟女老妇高清| 男女午夜视频在线观看| 国产精品成人在线| 亚洲精品久久午夜乱码| 国产亚洲精品第一综合不卡| 欧美日韩成人在线一区二区| 一区二区三区乱码不卡18| 国产91精品成人一区二区三区 | 青草久久国产| 我要看黄色一级片免费的| 尾随美女入室| √禁漫天堂资源中文www| 久久人人97超碰香蕉20202| 欧美xxⅹ黑人| 丝袜美足系列| 国产欧美日韩精品亚洲av| 婷婷丁香在线五月| 久久精品国产a三级三级三级| 亚洲精品自拍成人| 亚洲欧美一区二区三区久久| tube8黄色片| 老司机影院毛片| 亚洲人成电影观看| 首页视频小说图片口味搜索 | 亚洲精品美女久久av网站| 日韩av不卡免费在线播放| 日韩大片免费观看网站| 国产成人免费无遮挡视频| 精品国产超薄肉色丝袜足j| 精品一品国产午夜福利视频| 中文字幕另类日韩欧美亚洲嫩草| 国产国语露脸激情在线看| 精品少妇久久久久久888优播| 亚洲欧美精品综合一区二区三区| 亚洲国产毛片av蜜桃av| 午夜福利在线免费观看网站| 麻豆国产av国片精品| 欧美中文综合在线视频| 亚洲欧美中文字幕日韩二区| 亚洲国产毛片av蜜桃av| 国产免费现黄频在线看| 国产成人av教育| 又紧又爽又黄一区二区| 亚洲欧美一区二区三区黑人| 91精品国产国语对白视频| 午夜免费男女啪啪视频观看| 国产97色在线日韩免费| 韩国精品一区二区三区| 婷婷色综合大香蕉| 一区二区三区激情视频| 99国产精品一区二区蜜桃av | 亚洲国产精品一区二区三区在线| 免费一级毛片在线播放高清视频 | 巨乳人妻的诱惑在线观看| 中文字幕人妻熟女乱码| 国产无遮挡羞羞视频在线观看| 大型av网站在线播放| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三 | 在线观看国产h片| 一个人免费看片子| e午夜精品久久久久久久| 蜜桃国产av成人99| 免费人妻精品一区二区三区视频| www日本在线高清视频| av有码第一页| 午夜免费鲁丝| 一本一本久久a久久精品综合妖精| 精品久久蜜臀av无| 丁香六月天网| 老司机午夜十八禁免费视频| 免费在线观看影片大全网站 | 一本综合久久免费| 午夜福利在线免费观看网站| 久久99热这里只频精品6学生| 一区二区日韩欧美中文字幕| 一本色道久久久久久精品综合| 老司机靠b影院| 一级片免费观看大全| 欧美日韩国产mv在线观看视频| 亚洲,欧美,日韩| 欧美国产精品一级二级三级| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 国产日韩欧美亚洲二区| 日本vs欧美在线观看视频| 黄色 视频免费看| 久久精品成人免费网站| 一边摸一边抽搐一进一出视频| 成在线人永久免费视频| 99久久99久久久精品蜜桃| 精品人妻熟女毛片av久久网站| 男女高潮啪啪啪动态图| av欧美777| 亚洲av男天堂| av在线app专区| 久久精品久久久久久噜噜老黄| 国产精品一二三区在线看| 国产精品久久久久久人妻精品电影 | 免费观看人在逋| 亚洲,一卡二卡三卡| 18禁国产床啪视频网站| 搡老乐熟女国产| 国产淫语在线视频| 国产男女内射视频| 男女无遮挡免费网站观看| 最新在线观看一区二区三区 | 国产精品偷伦视频观看了| 777久久人妻少妇嫩草av网站| 中文字幕另类日韩欧美亚洲嫩草| netflix在线观看网站| 国产一区二区激情短视频 | 欧美日韩亚洲高清精品| 香蕉国产在线看| 精品少妇一区二区三区视频日本电影| 天天操日日干夜夜撸| 天天躁日日躁夜夜躁夜夜| 国产亚洲欧美在线一区二区| 精品少妇久久久久久888优播| 久久久欧美国产精品| 欧美日韩亚洲国产一区二区在线观看 | 国产一区二区激情短视频 | 国产欧美日韩一区二区三区在线| 如日韩欧美国产精品一区二区三区| 又紧又爽又黄一区二区| 丝袜人妻中文字幕| 黄网站色视频无遮挡免费观看| 久久久亚洲精品成人影院| 久久久久网色| 男女下面插进去视频免费观看| 一本大道久久a久久精品| 精品久久久久久久毛片微露脸 | 在线 av 中文字幕| 天天操日日干夜夜撸| 热99国产精品久久久久久7| 国产有黄有色有爽视频| 午夜91福利影院| 亚洲av电影在线进入| 国产免费视频播放在线视频| 欧美日本中文国产一区发布| 久久精品久久精品一区二区三区| 老汉色av国产亚洲站长工具| 午夜免费鲁丝| 大香蕉久久网| 99久久综合免费| 女性生殖器流出的白浆| 97在线人人人人妻| 一区二区三区精品91| 天天躁日日躁夜夜躁夜夜| 天天添夜夜摸| 欧美 亚洲 国产 日韩一| 国产av精品麻豆| 久久精品国产综合久久久| 看十八女毛片水多多多| 91精品国产国语对白视频| 岛国毛片在线播放| 91精品伊人久久大香线蕉| 国产精品九九99| 久久青草综合色| 国产在线视频一区二区| 丁香六月欧美| 五月开心婷婷网| 99国产精品99久久久久| 色网站视频免费| 午夜日韩欧美国产| 一级毛片黄色毛片免费观看视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产精品一区二区三区在线| 久久久久网色| 1024视频免费在线观看| 久久久精品区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品国产av蜜桃| 女警被强在线播放| 男女午夜视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩 欧美 亚洲 中文字幕| 精品欧美一区二区三区在线| 日韩 欧美 亚洲 中文字幕| 一级片'在线观看视频| 久久狼人影院| 国产高清videossex| 日韩欧美一区视频在线观看| 中文字幕最新亚洲高清| 老汉色av国产亚洲站长工具| 在线观看免费高清a一片| 人人妻人人澡人人爽人人夜夜| 精品卡一卡二卡四卡免费| 波野结衣二区三区在线| 不卡av一区二区三区| 满18在线观看网站| 秋霞在线观看毛片| 国产熟女午夜一区二区三区| 自线自在国产av| 99久久精品国产亚洲精品| 午夜福利视频在线观看免费| 啦啦啦在线观看免费高清www| 男人添女人高潮全过程视频| av一本久久久久| 尾随美女入室| 国产1区2区3区精品| 波野结衣二区三区在线| 日本欧美国产在线视频| 一级片免费观看大全| 一级黄片播放器| 久久九九热精品免费| 国产精品久久久久久精品古装| 最黄视频免费看| 亚洲av在线观看美女高潮| 国产精品亚洲av一区麻豆| 日本欧美视频一区| 久久久精品94久久精品| 亚洲,欧美,日韩| 中文字幕av电影在线播放| 免费高清在线观看日韩| 老司机影院成人| 男的添女的下面高潮视频| 精品少妇一区二区三区视频日本电影| 波多野结衣一区麻豆| 亚洲 国产 在线| 两人在一起打扑克的视频| 亚洲第一av免费看| 欧美大码av| 99国产精品免费福利视频| 国产免费视频播放在线视频| 国产亚洲精品久久久久5区| 色婷婷久久久亚洲欧美| 亚洲人成电影观看| 天天躁夜夜躁狠狠躁躁| 99热网站在线观看| 午夜免费观看性视频| 两个人看的免费小视频| videosex国产| 色婷婷久久久亚洲欧美| 欧美亚洲 丝袜 人妻 在线| 欧美成人精品欧美一级黄| 精品国产一区二区久久| 国产在线观看jvid| 国产高清国产精品国产三级| 国产欧美亚洲国产| 最近手机中文字幕大全| 1024视频免费在线观看| 午夜视频精品福利| 亚洲精品乱久久久久久| 亚洲视频免费观看视频| 少妇猛男粗大的猛烈进出视频| 色网站视频免费| 一边摸一边抽搐一进一出视频| 老司机午夜十八禁免费视频| 老熟女久久久| 久久久久视频综合| 热99久久久久精品小说推荐| 丁香六月欧美| 大话2 男鬼变身卡| 激情视频va一区二区三区| 日本一区二区免费在线视频| 国产亚洲精品第一综合不卡| 久久久精品94久久精品| 19禁男女啪啪无遮挡网站| 欧美乱码精品一区二区三区| 母亲3免费完整高清在线观看| 激情视频va一区二区三区| 黄色片一级片一级黄色片| 丝袜喷水一区| 久久午夜综合久久蜜桃| 波野结衣二区三区在线| 97人妻天天添夜夜摸| 亚洲熟女精品中文字幕| 久久久国产欧美日韩av| 成人影院久久| 久久女婷五月综合色啪小说| 亚洲午夜精品一区,二区,三区| 青草久久国产| 91成人精品电影| 男女高潮啪啪啪动态图| 国产亚洲欧美在线一区二区| 五月天丁香电影| 久久精品亚洲av国产电影网| 极品少妇高潮喷水抽搐| av一本久久久久| 美女高潮到喷水免费观看| 欧美性长视频在线观看| 欧美精品一区二区免费开放| 91成人精品电影| 国产片内射在线| 五月开心婷婷网| 国产老妇伦熟女老妇高清| 中文欧美无线码| 极品少妇高潮喷水抽搐| 欧美精品av麻豆av| 午夜福利在线免费观看网站| 国产精品99久久99久久久不卡| 观看av在线不卡| 国产一区有黄有色的免费视频| av天堂久久9| 久久女婷五月综合色啪小说| 国产精品免费视频内射| 国产成人av教育| 日韩精品免费视频一区二区三区| av在线播放精品| 少妇裸体淫交视频免费看高清 | 国产野战对白在线观看| 欧美大码av| 免费高清在线观看日韩| 亚洲精品第二区| 国产成人一区二区三区免费视频网站 | 国产福利在线免费观看视频| 国产成人欧美| 亚洲综合色网址| 99re6热这里在线精品视频| 亚洲精品国产av成人精品| 免费高清在线观看视频在线观看| 精品人妻一区二区三区麻豆| 制服人妻中文乱码| 国产精品av久久久久免费| 国产亚洲av高清不卡| 老司机午夜十八禁免费视频| 亚洲视频免费观看视频| 欧美日韩国产mv在线观看视频| 免费看十八禁软件| 亚洲少妇的诱惑av| 丰满迷人的少妇在线观看| 人体艺术视频欧美日本| 国产精品一二三区在线看| 国产成人免费观看mmmm| 免费在线观看完整版高清| av电影中文网址| 国产黄频视频在线观看| 国产精品麻豆人妻色哟哟久久| 青青草视频在线视频观看| 肉色欧美久久久久久久蜜桃| 日韩中文字幕欧美一区二区 | kizo精华| 日韩免费高清中文字幕av| 国产精品偷伦视频观看了| 久久久国产欧美日韩av| 我的亚洲天堂| 最近最新中文字幕大全免费视频 | 亚洲精品乱久久久久久| 亚洲久久久国产精品| 热99国产精品久久久久久7| 成人黄色视频免费在线看| 国产又爽黄色视频| 国产av国产精品国产| 男的添女的下面高潮视频| 伊人久久大香线蕉亚洲五| 国产亚洲欧美精品永久| 啦啦啦 在线观看视频| 亚洲欧美日韩高清在线视频 | 日韩熟女老妇一区二区性免费视频| 欧美精品亚洲一区二区| 少妇人妻久久综合中文| 亚洲精品一二三| 欧美人与性动交α欧美软件| 成人黄色视频免费在线看| 男女无遮挡免费网站观看| 国产免费视频播放在线视频| 视频在线观看一区二区三区| 丁香六月天网| xxxhd国产人妻xxx| 国产精品久久久久久人妻精品电影 | 日日摸夜夜添夜夜爱| 久久久久久久久久久久大奶| 人人妻,人人澡人人爽秒播 | 精品人妻在线不人妻| 99久久99久久久精品蜜桃| 一区二区三区精品91| 巨乳人妻的诱惑在线观看| 黄色毛片三级朝国网站| 日韩av在线免费看完整版不卡| 乱人伦中国视频| 欧美久久黑人一区二区| 在线看a的网站| 伊人久久大香线蕉亚洲五| 欧美精品av麻豆av| 久久人妻熟女aⅴ| 三上悠亚av全集在线观看| 久久久久精品国产欧美久久久 | 只有这里有精品99| 免费少妇av软件| 国产免费视频播放在线视频| 国产成人影院久久av| 91成人精品电影| 久久精品久久精品一区二区三区| 一级片免费观看大全| 国产日韩欧美亚洲二区| 亚洲精品久久午夜乱码| 日韩av不卡免费在线播放| 午夜福利视频在线观看免费| 国产av国产精品国产| 麻豆av在线久日| 亚洲精品一区蜜桃| 校园人妻丝袜中文字幕| 老鸭窝网址在线观看| 丁香六月天网| 国产av国产精品国产| 这个男人来自地球电影免费观看| 国产精品麻豆人妻色哟哟久久| 黄色毛片三级朝国网站| 亚洲人成电影观看| 亚洲国产看品久久| 久久精品国产综合久久久| 日本色播在线视频| 两个人免费观看高清视频| 一本大道久久a久久精品| 99热国产这里只有精品6| 黄片小视频在线播放| 手机成人av网站| 久久久久久亚洲精品国产蜜桃av| 在线天堂中文资源库| 又紧又爽又黄一区二区|