• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cascaded projection of Gaussian m ixturemodel for emotion recognition in speech and ECG signals

    2015-07-25 06:04:36HuangChengweiWuDiZhangXiaojunXiaoZhongzheXuYishenJiJingjingTaoZhiZhaoLi
    關(guān)鍵詞:級聯(lián)心電高斯

    Huang ChengweiWu DiZhang XiaojunXiao ZhongzheXu YishenJi JingjingTao ZhiZhao Li

    (1College of Physics,Optoelectronics and Energy,Soochow University,Suzhou 215006,China)

    (2School of Information Science and Engineering,Southeast University,Nanjing 210096,China)

    Cascaded projection of Gaussian m ixturemodel for emotion recognition in speech and ECG signals

    Huang Chengwei1Wu Di1Zhang Xiaojun1Xiao Zhongzhe1Xu Yishen1Ji Jingjing1Tao Zhi1Zhao Li2

    (1College of Physics,Optoelectronics and Energy,Soochow University,Suzhou 215006,China)

    (2School of Information Science and Engineering,Southeast University,Nanjing 210096,China)

    A cascaded projection of the Gaussian mixture model algorithm is proposed.First,the marginal distribution of the Gaussian mixture model is computed for different feature dimensions,and a number of sub-classifiers are generated using the marginal distribution model.Each subclassifier is based on different feature sets.The cascaded structure is adopted to fuse the sub-classifiers dynamically to achieve sample adaptation ability.Secondly,the effectiveness of the proposed algorithm is verified on electrocardiogram emotional signal and speech emotional signal.Emotional data including fidgetiness,happiness and sadness is collected by induction experiments.Finally,the emotion feature extraction method is discussed,including heart rate variability,the chaotic electrocardiogram feature and utterance level static feature.The emotional feature reductionmethods are studied,including principle component analysis,sequential forward selection,the Fisher discriminant ratio and maximal information coefficient.The experimental results show that the proposed classification algorithm can effectively improve recognition accuracy in two different scenarios.

    Gaussian mixture model;emotion recognition;sample adaptation;emotion inducing

    V ariousmachine learning algorithms have been studied in realworld applications.Affective recognition is one of the emerging fields that benefit significantly from learning algorithms.Previous studies[13]proposed various ways to extract emotional features in the physical signal space.By using signal processing and machine learning algorithms,we canmap the signal features to the psychological emotional state and recognize people’s emotions.Themost common sensorswe can use to collect the emotional signals are m icrophones,cameras,and physiological body sensors.

    The speech signal recorded by am icrophone orm icrophone array can be used for speech emotion analysis.Speech emotion modelling algorithms have been studied by many researchers from various backgrounds.In the recent researches on the FAU Aibo Emotion Corpus[4],the Gaussian m ixture model(GMM)-based classifiers achieved prom ising results[5].The GMM is suitable for modelling the static emotional features at the utterance level.For an alternative way to monitor people’s emotional state,we can build an emotion recognition system based on electrocardiogram(ECG)signals.A body sensor is commonly used in many health care solutions and it is easy to carry.Further research progress in the field of health monitoring can be found in the survey in Ref.[6].

    There are still many challenges in emotion modelling[7].In this paper,we propose an optim ization framework that can be generalized to both speech and ECG emotion recognition.There are two reasons that we choose to use these two types of data.First,they are commonly available in human-computer interaction.Secondly,they show different characters of data distributions,which is suitable for verifying the generalizing ability of our algorithm.These two types of signals are easy to transmit in w ireless channels,requiring less bandw idth in comparison w ith video signals.The sensors are also simple to integrate in wearable systems.

    In emotion recognition,some of the testing data may be located far away from the training data in the feature space.These sample points are likely to be m isclassified and often have low likelihoods.The reason for the m isclassification is that not all of the selected features fit the testing sample.Some of the feature dimensionsmay lead to the opposite decision in the classification stage.We can improve the GMM classifier by selecting different feature dimensions according to the individual testing sample.In ourmethod,feature selection is carried outafter the training stage,which is the main difference from the traditional learning framework.The emotional data is often insufficient in training,while the testing dataset often contains patterns that are not well learnt.Therefore,some of the selected features in the training stagemay be unsuitable for the testing sample.In the GMM-basedclassifier,each feature dimension corresponds to a marginal probability distribution that can be used to classify the current testing sample.Not all of the trained features contribute in the same way,and some of them lead us to w rong decisions.Therefore,if we remove these unsuitable feature dimensions,we can obtain a projected GMM distribution,w ith a high likelihood for improved recognition.

    In related literature,the GMM is adopted for clustering gene expression microarray data[8].In other fields,such as networks,Singh et al.[9]used the GMM for statistical modeling of the loads in distribution networks.The expectation maxim ization(EM)algorithm is used to obtain the GMM parameter.In intelligentmanufacturing,Chen et al.[10]used the GMM for estimating the probability density function inmultivariate statisticalmonitoring of batch manufacturing processes,where principal component analysis was not applicable.In computer vision,Jian et al.[11]used the GMM for point set representation in a registration framework,which led to a reformulation of the registration problem as aligning two Gaussian m ixtures.In event detection,Kam ishima et al.[12]used the GMM to model the relationship between low-level features and visual events when the training data was insufficient.

    1 Im proved Gaussian M ixture M odel

    1.1 Feature reduction approaches for GMM

    Feature reduction is an important step for GMM-based modelling.Them ixture number,feature dimensions,and training size need to be set carefully.When training w ith a small sample size,the m ixture number should not be too large and feature dimensions need to be reduced.If them ixture number is too large,the GMM models may be over-fitted for the training data.

    The traditional feature reduction methods are used before the training stage.In this paper,we propose a feature reduction method after the training stage.We evaluate the features by GMM likelihoods at the recognition stage and reduce the worst few features.Therefore,the features used in training are fixed,and the features used in recognition are dynam ically adjusted according to the individual testing sample.We then take the marginal probability distribution of the GMM as the projection of the original model and propose a cascaded structure for classifier fusion and recognition.

    1.2 Sim p le projection of Gaussian m ixturem odel

    For the t-th sample in recognition,the entire selected features before the training stage can be represented as Xt={x1,x2,…,xD}.Ranking the distance between the feature point of current sample and the mean value of the closet Gaussian mixture in each dimension,we have

    where c denotes the feature index;i denotes the Gaussian m ixture in all the emotionmodels;Strepresents the same features of the current sample w ith reordered feature dimensions.At the recognition stage,assume that D-C features are valid for all testing samples,while only C features for the current sample should be reduced.Om itting the last C features in the ranked feature vector,we have a reduced dimension space,

    Sincewew ill propose amore sophisticated algorithm in the CPGMM with the ability of exploring and selecting feature dimensions in a maximum likelihood(ML)fashion,the parameter C in the PGMM is set to be 1 for the sake of simplicity.

    By projecting the GMM parametersλto the reduced dimensions,the GMM parameters can be reduced in the same way.

    The GMM posterior probability is calculated as

    1.3 Cascaded projection of Gaussian m ixturem odel

    The simple projection of the GMM provides us w ith a basic feature reductionmethod at the recognition stage.In this section,we further explore a cascaded structure of multiple sub-classifiers.Each sub-classifier is a projection of the original GMM w ith reduced dimensions.

    If we remove one dimension from the original GMM,we may obtain the one-dimensional projected GMM,which is a marginal probability distribution.The likelihood of the current testing sample in the one-dimensional projected GMM is determined by the dimension we removed.We then search for the maximum likelihood among all the marginal probability distributions.If the achieved likelihood is greater than that of the original GMM,we can improve the classification performance.In an iterative fashion,we go to the next level of the projected GMM by removing more dimensions.

    The marginal probability distribution function of a Gaussian distribution is still a Gaussian distribution w ith a corresponding mean vector and covariance matrix.Sup-pose that X follows a Gaussian distribution:

    where the feature vector X can be represented in two parts,X1and X2.Either X1or X2consists of an arbitrary number of dimensions.When we remove X2from the feature vector X,X1still followsmulti-variant Gaussian distribution:

    We can easily extend this property to the GMM and calculate the projection of the GMM w ith very little computational burden.

    A cascaded framework is proposed to fuse the sub-classifiers and maxim ize the likelihood in an iterative fashion.The core idea of our proposed algorithm is as follows.First,for each of the testing sample,we use a threshold to validate whether the current GMM likelihood is satisfactory;if not,go to the next level of the projected GMM by removing one more dimension.Secondly,we find the maximum likelihood of the projected GMM s by exploring all the possible combinations of the feature dimensions.Thirdly,if themaximum n-dimensional projected GMM has a greater likelihood than the currentone,we replace the currentGMM model,otherw isewe use the current GMM.

    The threshold in our proposed algorithm needs to be set empirically.An intuition to guide our exploration of this parameter is that:If the GMM classifier is well-trained,we do not need to calculate deeper levels of the cascaded structure.

    Therefore,we have two ways to decide whether the decision should bemade using the current likelihood or the next level of the projected GMM likelihood:

    1)A simple solution that uses the same threshold for all cascaded levels;

    2)A threshold that depends on the GMM likelihoods of the current testing sample.

    We find that the later one has an obvious advantage:the threshold ismore stable.If we use the same threshold for all cascaded levels,we need to adjust the threshold each timewhen we try to fitour algorithm to a new application.Using the follow ing empirical equation,which takes the GMM likelihoods of each class into consideration,we can achieve amore stable threshold:

    where K is the total number of emotion classes;i,j are the indices of emotion classes;Liis the normalized likelihood.

    where b is the Gaussian distribution;m is the index of Gaussian m ixtures;M is the totalm ixture number;amis theweightof each Gaussianmixture;Umis themean vector of the corresponding Gaussian distribution.In our experiment,when the threshold Th>1,go to the next level of the cascaded structure of the GMM projection.

    The pseudo code of the proposed algorithm is shown as follows.

    Algorithm 1 Classification algorithm based on cascaded projection of the Gaussian m ixturemodel

    Input:Speaker emotional feature vector X;Gaussian m ixturemodelλk(k=1,2,…,K)denoting the emotion class.

    Output:Emotion class label ek.

    Calculate the likelihood using the complete GMM:Lk

    If Th<=1,Then end program and output ek=arg maxk{Lk}.

    For d=D to 1,D is the total dimension of the feature space,do

    Remove the i-th dimension and project the Gaussian m ixturemodel on the rest of the dimensions:={am,,where m is the index of Gaussian m ixtures;

    Find the corresponding projected GMM w ith themaximum likelihood:

    where i*denotes the selected model w ith the maximum likelihood and Xiis the feature vectorw ith the i-th dimension reduced;

    Update the selected modelλ*k=λi*k,

    Update the feature vector X=Xi;

    If Th<=1 or Li*>L*(where L*is the likelihood before projection),

    Then break,

    Else update themaximum likelihood L*=Li*;

    End for.

    Use the selected model(λ*k)for classification:ek=arg maxk{p(X|λ*k)}.

    2 Application in ECG Emotion Recognition

    2.1 Database

    Data collection is a key step for building an emotion recognition system.Many of current emotion recognition algorithms depend on the quality of datasets.We adopt several simulationmethods for inducing the negative emotions,including noise stimulation,math calculation and comedy video watching.The hardware devices are connected to a PC using w ireless ZigBee protocol.GUIinterface is implemented using Labview.ECG signals can becollected remotely in a laboratory environment.Detailed information can be found in Ref.[13].

    Under noise stimulation,the subject is required to work on a set of math calculations.The negative emotion(fidgetiness)is then induced.The positive emotion(happiness)may be induced by watching comedy movie clips.Subjects participated in out experiment include five male volunteers and five female volunteers.The ages of the subjects range from twenty years old to forty years old,and all of the volunteers were not on medication recently.

    We choose fidgetiness and happiness as our target emotions,because they cover both aspects of the valence dimension and they are of great practical value in realworld applications.A fter the induction experiment,each subject is given a self-evaluation chart to report their perceived emotional states.The intensity of the target emotion is scaled into five levels(1,3,5,7 and 9).The ECG emotion data w ith self-evaluation level equal to and higher than 5 is accepted.

    2.2 ECG feature analysis

    We record the typical examples of the ECG signals under three different emotional states.Based only on the time-domain waveform,it is difficult to find the differences among the three emotional states.Therefore,we need to extract and construct various statistic features for quantitative emotional analysis.

    Heart rate is the number of heartbeats per unit of time,and it is a basic feature of the ECG signal.RR interval refers to R wave to R wave interval.It represents the temporal heart rate and can be used for HRV(heart rate variability)analysis.

    HRV feature is extracted by the frequency domain analysismethod.Based on the RR signal,the power spectral density(PSD)is calculated using the auto-regressive model(AR).The resulting PSD provides the basic information of energy change(Y axis of power density)along w ith the frequency change(X axis of frequency).It is then divided into low frequency domain(0.01 to 0.15 Hz)and high frequency domain(0.15 to 0.4 Hz).Low frequency and high frequency features are calculated based on the power percentage.It can be calculated as

    where RHRVis the heart rate variability;T is the period of the harmonic wave;u is the time index;n is the number of the periods;fi(u)is thewavew ithin one period;fa(u)is the harmonic component.

    We further extract the chaotic features under various emotional states,which are shown in Tab.1.As shown in Fig.1,we construct the two-dimensional phase spaces of ECG signals corresponding to fidgetiness,happiness and neutrality.In the two-dimensional phase spaces of ECG signals,we can observe the chaotic character of ECG signals under three emotional states.We adopt the G-P(Grassberger and Procaccia)algorithm[14]for the calculation of the relevant dimension,in which the embedded dimension m is set to be 3 to 9,as shown in Fig.2.

    Tab.1 Chaotic ECG features

    Fig.1 Depiction of phase space under various emotional states and white Gaussian noise.(a)Fidgetiness;(b)Happiness;(c)Neutrality

    Fig.2 Depiction of calculating relevant dimensions using the G-P algorithm under various emotional states.(a)Fidgetiness;(b)Happiness;(c)Neutrality

    Themaximal information coefficient(M IC)is ameasure of the strength of the linear or non-linear association between two variables x and y.In this paper,we apply M IC to both ECG and speech features.

    M IC is based on the idea that if a relationship existsbetween two variables,a grid can be drawn on the scatterplot of the two variables that partitions the data to encapsulate that relationship[15].We can calculate the M IC of the acoustic feature and the emotional state by exploring all possible grids on the two variables.We compute every pair of integers(x,y),and the largest possiblemutual information is achieved by any x-by-y grid.Secondly,for a fair comparison,we normalize these M IC values between all acoustic features and the emotional state.A detailed study of M IC can be found in Ref.[15].Since M IC can treat linear and non-linear associations at the same time,we do not need to make any assumption on the distribution of the original features.Therefore,it is especially suitable for evaluating a large number of emotional features.We apply M IC tomeasure the contribution of these features in correlation w ith emotional states.Finally,a subset of ECG features is selected for our emotion classifier,as shown in Tab.2.

    Tab.2 Selected ECG emotional features using M IC_

    3 Application in Speech Emotion Recognition

    3.1 Database

    Besides the ECG data,we also collected emotional speech data.Fifty-one university students(the voluntary subjects)participated in the recording of the emotional speech.Their ages were between twenty and thirty-five years old.The subjects are all native Chinese speakers.The language used in the recording is Mandarin Chinese.A large number of speakers is necessary,since we aim to build a speaker-independent emotion recognition system for future call-center applications.Target emotions include happiness,neutral,sadness and fidgetiness.

    We induced the target emotions in a controlled lab environment.Neutral speech was the first to be recorded,before any eliciting experiments.We induced fidgetiness by noise stimulation and repetitive boring tasks,such as math calculations.We induced sadness by the imagination technique,in which the subjectwas required to recall a sad past experience.We also induced positive emotion(happiness)by comedy movie clips.During the emotion eliciting experiments,the subject stayed in a private room and he/she was given enough time to rest between the two eliciting experiments.

    3.2 Speech feature analysis

    In our approach,basic speech features are extracted,including pitch,short-time energy,formant,MFCC(Mel frequency cepstrum coefficient),etc.The static features over the entire utterance are then constructed by calculating themean,themaximum,them inimum,and the variance of the basic features aswell as the first-order and the second-order of the basic features.

    At the feature selection stage,various feature dimension reduction algorithms are evaluated in combination w ith a GMM-based classifier.In the speaker-independenttest,we compared the follow ing feature selection methods:principal component analysis(PCA),sequential forward selection(SFS),F(xiàn)isher discrim inant ratio(FDR)and maximal information coefficient(M IC).The average recognition rates are shown in Tab.3.The optim ized feature set(ten dimensions)achieved by SFS is shown in Tab.4.

    Tab.3 Recognition accuracy using various feature selection methods

    Tab.4 Optim ized feature set using SFS_

    Aswe can see from Tab.3,SFS brings the highest recognition rate,where the GMM mixture number is set to be 32.However,SFS depends on the specific classifier used for classification.Principal component analysis is another popular method in feature reduction,and it cannot guarantee the discrimination ability of the optimized feature set.Among a large amount of the original acoustic features,many may be correlated to the phonetic information.Therefore,the w rappermethods,such as SFS,may outperform the filtermethods,i.e.PCA,F(xiàn)DR,M IC.

    4 Experimental Results

    In the ECG experiment,the mixture number of the GMM is set to be 6.There are 300 ECG data segments for each emotion class in the training dataset.In the test dataset,there are100 samples for each emotion class.The recognition results using the GMM,the PGMM and CPGMM are shown in Tab.5 to Tab.7,respectively.By using the proposed PGMM and CPGMM,the average recognition rates are improved by 2%and 4.3%,respectively.Notice that the recognition rates are constantly improved among all three types of emotional states.

    Tab.5 ECG emotion recognition accuracy w ith GMM

    Tab.6 ECG emotion recognition accuracy w ith a simple _projection of GMM

    Tab.7 ECG emotion recognition accuracy w ith a cascaded projection of GMM

    For the speech emotion recognition test,training and testing data sets are organized into cohorts suitable for the leave-one-out testing method.A set of high quality samples(5 699 utterances)including fifty-one speaker’s are used in the speaker-independent speech emotion recognition experiment.One of speakers’data is selected for testing and the remaining speakers’data is used for training.As shown in Tab.8,the overall speaker-independent recognition rate is improved using the PGMM and CPGMM.

    Tab.8 Speaker-independent speech emotion recognition results

    Compared with the basic GMM,the recognition performance is improved constantly using the simple PGMM and CPGMM,as shown in Tab.6 and Tab.7.The designed algorithms are adapted to testing samples and bring an improved classification.Different emotion types are modelled,and various subjects are involved in these tests,showing that our algorithms do not rely on emotion types nor on subject numbers.

    5 Conclusion

    In this paper,we discuss the emotional feature adaptation in the GMM algorithm.In the traditional training and testing framework,feature selection is carried out before themodelling stage,which poses the question of subject dependency.Various individualsmay have their own habits of emotion expression,and selecting features adaptively may be beneficial in realworld application.Therefore,we propose the simple projection of the GMM and the cascaded projection of the model to improve the adaptation ability of the recognition system.

    [1]Schuller B,Rigoll G,Lang M.Hidden Markov modelbased speech emotion recognition[C]//IEEE International Conference on Acoustics,Speech,and Signal Process-ing.Hong Kong,China,2003,2:401- 404.

    [2]Kim J,AndréE.Emotion recognition based on physiological changes inmusic listening[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(12):2067- 2083.

    [3]Khan R A,Meyer A,Konik H,et al.Framework for reliable,real-time facial expression recognition for low resolution images[J].Pattern Recognition Letters,2013,34(10):1159- 1168.

    [4]Steidl S.Automatic classification of emotion-related user states in spontaneous children’s speech[D].Erlangen-Nuremberg,Germany:FAU Erlangen-Nuremberg,2009.

    [5]Kockmann M,Burget L,CˇernockyJ H.Application of speaker and language identification state-of-the-art techniques for emotion recognition[J].Speech Communication,2011,53(9/10):1172- 1185.

    [6]Pantelopoulos A,Bourbakis N G.A survey on wearable sensor-based systems for health monitoring and prognosis[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2010,40(1):1- 12.

    [7]Gunes H,Pantic M.Automatic,dimensional and continuous emotion recognition[J].International Journal of Synthetic Emotions,2010,1(1):68- 99.

    [8]M cNicholas P D,Murphy T B.Model-based clustering of microarray expression data via latent Gaussian m ixture models[J].Bioinformatics,2010,26(21):2705- 2712.

    [9]Singh R,Pal B C,Jabr R A.Statistical representation of distribution system loads using Gaussian m ixture model[J].IEEE Transactions on Power Systems,2010,25(1):29- 37.

    [10]Chen T,Zhang J.On-line multivariate statistical monitoring of batch processes using Gaussian m ixturemodel[J].Computers&Chemical Engineering,2010,34(4):500- 507.

    [11]Jian B,Vemuri B C.Robust point set registration using Gaussian m ixturemodels[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1633- 1645.

    [12]Kamishima Y,Inoue N,Shinoda K.Event detection in consumer videos using GMM supervectors and SVMs[J].EURASIP Journal on Image and Video Processing,2013,2013:51- 59.

    [13]Yu H,Huang C W,Zhao L,et al.Research of emotional electrophysiological parameters collection system and child-emotion monitoring[J].Chinese Journal of Electronic Devices,2010,33(4):516-520.(in Chinese)

    [14]Grassberger P,Procaccia I.Measuring the strangeness of strange attractors[J].Physica D,1983,9(1/2):189- 208.

    [15]Reshef D N,Reshef Y A,F(xiàn)inucane H K,et al.Detecting novel associations in large data sets[J].Science,2011,334(6062):1518- 1524.

    基于級聯(lián)投影高斯混合模型的語音與心電情緒識別

    黃程韋1吳 迪1張曉俊1肖仲喆1許宜申1季晶晶1陶 智1趙 力2

    (1蘇州大學(xué)物理與光電·能源學(xué)部,蘇州215006)
    (2東南大學(xué)信息科學(xué)與工程學(xué)院,南京210096)

    提出了一種基于級聯(lián)投影的高斯混合模型算法.首先,針對不同的特征維度計(jì)算高斯混合模型的邊緣概率,依據(jù)邊緣概率模型構(gòu)造出多個(gè)子分類器,每個(gè)子分類器包含不同的特征組合.采用級聯(lián)結(jié)構(gòu)的框架對子分類器進(jìn)行動(dòng)態(tài)融合,從而獲得對樣本的自適應(yīng)能力.其次,在心電情感信號和語音情感信號上驗(yàn)證了算法的有效性,通過實(shí)驗(yàn)誘發(fā)手段,采集了煩躁、喜悅、悲傷等情感數(shù)據(jù).最后,探討了情感特征參數(shù)(心率變異性、心電混沌特征,語句級靜態(tài)特征等)的提取方法.研究了情感特征的降維方法,包括主分量分析、順序特征選擇、Fisher區(qū)分度和最大信息系數(shù)等方法.實(shí)驗(yàn)結(jié)果顯示,所提算法能夠在2種不同的場景中有效地提高情感識別的準(zhǔn)確率.

    高斯混合模型;情緒識別;樣本自適應(yīng);情緒誘發(fā)

    TN912.3

    10.3969/j.issn.1003-7985.2015.03.004

    2015-02-03.

    Biographies:Huang Chengwei(1984—),male,doctor,associate professor,cwhuang@suda.edu.cn.

    s:The National Natural Science Foundation of China(No.61231002,61273266,51075068,61271359),Doctoral Fund of M inistry of Education of China(No.20110092130004).

    :Huang Chengwei,Wu Di,Zhang Xiaojun,et al.Cascaded projection of Gaussian mixturemodel for emotion recognition in speech and ECG signals[J].Journal of Southeast University(English Edition),2015,31(3):320- 326.

    10.3969/j.issn.1003-7985.2015.03.004

    猜你喜歡
    級聯(lián)心電高斯
    小高斯的大發(fā)現(xiàn)
    心電向量圖診斷高血壓病左心室異常的臨床應(yīng)用
    基于非接觸式電極的心電監(jiān)測系統(tǒng)
    電子制作(2019年19期)2019-11-23 08:41:40
    天才數(shù)學(xué)家——高斯
    穿戴式心電:發(fā)展歷程、核心技術(shù)與未來挑戰(zhàn)
    更正啟事
    級聯(lián)LDPC碼的STBC-OFDM系統(tǒng)
    電子制作(2016年15期)2017-01-15 13:39:09
    基于級聯(lián)MUSIC的面陣中的二維DOA估計(jì)算法
    有限域上高斯正規(guī)基的一個(gè)注記
    LCL濾波器在6kV級聯(lián)STATCOM中的應(yīng)用
    電測與儀表(2014年1期)2014-04-04 12:00:34
    国产有黄有色有爽视频| 校园人妻丝袜中文字幕| 日本免费在线观看一区| 韩国高清视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 久久女婷五月综合色啪小说| 久久久国产欧美日韩av| 午夜激情福利司机影院| 午夜激情久久久久久久| a级毛片在线看网站| 97超碰精品成人国产| 国产av一区二区精品久久| 日韩在线高清观看一区二区三区| 蜜桃在线观看..| 久热这里只有精品99| 少妇的逼水好多| 成年女人在线观看亚洲视频| 亚洲不卡免费看| 精品亚洲成a人片在线观看| 妹子高潮喷水视频| 中文字幕精品免费在线观看视频 | 成人国产麻豆网| 亚洲伊人久久精品综合| 一级毛片 在线播放| 久久人人爽人人爽人人片va| 欧美另类一区| 久久久久久久精品精品| 午夜久久久在线观看| 日韩强制内射视频| 91久久精品国产一区二区三区| 成人漫画全彩无遮挡| 亚洲av电影在线观看一区二区三区| 国产成人精品婷婷| av免费观看日本| 国产免费一级a男人的天堂| 精品人妻熟女毛片av久久网站| 国产一区有黄有色的免费视频| 97精品久久久久久久久久精品| 国模一区二区三区四区视频| 国产成人免费无遮挡视频| 最近中文字幕高清免费大全6| √禁漫天堂资源中文www| 国产精品免费大片| 一级片'在线观看视频| 国产男人的电影天堂91| 亚洲一级一片aⅴ在线观看| 日韩精品有码人妻一区| 男人操女人黄网站| 精品人妻偷拍中文字幕| 免费观看av网站的网址| 午夜视频国产福利| 又黄又爽又刺激的免费视频.| 天堂俺去俺来也www色官网| 一级黄片播放器| 久久久久久久大尺度免费视频| 乱人伦中国视频| 九九爱精品视频在线观看| 91精品国产九色| 18禁观看日本| 国产亚洲精品第一综合不卡 | 国产无遮挡羞羞视频在线观看| 成年av动漫网址| 免费日韩欧美在线观看| 丝袜美足系列| 色婷婷久久久亚洲欧美| 久久精品夜色国产| 晚上一个人看的免费电影| 新久久久久国产一级毛片| 国产淫语在线视频| 日韩成人伦理影院| 大香蕉久久网| 伊人久久精品亚洲午夜| 国产伦理片在线播放av一区| 国产av一区二区精品久久| 高清在线视频一区二区三区| 欧美丝袜亚洲另类| 久久久久精品性色| 嫩草影院入口| 久久久久久久精品精品| 国国产精品蜜臀av免费| 最近最新中文字幕免费大全7| 69精品国产乱码久久久| 天天躁夜夜躁狠狠久久av| 国产成人精品在线电影| 国产探花极品一区二区| 日韩精品免费视频一区二区三区 | 国产精品三级大全| 99热网站在线观看| 欧美人与性动交α欧美精品济南到 | 欧美丝袜亚洲另类| 黄色视频在线播放观看不卡| 久久国产亚洲av麻豆专区| 成人影院久久| 各种免费的搞黄视频| 99热国产这里只有精品6| 久久99精品国语久久久| 狠狠婷婷综合久久久久久88av| 欧美激情极品国产一区二区三区 | 丝袜喷水一区| 内地一区二区视频在线| 亚洲成人一二三区av| 亚洲精品中文字幕在线视频| 成人二区视频| 三上悠亚av全集在线观看| 日韩一区二区三区影片| 国产精品熟女久久久久浪| 丝袜美足系列| 青青草视频在线视频观看| √禁漫天堂资源中文www| 爱豆传媒免费全集在线观看| 人人妻人人澡人人看| 69精品国产乱码久久久| 亚洲欧美成人综合另类久久久| 最新中文字幕久久久久| 久久精品久久久久久噜噜老黄| 国产 一区精品| 亚洲精品,欧美精品| 汤姆久久久久久久影院中文字幕| 国产成人精品无人区| 欧美xxⅹ黑人| 一级毛片黄色毛片免费观看视频| 久久久久久久久久久免费av| 久久久国产精品麻豆| 国产一区二区三区综合在线观看 | 亚洲av不卡在线观看| 免费黄网站久久成人精品| 蜜桃久久精品国产亚洲av| 亚洲成人一二三区av| 欧美丝袜亚洲另类| 天堂俺去俺来也www色官网| 韩国av在线不卡| 国产精品国产三级国产专区5o| 狂野欧美白嫩少妇大欣赏| 精品人妻熟女av久视频| 曰老女人黄片| 亚洲国产色片| 女性被躁到高潮视频| 久久久久精品性色| 18禁动态无遮挡网站| 18禁观看日本| 国产成人精品一,二区| 亚洲精品一二三| 亚洲在久久综合| 久久国产精品大桥未久av| 成人毛片60女人毛片免费| 亚洲精品亚洲一区二区| 国产成人免费观看mmmm| 国产精品三级大全| 日韩亚洲欧美综合| 亚洲国产精品国产精品| 人妻制服诱惑在线中文字幕| 99视频精品全部免费 在线| 国产永久视频网站| 日本色播在线视频| 欧美日韩在线观看h| 欧美日韩亚洲高清精品| 女的被弄到高潮叫床怎么办| 免费观看无遮挡的男女| 亚洲色图综合在线观看| 一级毛片我不卡| 飞空精品影院首页| 中文字幕久久专区| 中文字幕久久专区| 久久精品国产亚洲av涩爱| 人妻一区二区av| 亚洲成人av在线免费| 免费人妻精品一区二区三区视频| 日本vs欧美在线观看视频| 国产精品女同一区二区软件| 精品一区二区三区视频在线| 自线自在国产av| 亚洲精品一二三| 成人毛片60女人毛片免费| 精品国产一区二区久久| 久久人人爽av亚洲精品天堂| 99久国产av精品国产电影| 高清毛片免费看| 精品少妇黑人巨大在线播放| 91久久精品电影网| 亚洲国产av新网站| 在线观看美女被高潮喷水网站| 亚洲国产精品成人久久小说| 极品少妇高潮喷水抽搐| 十八禁网站网址无遮挡| 亚洲精品自拍成人| 日韩中文字幕视频在线看片| 国精品久久久久久国模美| 少妇人妻精品综合一区二区| 免费人成在线观看视频色| 成人亚洲精品一区在线观看| 亚洲欧美一区二区三区黑人 | 建设人人有责人人尽责人人享有的| 日韩一区二区三区影片| 国产精品久久久久久精品古装| 久久久久久久大尺度免费视频| 丝瓜视频免费看黄片| 高清在线视频一区二区三区| 国产成人精品一,二区| 久热这里只有精品99| 亚洲欧美成人精品一区二区| 国产探花极品一区二区| 夫妻性生交免费视频一级片| 久久人妻熟女aⅴ| 边亲边吃奶的免费视频| 2022亚洲国产成人精品| 日本午夜av视频| 九九久久精品国产亚洲av麻豆| 一本—道久久a久久精品蜜桃钙片| 久久久国产一区二区| 狂野欧美激情性xxxx在线观看| 在线观看美女被高潮喷水网站| 国产免费视频播放在线视频| 一区二区三区乱码不卡18| 丝袜脚勾引网站| 亚洲精品中文字幕在线视频| 亚洲图色成人| 午夜影院在线不卡| 色5月婷婷丁香| 黑丝袜美女国产一区| 国产永久视频网站| 99热国产这里只有精品6| 午夜激情久久久久久久| 久久青草综合色| 美女国产高潮福利片在线看| 国产精品久久久久久精品古装| 中文字幕久久专区| 国产免费福利视频在线观看| 亚洲美女视频黄频| 99九九线精品视频在线观看视频| 亚洲精品国产av成人精品| 天堂俺去俺来也www色官网| 新久久久久国产一级毛片| 国产成人freesex在线| 国产女主播在线喷水免费视频网站| 美女主播在线视频| 免费久久久久久久精品成人欧美视频 | 999精品在线视频| 亚洲丝袜综合中文字幕| 国产在线免费精品| 男女边摸边吃奶| 最近最新中文字幕免费大全7| 中国国产av一级| 九色亚洲精品在线播放| 在线亚洲精品国产二区图片欧美 | 亚洲天堂av无毛| 欧美国产精品一级二级三级| 一区二区三区四区激情视频| 亚洲欧美中文字幕日韩二区| 婷婷成人精品国产| av视频免费观看在线观看| 精品国产露脸久久av麻豆| 七月丁香在线播放| 国产精品三级大全| 亚洲,一卡二卡三卡| 精品一区二区三区视频在线| 熟妇人妻不卡中文字幕| 久久狼人影院| 波野结衣二区三区在线| 精品久久久久久久久亚洲| 午夜久久久在线观看| 好男人视频免费观看在线| 日本黄色片子视频| 赤兔流量卡办理| 成人毛片60女人毛片免费| 亚洲国产av影院在线观看| 国产视频首页在线观看| 一本大道久久a久久精品| 国产爽快片一区二区三区| 亚洲久久久国产精品| 一区二区三区精品91| 桃花免费在线播放| 搡老乐熟女国产| 高清欧美精品videossex| 日本91视频免费播放| 日韩熟女老妇一区二区性免费视频| 街头女战士在线观看网站| 亚洲内射少妇av| 国产精品久久久久久精品电影小说| 如何舔出高潮| 亚洲精品美女久久av网站| 亚洲欧洲国产日韩| 黑人猛操日本美女一级片| 国产精品一区www在线观看| 蜜桃久久精品国产亚洲av| 十八禁网站网址无遮挡| 视频在线观看一区二区三区| 精品一区在线观看国产| 热re99久久精品国产66热6| 欧美人与善性xxx| 男人操女人黄网站| 一二三四中文在线观看免费高清| 如何舔出高潮| 五月开心婷婷网| 国产成人91sexporn| 国产精品久久久久成人av| 一级爰片在线观看| 永久免费av网站大全| 欧美另类一区| a级毛色黄片| 日韩,欧美,国产一区二区三区| 人人妻人人澡人人看| 亚洲精品国产av成人精品| 成人综合一区亚洲| av网站免费在线观看视频| 国产视频首页在线观看| 免费看av在线观看网站| 国产一区二区三区综合在线观看 | 亚洲精品aⅴ在线观看| 男女国产视频网站| 在线观看www视频免费| 免费大片黄手机在线观看| www.色视频.com| 午夜老司机福利剧场| 亚洲图色成人| 久久女婷五月综合色啪小说| 精品久久久久久久久亚洲| 久久ye,这里只有精品| 黄色视频在线播放观看不卡| 久久久a久久爽久久v久久| 性高湖久久久久久久久免费观看| 国产午夜精品久久久久久一区二区三区| 亚洲内射少妇av| 美女cb高潮喷水在线观看| 伊人久久国产一区二区| 成年人免费黄色播放视频| 欧美日韩成人在线一区二区| 午夜久久久在线观看| 国产精品久久久久成人av| 内地一区二区视频在线| 精品少妇黑人巨大在线播放| 91国产中文字幕| 丰满迷人的少妇在线观看| 欧美亚洲日本最大视频资源| 女人久久www免费人成看片| 五月伊人婷婷丁香| 久久韩国三级中文字幕| 晚上一个人看的免费电影| 亚洲性久久影院| 亚洲精品自拍成人| 男女边吃奶边做爰视频| 九色亚洲精品在线播放| 青春草视频在线免费观看| 国产av精品麻豆| 99热网站在线观看| 亚洲成人手机| av在线app专区| 99国产综合亚洲精品| 啦啦啦在线观看免费高清www| 中文乱码字字幕精品一区二区三区| 国产日韩欧美在线精品| 国产精品久久久久久久电影| www.色视频.com| 欧美 亚洲 国产 日韩一| 中文字幕久久专区| 久久免费观看电影| 青青草视频在线视频观看| 两个人的视频大全免费| 成年女人在线观看亚洲视频| 性高湖久久久久久久久免费观看| 国产精品成人在线| 久久青草综合色| 中文字幕免费在线视频6| 久久亚洲国产成人精品v| 18在线观看网站| 丰满迷人的少妇在线观看| 成人二区视频| 女人久久www免费人成看片| 日日撸夜夜添| 国产 精品1| 日日摸夜夜添夜夜添av毛片| 草草在线视频免费看| 午夜激情av网站| 不卡视频在线观看欧美| 十分钟在线观看高清视频www| 国产精品99久久99久久久不卡 | 大片免费播放器 马上看| 久久久久久人妻| 岛国毛片在线播放| 人人妻人人澡人人爽人人夜夜| 哪个播放器可以免费观看大片| 美女内射精品一级片tv| 一个人免费看片子| 国产精品无大码| 一本久久精品| 91精品一卡2卡3卡4卡| www.色视频.com| 最近2019中文字幕mv第一页| 精品少妇黑人巨大在线播放| 成人国语在线视频| 韩国高清视频一区二区三区| 老司机影院毛片| 男女高潮啪啪啪动态图| 国产爽快片一区二区三区| 永久免费av网站大全| 91久久精品国产一区二区成人| 久久国产精品男人的天堂亚洲 | 国产黄色免费在线视频| 毛片一级片免费看久久久久| 成年女人在线观看亚洲视频| 观看av在线不卡| 色婷婷久久久亚洲欧美| 十八禁网站网址无遮挡| 亚洲精品色激情综合| 国产精品国产三级国产专区5o| 免费高清在线观看日韩| 欧美少妇被猛烈插入视频| 久久久久久久国产电影| 91久久精品电影网| 中文字幕av电影在线播放| 精品久久久噜噜| 最新中文字幕久久久久| 亚洲精品成人av观看孕妇| 免费大片黄手机在线观看| 黑人高潮一二区| 青春草国产在线视频| 女性生殖器流出的白浆| 亚洲国产欧美在线一区| 国产精品国产三级国产专区5o| 性高湖久久久久久久久免费观看| 黑人高潮一二区| 久久精品国产亚洲网站| 国产欧美亚洲国产| 777米奇影视久久| 嘟嘟电影网在线观看| 永久网站在线| 欧美日韩视频高清一区二区三区二| 伊人久久国产一区二区| 交换朋友夫妻互换小说| 9色porny在线观看| 亚洲人成网站在线播| 天天躁夜夜躁狠狠久久av| 日日摸夜夜添夜夜爱| 亚洲第一av免费看| 观看av在线不卡| 性色avwww在线观看| 国产又色又爽无遮挡免| 少妇丰满av| 中文乱码字字幕精品一区二区三区| 国产精品不卡视频一区二区| 久久久久精品久久久久真实原创| 婷婷色综合www| 成人午夜精彩视频在线观看| 免费人妻精品一区二区三区视频| 校园人妻丝袜中文字幕| 欧美一级a爱片免费观看看| 91午夜精品亚洲一区二区三区| 欧美激情 高清一区二区三区| 日韩人妻高清精品专区| 好男人视频免费观看在线| 久久亚洲国产成人精品v| 在线观看三级黄色| 熟妇人妻不卡中文字幕| 汤姆久久久久久久影院中文字幕| 婷婷色综合www| 九草在线视频观看| 91久久精品国产一区二区三区| 91成人精品电影| 成人手机av| 夜夜骑夜夜射夜夜干| 国产精品人妻久久久久久| 搡女人真爽免费视频火全软件| 99热全是精品| 天堂中文最新版在线下载| av在线播放精品| 天天影视国产精品| 观看av在线不卡| 亚洲精品第二区| 国产精品一区二区三区四区免费观看| 日日撸夜夜添| 97精品久久久久久久久久精品| 女人久久www免费人成看片| 国产精品欧美亚洲77777| 久久久久久久久久久丰满| 国产精品偷伦视频观看了| 老司机亚洲免费影院| 国产精品.久久久| 丰满迷人的少妇在线观看| 91成人精品电影| 久久精品久久久久久噜噜老黄| 久久精品国产亚洲网站| 成人毛片60女人毛片免费| 成人无遮挡网站| 国产探花极品一区二区| a级毛片免费高清观看在线播放| 国产高清三级在线| 最新中文字幕久久久久| 青春草国产在线视频| 人成视频在线观看免费观看| 一本久久精品| 亚洲av二区三区四区| 一区二区三区四区激情视频| 在线播放无遮挡| 国产精品免费大片| 在线观看人妻少妇| 成人国产麻豆网| 如何舔出高潮| 国产精品无大码| 麻豆乱淫一区二区| 国产永久视频网站| 在现免费观看毛片| 高清午夜精品一区二区三区| 国产成人a∨麻豆精品| 国产在线视频一区二区| av一本久久久久| 秋霞伦理黄片| 自拍欧美九色日韩亚洲蝌蚪91| 乱人伦中国视频| 最黄视频免费看| 日本黄色片子视频| 国产黄色免费在线视频| 一本大道久久a久久精品| 少妇高潮的动态图| 亚洲情色 制服丝袜| 国产日韩欧美在线精品| 26uuu在线亚洲综合色| 亚洲精品成人av观看孕妇| 夜夜看夜夜爽夜夜摸| 久久精品国产a三级三级三级| 男女啪啪激烈高潮av片| 国产成人aa在线观看| 高清黄色对白视频在线免费看| 国产精品久久久久成人av| 99精国产麻豆久久婷婷| 91精品国产国语对白视频| 午夜福利,免费看| 免费久久久久久久精品成人欧美视频 | 久久婷婷青草| 国产一区亚洲一区在线观看| av黄色大香蕉| 久久99蜜桃精品久久| 少妇 在线观看| 高清黄色对白视频在线免费看| 国产成人a∨麻豆精品| 不卡视频在线观看欧美| 精品一区在线观看国产| 男女无遮挡免费网站观看| 七月丁香在线播放| 亚洲精品456在线播放app| 国产成人精品无人区| 亚洲国产最新在线播放| 人妻制服诱惑在线中文字幕| 99九九线精品视频在线观看视频| 国产免费又黄又爽又色| 少妇人妻久久综合中文| 亚洲精品中文字幕在线视频| 午夜福利在线观看免费完整高清在| 丰满少妇做爰视频| 免费av不卡在线播放| 亚洲国产最新在线播放| 久久国产精品大桥未久av| 王馨瑶露胸无遮挡在线观看| 国产免费现黄频在线看| 国产成人a∨麻豆精品| av有码第一页| 一区二区三区四区激情视频| 国产欧美亚洲国产| 日日爽夜夜爽网站| 女性生殖器流出的白浆| 少妇猛男粗大的猛烈进出视频| 看十八女毛片水多多多| 黄色毛片三级朝国网站| 国产精品.久久久| 好男人视频免费观看在线| 国产男女超爽视频在线观看| 99久久综合免费| 99精国产麻豆久久婷婷| 婷婷色综合www| 免费观看av网站的网址| 亚洲av免费高清在线观看| 免费观看在线日韩| 亚洲四区av| 天天操日日干夜夜撸| 国产片特级美女逼逼视频| 欧美精品一区二区大全| 最近2019中文字幕mv第一页| 国产黄色免费在线视频| 99热这里只有是精品在线观看| 在线观看免费日韩欧美大片 | 日本免费在线观看一区| 亚洲av免费高清在线观看| 午夜福利网站1000一区二区三区| 亚洲国产精品成人久久小说| 天天躁夜夜躁狠狠久久av| 一级黄片播放器| 欧美日韩在线观看h| 特大巨黑吊av在线直播| 观看av在线不卡| 在线亚洲精品国产二区图片欧美 | 免费黄色在线免费观看| 日韩av在线免费看完整版不卡| a 毛片基地| 婷婷色麻豆天堂久久| 热re99久久精品国产66热6| 欧美日韩在线观看h| 如何舔出高潮| 少妇人妻 视频| 国产乱人偷精品视频| av免费在线看不卡| 久久狼人影院| 大片电影免费在线观看免费| 久久国产精品男人的天堂亚洲 | 国产国语露脸激情在线看| 欧美3d第一页| 欧美精品一区二区免费开放| 51国产日韩欧美| 亚洲精品久久久久久婷婷小说| 少妇人妻精品综合一区二区| 亚洲av中文av极速乱| 一级黄片播放器| 亚洲av中文av极速乱| 一边摸一边做爽爽视频免费| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品古装| 69精品国产乱码久久久| av在线app专区|