張 凡,韓愛(ài)果,任光明,杜 飛,吳龍科,詹 可
(1.成都理工大學(xué) 地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都 610059;2.四川省地質(zhì)礦產(chǎn)勘查開(kāi)發(fā)局四〇五地質(zhì)隊(duì) 成都 611830)
隧洞開(kāi)挖滲流場(chǎng)變化對(duì)滑坡穩(wěn)定性的影響數(shù)值模擬分析
張 凡1,2,韓愛(ài)果1,任光明1,杜 飛1,吳龍科1,詹 可1
(1.成都理工大學(xué) 地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都 610059;2.四川省地質(zhì)礦產(chǎn)勘查開(kāi)發(fā)局四〇五地質(zhì)隊(duì) 成都 611830)
為研究隧洞開(kāi)挖對(duì)滑坡滲流場(chǎng)、坡體變形及穩(wěn)定性的影響,在對(duì)某滑坡滑體物理力學(xué)及水理性質(zhì)進(jìn)行研究的基礎(chǔ)上,采用Modflow有限元差分三維軟件對(duì)隧洞開(kāi)挖前后的地下水位進(jìn)行數(shù)值模擬計(jì)算,分析隧洞開(kāi)挖后滲流場(chǎng)的變化,并以此結(jié)合Geo-Studio軟件對(duì)滑坡處于天然及開(kāi)挖情況下水位變化后的穩(wěn)定性及變形進(jìn)行了分析研究。結(jié)果表明:隧洞開(kāi)挖后地下水滲流場(chǎng)發(fā)生改變,隧洞開(kāi)挖處產(chǎn)生明顯涌水現(xiàn)象,開(kāi)挖2 a后地下水位降低約20 m,開(kāi)挖區(qū)形成明顯“落水洞”,地下水位變化主要體現(xiàn)在滑坡前緣;隧洞上部2#次級(jí)滑體在抗滑力減弱和有效應(yīng)力增大的雙重作用下變形加劇,其下滑帶動(dòng)1#次級(jí)滑體變形。隧洞上部2#次級(jí)滑體最大變形量12.42 cm,但滑坡的穩(wěn)定性變化較小。
滑坡;變形;穩(wěn)定性分析;隧洞開(kāi)挖;滲流場(chǎng)
隧洞施工過(guò)程中,難免會(huì)遇到隧洞處于地下水位之下的情況,而地下水又與邊坡的穩(wěn)定性評(píng)價(jià)、坡體變形密切相關(guān)。在無(wú)防滲措施的情況下進(jìn)行隧洞施工,會(huì)造成隧洞周邊巖土體中地下水位下降[1]。地下水位的降低使巖土體的應(yīng)力狀態(tài)發(fā)生改變,導(dǎo)致巖土體中孔隙水壓力減小,巖土體骨架承擔(dān)的有效應(yīng)力增大,水頭差產(chǎn)生的滲流動(dòng)水壓力造成土體固結(jié)壓密,影響邊坡的變形和穩(wěn)定性[2]。
張宏仁等[3-4]就滲流問(wèn)題的數(shù)值分析方法進(jìn)行了討論研究,薛禹群等[5]評(píng)價(jià)了不同庫(kù)水位時(shí)滑坡失穩(wěn)概率,劉寶琛等[6]、施成華等[7]就淺埋隧洞施工引起的地面沉降和變形進(jìn)行了研究,朱冬林等[8]考慮地下水因素對(duì)庫(kù)水位變化下水庫(kù)滑坡穩(wěn)定性進(jìn)行了分析,王春山等[9]對(duì)深厚覆蓋層在水庫(kù)蓄水后滲流場(chǎng)變化情況下穩(wěn)定性進(jìn)行了分析,Preisig G等[10]對(duì)隧洞開(kāi)挖引起的沉降進(jìn)行了模擬分析。
為研究隧洞開(kāi)挖后滑坡變形及穩(wěn)定性的變化,本文考慮巖土體中隧洞開(kāi)挖所引起的滲流場(chǎng)對(duì)巖土體變形的影響,采用數(shù)值模擬分析方法對(duì)隧洞開(kāi)挖后滑坡變形和穩(wěn)定性進(jìn)行分析。
滑坡區(qū)地處水洛河流域典型的高山峽谷區(qū),兩岸谷坡陡峻,地面切割深度1 500~3 000 m。河谷地貌呈槽狀,河谷階地不發(fā)育。河流流向總體近SW,與巖層走向呈大角度相交,屬橫向谷。出露基巖為奧陶系不等厚互層的變質(zhì)石英砂巖、砂巖與絹云母板巖、千枚巖,巖層產(chǎn)狀SW193°∠80°。滑坡位于綠定斷層下盤(pán),褶皺構(gòu)造不發(fā)育?;虑熬壛严遁^發(fā)育,滑坡后緣植物干枯,可見(jiàn)明顯的滑坡后緣邊界(圖1)。
滑坡位于水洛河左岸,在平面上呈一長(zhǎng)條狀(圖1),地表坡度總體呈后緩前陡,高程2 000~3 000 m段坡度約20°~30°,高程2 000 m至河床段坡度30°~35°,局部達(dá)40°~50°。滑坡體形態(tài)較完整,前緣伸入河床,后緣高程約3 000 m,前后高差約1 200 m。滑坡體寬約300~500 m,推測(cè)厚度約120~160 m,總體積約4.48×107m3,屬特大型滑坡。
滑坡的組成物質(zhì)主要為塊石土、碎石土,下部基巖為石英砂巖、砂巖、絹云母板巖、千枚巖互層?;嫠苹⌒危鐖D2所示。引水隧洞穿越滑坡區(qū)洞段長(zhǎng)約275 m,隧洞上覆基巖厚約80~90 m,施工過(guò)程中發(fā)現(xiàn)地下水沿裂隙下滲至隧洞掌子面產(chǎn)生集中涌水現(xiàn)象。
①奧陶系瓦廠組薄層狀石英砂巖與千枚巖、絹云母石英片巖不等厚互層;②第四系滑坡堆積體碎塊石土;③第四系沖洪積漂卵礫石;④強(qiáng)風(fēng)化線(xiàn);⑤弱風(fēng)化線(xiàn);⑥水位線(xiàn);⑦引水隧洞;⑧滑動(dòng)方向 圖2 滑坡地質(zhì)剖面圖
研究區(qū)地下水主要來(lái)源于降雨,其次是冰雪融水。區(qū)內(nèi)多年平均年降雨量839.9 mm,多年平均蒸發(fā)量1 955.7 mm,降雨季節(jié)分布不均。巖土層滲透系數(shù)如表1。
表1 各層物理力學(xué)參數(shù)取值
注:以上巖土體材料均取自研究區(qū)河床及附近覆蓋層。
隧洞開(kāi)挖前,滑坡區(qū)受地表水及人為因素影響,后部、中前部可見(jiàn)一些小滑塌和不規(guī)則拉裂縫。隧洞開(kāi)挖后,滑坡后部、中前部變形量加劇。
4.1 有限元模型的建立
Modflow是一套專(zhuān)門(mén)用于孔隙介質(zhì)中地下水流動(dòng)數(shù)值模擬分析軟件[11],利用該軟件對(duì)滑坡滲流場(chǎng)的變化進(jìn)行數(shù)值模擬[12]。結(jié)合地表出露的水文地質(zhì)點(diǎn)以及隧洞開(kāi)挖出現(xiàn)的涌水情況進(jìn)行模擬,模擬空間范圍為x軸方向3 880 m,y軸方向2 360 m,共剖分單元網(wǎng)格195×119個(gè)。模型上部為定水頭邊界,其它邊界概化為變水頭邊界。模型基底面取1 600 m。垂向上研究區(qū)地層為奧陶系瓦廠組(O1w)不等厚互層基巖,表層的滑坡堆積物及崩坡積物、沖積物。圖3為模擬的三維空間模型。
圖3 三維含水系統(tǒng)空間物理模型展布
4.2 三維有限元計(jì)算結(jié)果分析
三維有限差分的分析主要針對(duì)隧洞開(kāi)挖情況下地下水位的變化。經(jīng)過(guò)滲流計(jì)算,隧洞開(kāi)挖未采取防滲措施,模擬洞段2+380至2+655 m涌水量達(dá)2 270.20 m3/d,地下水水位下降,滲流場(chǎng)發(fā)生變化。隧洞開(kāi)挖1 a后地下水滲流場(chǎng)及其等水頭線(xiàn)如圖4。結(jié)果表明,隧洞開(kāi)挖后,隧洞處發(fā)現(xiàn)明顯落水洞,地下水位下降約20 m,對(duì)岸坡巖土體滲流場(chǎng)產(chǎn)生了較大影響。
為進(jìn)一步分析隧洞開(kāi)挖對(duì)滑坡變形及穩(wěn)定性的影響,借助Geo-Studio軟件中Slope/W和Sigma/W 2個(gè)子模塊對(duì)滑坡變形及穩(wěn)定性影響進(jìn)行評(píng)價(jià)。
5.1 計(jì)算模型
為使計(jì)算模型與實(shí)際情況相符,根據(jù)前述數(shù)值模型范圍,利用三角網(wǎng)格進(jìn)行劃分,將塊(碎)石土、強(qiáng)風(fēng)化基巖、弱風(fēng)化基巖、新鮮基巖、河床砂卵石劃分為9個(gè)面域,對(duì)隧洞上部滑坡體進(jìn)行局部加密。視巖土體為理想本構(gòu)彈塑性模型,采用摩爾-庫(kù)倫破壞準(zhǔn)則[13]。
5.2 計(jì)算結(jié)果
采用強(qiáng)度折減法分析滑坡安全儲(chǔ)備[14]?;伦冃瘟考胺€(wěn)定性系數(shù)分析結(jié)果如圖5,變形量數(shù)據(jù)為最大值。
圖5 隧洞開(kāi)挖后滑坡隨時(shí)間發(fā)生的相對(duì)變形量和 穩(wěn)定性系數(shù)變化量
從圖5中可看出:隧洞開(kāi)挖在第1年對(duì)滑坡的變形影響相對(duì)較大,而后變形速率逐年減小。隧洞開(kāi)挖后,1#次級(jí)滑坡的穩(wěn)定性緩慢降低,2#次級(jí)滑坡的穩(wěn)定性則在開(kāi)挖初期下降較明顯,但最終都趨于穩(wěn)定。
圖6 隧洞開(kāi)挖6個(gè)月后滑坡總變形量及 x和y方向變形量等值線(xiàn)
圖7 隧洞開(kāi)挖2 a后滑坡總變形量等值線(xiàn)
滑坡變形量等值線(xiàn)圖見(jiàn)圖6、圖7。滑坡后緣和隧洞上方發(fā)生了進(jìn)一步的變形。隧洞開(kāi)挖2 a后,1#,2#次級(jí)滑坡最大相對(duì)變形量分別為4,12.42 cm。
5.3 滑坡變形機(jī)制分析
隧洞開(kāi)挖前,滑坡已有變形為8 cm(如圖5),滑坡整體處于穩(wěn)定狀態(tài)。隧洞開(kāi)挖后,滑坡發(fā)生的最大變形量為12.42 cm,滑坡變形量在地下水滲流場(chǎng)改變的情況下逐年增大,變形速率逐年減小,最終隨地下水位的穩(wěn)定趨于平緩(如圖6、圖7)。
隧洞開(kāi)挖后地下水位逐年降低,使滑坡前緣原本處于飽和狀態(tài)的部分巖土體逐漸向非飽和狀態(tài)過(guò)渡,土體抗剪強(qiáng)度提高,滑坡整體穩(wěn)定性稍有增大?;聟^(qū)隧洞的開(kāi)挖引起滲流場(chǎng)的改變,巖體骨架承受的有效應(yīng)力與圍巖壓力使巖土體發(fā)生變形,2#次級(jí)滑坡范圍內(nèi)變形量12.42 cm。滑坡區(qū)為半干旱區(qū)域,地下水改變主要體現(xiàn)在滑坡前緣部位,基巖上覆土體淺層孔隙水沿縫隙下滲,使得潛在滑移面的抗滑能力減弱。隧洞開(kāi)挖后地下水位下降和潛在滑移面抗滑能力的降低是引起滑坡局部變形的主要原因。2#次級(jí)滑坡處于隧洞上部,其下滑帶動(dòng)滑坡后緣1#次級(jí)滑坡產(chǎn)生變形。
據(jù)上述滑坡滲流場(chǎng)模擬及變形穩(wěn)定性研究可得出以下結(jié)論:
(1) 三維數(shù)值模擬反映隧洞開(kāi)挖導(dǎo)致地下水滲流場(chǎng)的變化,開(kāi)挖涌水量達(dá)2 270.20 m3/d,隧洞開(kāi)挖區(qū)局部形成“落水洞”。
(2) 隧洞開(kāi)挖致使地下水位下降,滑坡前緣2#次級(jí)滑體部位的地下水位變化相對(duì)明顯。
(3) 地下水滲流場(chǎng)的變化導(dǎo)致原本處于水下部分的巖土體中孔隙水壓力減小,巖土體骨架承受的有效應(yīng)力增大,隧洞上部滑坡產(chǎn)生變形。
(4) 地下水位下降使土體孔隙水下滲至潛在滑移面,降低其抗滑力學(xué)性能。隧洞開(kāi)挖導(dǎo)致地下水位的下降和潛在滑移面抗滑能力的降低共同誘發(fā)了上部滑坡局部變形。
(5) 隧洞開(kāi)挖2 a后地下水位降低20 m左右,滑坡下部2#次級(jí)滑體帶動(dòng)上部1#次級(jí)滑體變形,滑坡體最大變形量約12 cm,滑坡整體穩(wěn)定性變化較小。
[1] 施成華.隧洞開(kāi)挖及疏水引起的地表沉降與變形[J].中國(guó)公路學(xué)報(bào),2007,20(1):91-95.(SHI Cheng-hua. Ground Surface Settlement and Deformation Caused by Tunnel Excavation and Dewatering[J]. China Journal of Highway and Transport, 2007, 20 (1): 91-95. (in Chinese))
[2] 張倬元,王士天,王蘭生.工程地質(zhì)分析原理[M].北京:地質(zhì)出版社,2009:249-250. (ZHANG Zhuo-yuan, WANG Shi-tian, WANG Lan-sheng. Principle of Engineering Geological Analysis[M]. Beijing: Geological Publishing House, 2009: 249-250. (in Chinese))
[3] 張宏仁,李俊亭.有限差分法與有限單元法在滲流問(wèn)題中的對(duì)比[J]. 水文地質(zhì)工程地質(zhì).1979,(2):50-55. (ZHANG Hong-ren, LI Jun-ting. Comparison between Finite Difference Method and Finite Element Method in Seepage Problems[J]. Hydrogeology and Engineering Geology, 1979 ,(2):50-55. (in Chinese))
[4] 張宏仁.解滲流問(wèn)題數(shù)值方法對(duì)比[J]. 水文地質(zhì)工程地質(zhì), 1984,(4): 23-29. (ZHANG Hong-ren. Numerical Methods Solution to Seepage Problem[J]. Hydrogeology and Engineering Geology, 1984 , (4) : 23-29. (in Chinese))
[5] 薛禹群,謝春紅,戴水漢.在三維滲流問(wèn)題中等參數(shù)有限元法的應(yīng)用[J].水文地質(zhì)工程地質(zhì), 1979,(3): 36. (XUE Yu-qun, XIE Chun-hong, DAI Shui-han. Application of Isoparametric Finite Element Method in Three-dimensional Seepage Problem[J]. Hydrogeology and Engineering Geology, 1979, (3): 36. (in Chinese))
[6] 劉寶琛,陽(yáng)軍生,張家生.露天開(kāi)挖及疏水引起的地面沉降及變形[J].煤炭學(xué)報(bào),1999,24(1):39-42. (LIU Bao-chen, YANG Jun-sheng, ZHANG Jia-sheng. Ground Subsidence Deformation Caused by Outdoor Excavation and Dewatering[J]. Journal of China Coal Society, 1999, 24 (1): 39-42. (in Chinese))
[7] 施成華,彭立敏.淺埋隧洞開(kāi)挖縱向地表變形預(yù)測(cè)及其基本規(guī)律[J].中國(guó)公路學(xué)報(bào),2004,17(2):73-77. (SHI Cheng-hua, PENG Li-min. Prediction and Basic Regularities of Longitudinal Surface Deformation of Shallow Buried Tunnel[J]. China Journal of Highway and Transport, 2004,17(2): 73-77.(in Chinese))
[8] 朱冬林, 任光明, 聶德新, 等.庫(kù)水位變化對(duì)水庫(kù)滑坡穩(wěn)定性影響的預(yù)測(cè)[J]. 水文地質(zhì)工程地質(zhì), 2002,(3): 6-9.(ZHU Dong-lin, REN Guang-ming, NIE De-xin,etal. Effecting and Forecasting of Landslide Stability with the Change of Reservoir Water Level[J]. Hydrogeology and Engineering Geology, 2002, (3): 6-9.(in Chinese))
[9] 王春山,石昱楨,聶德新.深厚覆蓋層在水庫(kù)蓄水后滲流場(chǎng)變化情況下穩(wěn)定性分析[J].工程地質(zhì)學(xué)報(bào),2010,18(3):419-424.(WANG Chun-shan, SHI Yu-zhen, NIE De-xin. Stability and Deformation of Deep and Thick Overburden Due to Changed Seepage Conditions after Reservoir Impounding[J]. Journal of Engineering geology, 2010,18(3): 419-424.(in Chinese))
[10]PREISIG G, DEMATTEIS A, TORRI R,etal. Modeling Discharge Rates and Ground Settlement Induced by Tunnel Excavation[J]. Rock Mechanics and Rock Engineering, 2014, 47(3): 869-884.
[11]MICHAEL G,HARBAUGH A W.MODGLOW:A Three Dimension Finite Difference Ground-water Flow Model[M]. Washington D C: U. S. Government Printing Office, 1988.
[12]朱冬林,聶德新,葛修潤(rùn).3D-Modflow在模擬庫(kù)岸滑坡工程地下水分布中的應(yīng)用初探[J].巖土力學(xué),2002,23(3):378-381. (ZHU Dong-lin, NIE De-xin, GE Xiu-run. Preliminary Application of 3D-Modflow in Simulating Distribution of Groundwater in Reservoir Bank Landslide[J]. Rock and Soil Mechanics, 2002, 23(3): 378-381.(in Chinese))
[13]程 彬,盧 靖.基于Geostudio的邊坡滲流場(chǎng)與應(yīng)力場(chǎng)耦合分析[J].山西建筑,2010,36(3):147. (CHENG Bin, LU Jing. Coupling Analysis of Seepage Field and Stress Field of Slope Based on Geostudio[J]. Shanxi Architecture, 2010,36(3):147.(in Chinese))
[14]吳 越,劉東升,袁興平.水位下降作用下邊坡滲流場(chǎng)及穩(wěn)定性分析[J].地下空間與工程學(xué)報(bào),2008,4(6):1067-1070. (WU Yue, LIU Dong-sheng, YUAN Xing-ping. Analysis on Slope Seepage Field and Stability in Drawdown of Reservoir Water Level[J]. Chinese Journal of Underground Space and Engineering, 2008, 4(6): 1067-1070. (in Chinese))
(編輯:曾小漢)
Numerical Simulation on Landslide Stability Affected by Seepage FieldVariation Caused by Tunnel Excavation
ZHANG Fan1,2, HAN Ai-guo1, REN Guang-ming1, DU Fei1, WU Long-ke1, ZHAN Ke1
(1.State Key Laboratory of Geohazard Prevention and Geoenviroment Protection, Chengdu University of Technology, Chengdu 610059, China; 2.Sichuan geology and mineral exploration and development bureau of four O five geological team, Chengdu 611830, China)
The aim of this research is to investigate in landslide’s seepage field, slope deformation and stability affected by tunnel excavation. On the basis of analysing the physical and mechanical and water physical properties of a landslide slope, we simulated the variation of groundwater level and seepage field before and after tunnel excavation using 3D finite difference software Modflow. Furthermore, by employing Geo-Studio, we analyzed the stability and deformation of landslide after water level changed in natural and excavation conditions. Results reveal that the groundwater seepage field changed after tunnel excavation, and obvious water inflow was found at the excavation area. As a result, the groundwater level decreased about 20m and apparent “sinkholes” appeared in the excavation area. The change of groundwater level was mainly reflected in the front edge of landslide. The deformation of 2#secondary sliding body, which caused the deformation of 1#secondary sliding body, exacerbated under the combined actions of weakened sliding resistance and increased effective stress. The maximum slope deformation of secondary landslide above the tunnel reached 12.42 cm, but the stability changed slightly.
landslide; deformation; stability; tunnel excavation; seepage field
2014-04-28;
2014-08-15
張 凡(1990-),男,四川大竹人,碩士研究生,主要從事地質(zhì)災(zāi)害評(píng)價(jià)與預(yù)測(cè)的研究工作,(電話(huà))15208486290(電子信箱)zhangfan520zaizhu@126.com。
10.3969/j.issn.1001-5485.2015.05.012
2015,32(05):61-65
P64
A
1001-5485(2015)05-0061-05