吳少杰,王玉玨,郭坤元
脾臟18F-FDG攝取在急性放射病中的診斷價(jià)值
吳少杰,王玉玨,郭坤元
目的探討18F-FDG攝取值是否可作為評(píng)估核事故后個(gè)體受照射劑量的快速精確測(cè)定方法。方法將48頭西藏小型豬隨機(jī)分為6個(gè)劑量組,分別為0、1、2、5、8、11Gy組。除0Gy組(對(duì)照組)外,其余組均接受全身8MV X線離心線性加速器照射。照射前與照射后6、24、72h實(shí)施全身18F-FDG PET/CT檢查,收集脾臟組織用于組織病理學(xué)與凋亡檢測(cè);收集血液標(biāo)本進(jìn)行外周血分析。結(jié)果實(shí)驗(yàn)組與對(duì)照組的脾臟18F-FDG攝取值差異有統(tǒng)計(jì)學(xué)意義(P<0.05或P<0.01)。照射后6h,脾臟18F-FDG攝取值與照射劑量存在顯著相關(guān)性,相關(guān)系數(shù)為0.95(P<0.01)。組織病理學(xué)觀察顯示脾臟組織損傷程度與所接受的放射劑量呈正比。流式細(xì)胞學(xué)結(jié)果表明脾臟淋巴細(xì)胞損傷以凋亡為主。結(jié)論在西藏小型豬放射線損傷模型中,脾臟18F-FDG攝取與照射劑量密切相關(guān),18F-FDG PET/CT可用于急性放射病后個(gè)體照射劑量的快速評(píng)估。
氟脫氧葡萄糖F18;正電子發(fā)射斷層掃描及電腦斷層掃描;脾;輻射劑量;急性輻射綜合征
蓄意或意外的大劑量照射對(duì)人體有潛在的巨大危險(xiǎn)。當(dāng)發(fā)生大規(guī)模核輻射事故時(shí),迫切需要迅速有效的劑量評(píng)估方法,目前用于評(píng)估個(gè)體輻射劑量的方法有判斷惡心、嘔吐等癥狀開(kāi)始的時(shí)間,外周血淋巴細(xì)胞減少、動(dòng)力學(xué)改變等[1],染色體的著絲粒分析[2],細(xì)胞遺傳學(xué)分析[3]等。此外,C-反應(yīng)蛋白水平[4]、血漿miRNA水平[5]等在輻射劑量評(píng)估中的作用也在進(jìn)一步證實(shí)中,但這些方法都存在各自的局限性。
氟代脫氧葡萄糖正電子發(fā)射斷層攝影術(shù)(18F-FDG PET/CT)是根據(jù)良、惡性腫瘤葡萄糖代謝不同的原理而實(shí)現(xiàn)的一種非侵襲性診斷技術(shù),目前已廣泛運(yùn)用于惡性腫瘤分期、分級(jí)及治療后的再評(píng)估[6-8]。但18F-FDG并不是只在腫瘤中特異性聚集,它在正常組織及良性疾病中也有不同程度的攝取[9]。研究者證實(shí),18F-FDG攝取還可用來(lái)診斷感染性及炎癥性疾病[10]。本研究以上述特征為基礎(chǔ),探討18F-FDGPET/CT用于急性輻射快速診斷的可行性。
1.1 實(shí)驗(yàn)動(dòng)物及分組 48只成年未閹雄性西藏小型豬,體重21.16±5.54kg,由南方醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心提供并在標(biāo)準(zhǔn)實(shí)驗(yàn)條件下圈養(yǎng)。48只小型豬隨機(jī)分成0、1、2、5、8、11Gy共6個(gè)劑量組,各組小型豬頭數(shù)分別為3、9、9、9、9、9。本研究批準(zhǔn)證書(shū)編號(hào)為SCXK粵2006-0015。
1.2 照射與樣本制備 實(shí)驗(yàn)組小型豬予以速眠新0.15ml/kg麻醉,待小豬進(jìn)入麻醉狀態(tài)后,行全身8MV X線離心線性加速器照射(precise system treatment,ELEKTA,Sweden),照射量255cGy/ min,吸收劑量分別為1、2、5、8、11Gy,于照射前及照射后6、24、72h分別麻醉后行18F-FDG PET/ CT檢查及放血活殺取材,取西藏小型豬脾臟制備組織病理學(xué)常規(guī)與超薄切片,同時(shí)取耳靜脈血進(jìn)行外周血白細(xì)胞計(jì)數(shù)檢測(cè)。
1.3 PET/CT與18F-FDG標(biāo)準(zhǔn)攝取值(SUV)分析在照射前及照射后6、24、72h實(shí)施全身融合的18F-FDG PET/CT(Discovery-LS151PET/CT,GE,USA)。對(duì)照組(0Gy)也接受18F-FDG PET/CT影像學(xué)檢測(cè),但不進(jìn)行全身照射。以下措施保障標(biāo)準(zhǔn)攝取值客觀及精確:①所有西藏小型豬在檢查前禁食8h、禁飲4h。血糖水平控制在7.4~11.0mmol/L。②靜脈灌注18F-FDG(0.11~0.13mC/kg)50~60min后開(kāi)始進(jìn)行PET/CT檢查。③選取照射前后最大攝取值,按以下等式計(jì)算:SUV=[病灶的放射性濃度(kBq/ ml)/注射劑量(MBq)]· 體重(kg)。所有影像學(xué)數(shù)據(jù)均利用Xeleris(GE,USA)工作站進(jìn)行處理。
1.4 病理形態(tài)學(xué)觀察 對(duì)脾臟組織行常規(guī)HE染色,光鏡下觀察病理變化特點(diǎn),透射電鏡觀察不同劑量照射后6、24、72h脾臟組織超微結(jié)構(gòu)的病理改變。
1.5 凋亡檢測(cè) 采用TUNEL法觀察細(xì)胞凋亡情況,具體步驟為:二甲苯中脫蠟5min,新鮮二甲苯再脫蠟5min,無(wú)水乙醇5min,90%乙醇2min,70%乙醇2min,蒸餾水2min。滴加20μg/ml不含DNase的蛋白酶K于20~37℃作用18min。PBS洗滌3次。加入含0.1% Triton X-100的PBS冰浴孵育2min。光鏡下檢測(cè)并計(jì)數(shù)脾臟組織凋亡細(xì)胞,每個(gè)樣品至少計(jì)數(shù)500個(gè)細(xì)胞[11]。
1.6 統(tǒng)計(jì)學(xué)處理 采用SPSS 13.0軟件進(jìn)行統(tǒng)計(jì)分析,計(jì)量資料結(jié)果以表示,組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用Tukey多重比較法;采用Spearman相關(guān)分析評(píng)估脾臟標(biāo)準(zhǔn)攝取值與輻射劑量之間的關(guān)系。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 不同劑量照射后西藏小型豬臨床癥狀 照射后西藏小型豬出現(xiàn)不同程度嘔吐、腹瀉、精神狀態(tài)欠佳、食欲減退、活動(dòng)減少及皮膚紅斑等(表1)。
表1 不同劑量全身照射后西藏小型豬臨床癥狀Tab.1 Clinical symptoms after different dosages total body irradiation in Tibetan minipigs
2.2 不同劑量照射后外周血白細(xì)胞計(jì)數(shù)變化 從圖1可以看出,全身照射后6h外周血白細(xì)胞計(jì)數(shù)短暫性升高,1Gy劑量組約為對(duì)照組的1.6倍,但隨劑量增加及觀察時(shí)間的延長(zhǎng),外周血白細(xì)胞計(jì)數(shù)明顯下降,照射后72h時(shí)11Gy組白細(xì)胞達(dá)最低值,約為對(duì)照組的14%。照射后6h,接受照射的各組白細(xì)胞計(jì)數(shù)均較對(duì)照組升高,但11Gy組較1、2、5、8Gy組均明顯下降(P<0.01)。照射后24h,1、2、5、8、11Gy組均較對(duì)照組明顯降低(P<0.01),其中,11Gy組與1、2、5、8Gy組相比下降程度更為明顯(P<0.01)。照射后72h,1、2、5、8、11Gy組與對(duì)照組比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.01),其中,1Gy組與2Gy組及8Gy組與11Gy組之間差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
圖1 不同劑量及時(shí)間點(diǎn)全身輻射后外周血白細(xì)胞計(jì)數(shù)變化Fig.1 Total number of WBC in the peripheral blood after TBI (1)P<0.05, (2)P<0.01
圖2 3個(gè)時(shí)間點(diǎn)不同劑量全身照射與18F-FDG攝取值之間的相關(guān)性Fig. 2 Correlation of dosage and spleen18F-FDG uptake (SUV) at three time points after TBI
圖3 全身照射后6h脾臟組織學(xué)及PET/CT影像學(xué)的變化Fig.3 Changes in the histopathology and PET/CT images of the spleen at 6h after TBI
2.318F-FDG SUV和PET/CT Mauchly球形檢驗(yàn)統(tǒng)計(jì)量W=0.740,P=0.665,不拒絕球形假設(shè),3個(gè)時(shí)間點(diǎn)間差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。單因素方差分析示各劑量間差異有統(tǒng)計(jì)學(xué)意義(P<0.01),照射后6h,對(duì)照組與各照射組差異有統(tǒng)計(jì)學(xué)意義(P<0.01),且照射組之間差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。照射后24h,對(duì)照組與各照射組(除2Gy組,P=0.14;5Gy組,P=0.012)差異有統(tǒng)計(jì)學(xué)意義(P<0.01),且8Gy組與11Gy組差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。照射后72h,對(duì)照組與8Gy(P=0.02)、11Gy(P=0.014)組間差異有統(tǒng)計(jì)學(xué)意義。11Gy組照射后6h交互效應(yīng)最顯著。用線性相關(guān)分析評(píng)估不同劑量全身照射后6、24和72h脾臟SUV值,其“輻射劑量”不服從正態(tài)分布,Spearman相關(guān)系數(shù)分別是r=0.95、0.92、0.81(P<0.01,圖2)。圖3顯示全身照射后6h脾臟淋巴細(xì)胞隨照射劑量增加而出現(xiàn)凋亡、壞死等形態(tài)學(xué)變化(免疫組化染色,100×),且PET/CT影像學(xué)顯示正常脾臟18F-FDG吸收非常少,照射后6h脾臟18F-FDG吸收隨劑量增大而顯著增加。
2.4 組織病理學(xué)和超微結(jié)構(gòu) 光鏡與電鏡觀察顯示,全身照射后6h脾臟淋巴細(xì)胞出現(xiàn)核濃縮,核碎片。24h核碎片被吞噬細(xì)胞清除,隨輻射劑量增大白髓呈空虛狀態(tài)。同時(shí),在紅髓能見(jiàn)到含鐵血黃素沉著。72h時(shí)脾臟切片呈枯竭狀,未見(jiàn)淋巴細(xì)胞再生。此外,漿細(xì)胞及網(wǎng)狀細(xì)胞可輕易辨認(rèn)。而對(duì)照組未見(jiàn)以上改變(圖4A)。2Gy照射后6h觀察到淋巴細(xì)胞不同時(shí)期凋亡細(xì)胞的形態(tài)(圖4B、C)。高劑量(11Gy)下,能清楚觀察到巨噬細(xì)胞吞噬現(xiàn)象,網(wǎng)狀細(xì)胞線粒體空泡化、內(nèi)質(zhì)網(wǎng)擴(kuò)張(圖4D)。
2.5 全身照射后脾臟淋巴細(xì)胞凋亡動(dòng)態(tài)學(xué)變化1Gy組照射后6h淋巴細(xì)胞凋亡率升高至對(duì)照組的3倍多,隨照射劑量的增加凋亡率增加,11Gy組達(dá)峰值(27.93±0.41),約為對(duì)照組的27倍,呈劑量效應(yīng)。隨照射時(shí)間的延長(zhǎng),各劑量組淋巴細(xì)胞凋亡率呈下降趨勢(shì),在72h達(dá)最低值,呈現(xiàn)一定的時(shí)間效應(yīng)(表2)。
18F-FDG PET/CT已經(jīng)廣泛用于腫瘤的顯影、分級(jí)、分期并能從良性病變中鑒別惡性病變[12-13]。由于發(fā)現(xiàn)18F-FDG在非惡性炎癥性病變中有吸收,PET/ CT也已經(jīng)成功用于檢測(cè)和監(jiān)控感染和炎癥[14-15]。急性輻射綜合征(ARS)是由全身或者局部輻射引起的急性疾病。它能導(dǎo)致全血細(xì)胞減少、感染、炎癥、出血及組織損傷,甚至多器官功能衰竭(MOF)[16]。因此,輻射事故后能迅速并且準(zhǔn)確地評(píng)估受照射的傷員傷情。傳統(tǒng)的淋巴細(xì)胞計(jì)數(shù)和細(xì)胞遺傳學(xué)方法在大規(guī)模急性輻射后劑量評(píng)估中耗時(shí)、費(fèi)力且不準(zhǔn)確[17]。小型豬與人在器官發(fā)生、發(fā)展及病理生理過(guò)程有諸多地相似性,其肺、皮膚和腎是研究輻射損傷很好的靶組織,輻射對(duì)豬的反應(yīng)與其對(duì)人或者靈長(zhǎng)類(lèi)(猴子)沒(méi)有顯著的差別。這在輻射后急性效應(yīng)的造血綜合征的小型豬模型中得到證實(shí)[18]。因此,選擇5個(gè)輻射劑量(1、2、5、8和11Gy),每個(gè)輻射劑量都有各自的醫(yī)學(xué)意義。從1~11 Gy輻射劑量主要是引起造血系統(tǒng)、免疫系統(tǒng)及胃腸道系統(tǒng)的損傷。在大規(guī)模的急性輻射事故中,不同的劑量需要不同類(lèi)型的醫(yī)學(xué)干預(yù),1Gy以下的受害者不會(huì)引起急性效應(yīng)也不需要支持治療。2~5Gy的受害者應(yīng)立即使用抗生素、血小板和細(xì)胞因子治療[19]。5~8或者8~11Gy需要盡早的骨髓移植。11Gy以上,由于致命性的胃腸道和神經(jīng)、血管系統(tǒng)損傷而無(wú)法救治[20]。因此,迅速且精確地評(píng)估1~11Gy的劑量損傷情況是非常重要的。
圖4 不同劑量全身照射6h后脾臟結(jié)構(gòu)變化(TEM ×17 000)Fig. 4 Electron microscopic examination of the spleen at 6h after TBI (TEM ×17 000)A. Control group (0Gy); B. 2Gy group, the arrow shows apoptotic cells; C. 2Gy grup, the arrow shows phagocytosis; D. 11Gy group, the arrows show endoplasmic reticulum dilation and mitochondrial vacuolization
表2 西藏小型豬照射后脾臟淋巴細(xì)胞凋亡率(%,±s)Tab.2 Apoptosis rate of splenic lymphocyte in irradiated Tibetan minipigs (%,±s)
表2 西藏小型豬照射后脾臟淋巴細(xì)胞凋亡率(%,±s)Tab.2 Apoptosis rate of splenic lymphocyte in irradiated Tibetan minipigs (%,±s)
(1)P<0.05, (2)P<0.01 compared with control group (0Gy) (post-hoc Tukey test)
Observation time point (h) 1.79±0.13 4.64±0.42(1) 10.58±0.25(2) 17.43±1.22(2) 9.89±0.50(2) 27.93±0.41(2)24 1.83±0.27 3.98±0.24(1) 9.35±0.29(2) 16.95±0.78(2) 21.74±0.54(2) 22.56±0.67(2)72 1.76±0.22 2.27±0.10(1) 5.73±0.41(1) 9.89±0.50(2) 10.79±0.32(2) 11.07±0.43(2)Radiation dosage (Gy) 0 (n=3) 1 (n=9) 2 (n=9) 5 (n=9) 8 (n=9) 11 (n=9) 6
脾臟是免疫系統(tǒng)的一部分,具有產(chǎn)生炎癥物質(zhì),清除莢膜細(xì)菌,產(chǎn)生IgM、IgG及吞噬病原體等多項(xiàng)功能。脾臟也是白細(xì)胞、淋巴細(xì)胞等的生存場(chǎng)所。淋巴器官對(duì)全身照射及放療反應(yīng)迅速而敏感[21]。因此,我們將對(duì)輻射敏感的脾臟作為檢測(cè)的靶器官。通過(guò)單因素方差分析和相關(guān)性分析,觀察到脾臟平均標(biāo)準(zhǔn)吸收值明顯與輻射劑量有關(guān)。照射后6h,脾臟平均標(biāo)準(zhǔn)吸收值在低劑量吸收值低,在高劑量吸收值高,1~11Gy存在明顯的線性關(guān)系。本研究還評(píng)估了其他陽(yáng)性器官的標(biāo)準(zhǔn)吸收值,如腎、胃腸道等。值得一提的是,腎儲(chǔ)尿[22]及胃腸道存在細(xì)菌及生理學(xué)腸管活動(dòng)[23]等因素,會(huì)影響輻射劑量評(píng)估的精確度。
本研究結(jié)果還顯示,不同劑量全身照射后6h,光鏡下脾臟細(xì)胞出現(xiàn)壞死、凋亡、巨噬細(xì)胞吞噬及炎癥細(xì)胞浸潤(rùn)等,隨著劑量增加,程度更嚴(yán)重。照射后24和72h,除了正常組織的破壞和脾臟淋巴細(xì)胞的缺乏,沒(méi)有看到有活力的脾臟淋巴細(xì)胞。根據(jù)Kvacheva等[24]的研究結(jié)果,輻射后免疫組織淋巴細(xì)胞群的修復(fù)需要2~3周的時(shí)間。18F-FDG吸收值越高,脾臟對(duì)輻射的急性反應(yīng)越嚴(yán)重。
18F-FDG是2-脫氧葡萄糖的結(jié)構(gòu)類(lèi)似物,可在高葡萄糖代謝的組織中富集[25]。18F-FDG吸收直接與細(xì)胞膜表面葡萄糖轉(zhuǎn)運(yùn)相關(guān)的分子表達(dá)、局部細(xì)胞的密度及周?chē)M織的代謝活性相關(guān)[26]。本實(shí)驗(yàn)結(jié)果顯示,在全身照射后6h,脾臟淋巴細(xì)胞損傷即明顯,并隨劑量增加而更嚴(yán)重。葡萄糖代謝率可能受到脾臟細(xì)胞凋亡及壞死影響,過(guò)度的代謝補(bǔ)充可能導(dǎo)致18F-FDG的迅速聚集。此外,Mochizuki等[27]報(bào)道,活化的炎癥細(xì)胞也能增加葡萄糖轉(zhuǎn)運(yùn)蛋白的表達(dá)從而導(dǎo)致18F-FDG聚集。照射后6h巨噬細(xì)胞吞噬率高于其他兩個(gè)時(shí)間點(diǎn)。這與前人有關(guān)18F-FDG在巨噬細(xì)胞中聚集的觀點(diǎn)一致[28-29]。此外,白細(xì)胞計(jì)數(shù)在照射后6h顯示出短暫的增加,之后,隨著劑量的增加及觀察時(shí)間的延長(zhǎng)而減少。這與Nunez 等[30]的實(shí)驗(yàn)結(jié)果一致。此外,感染和炎癥導(dǎo)致白細(xì)胞的活化是以葡萄糖為能量來(lái)源的。因此,組織學(xué)觀察到高劑量組脾臟淋巴細(xì)胞的嚴(yán)重?fù)p傷很可能是脾臟18F-FDG吸收增加的主要原因。因此,急性放射病后可根據(jù)脾臟18F-FDG攝取值來(lái)判斷個(gè)體吸收劑量范圍。
【參考文獻(xiàn)】
[1]Dorr H, Meineke V. Acute radiation syndrome caused by accidental radiation exposure-therapeutic principles[J]. BMC Med, 2011, 9(1):126.
[2]Hall EJ. Time, dose, and fractionation in radiotherapy[M]// Hall EJ. Radiobiology for the radiologist. 6th, Philadelphia:Lippincott Williams & Wilkins, 2000. 124-135.
[3]Waselenko JK, MacVittie TJ, Blakely WF,et al. Medical management of the acute radiation syndrome:recommendations of the Strategic National Stockpile Radiation Working Group[J]. Ann Intern Med, 2004, 140(11):1037-1051.
[4]Blakely WF, Ossetrova NI, Whitnall MH,et al. Multiple parameter radiation injury assessment using a nonhuman primate radiation model-biodosimetry applications[J]. Health Phys, 2010, 98(2):153-159.
[5]Cui W, Ma J, Wang Y, Biswal S. Plasma miRNA as biomarkers for assessment of total-body radiation exposure dosimetry[J]. PloS One, 2011, 33(8):e22988.
[6]MacManus M, Nestle U, Rosenzweig KE,et al. Use of PET and PET/CT for radiation therapy planning:IAEA expert report 2006-2007[J]. Radiother Oncol, 2009, 91(1):85-94.
[7]Wang SJ, Lu HJ, Yang WD,et al. Definition of optimal percentage threshold of SUVmax by comparison of18F-FDG PET/CT metabolism volume with pathological volume of cervical cancer[J]. Med J Chin PLA, 2013, 38(8):653-656.[王勝軍, 陸宏軍, 楊衛(wèi)東, 等.18F-FDGPET/CT代謝體積與病理體積對(duì)比確定宮頸癌最大標(biāo)準(zhǔn)攝取值的最佳百分閾值[J]. 解放軍醫(yī)學(xué)雜志, 2013, 38(8):653-656.]
[8]Wu M, Zhao HG, Guan F,et al. Application of18F-FDG PETCT imaging in diagnosis of primary central nervous system lymphoma[J]. J Jilin Univ (Med Ed), 2015, 41(2):401-404.[吳敏, 趙紅光, 關(guān)鋒, 等.18F-FDG PET/CT顯像在原發(fā)性中樞神經(jīng)系統(tǒng)淋巴瘤診斷中的應(yīng)用[J]. 吉林大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2015, 41(2):401-404.]
[9]Liu Y, Ghesani NV, Zuckier LS. Physiology and pathophysiology of incidental findings detected on FDG-PET scintigraphy[J]. Semin Nucl Med, 2010, 40(3):294-315.
[10]Jasper N, Dabritz J, Frosch M,et al. Diagnostic value of [(18) F]-FDG PET/CT in children with fever of unknown origin or unexplained signs of inflammation[J]. Eur J Nucl Med Mol Imaging, 2010, 37(3):136-145.
[11]Cui YF, Gao YB, Yang H,et al. Apoptosis of circulating lymphocytes induced by whole body gamma-irradiation and its mechanism[J]. J Environ Pathol Toxicol Oncol, 1999, 18(3):185-189.
[12]Inokuma T, Tamaki N, Torizuka T,et al. Evaluation of pancreatic tumors with positron emission tomography and F-18 fluorodeoxyglucose:comparison with CT and US[J]. Radiology, 1995, 195(2):345-352.
[13]Steinert HC, Hauser M, Allemann F,et al. Non-small cell lung cancer:nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling[J]. Radiology, 1997, 202(2):441-446.
[14]Love C, Tomas MB, Tronco GG,et al. FDG PET of infection and inflammation[J]. Radio Graphics, 2005, 25(10):1357-1368.
[15]Zhuang H, Alavi A. 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation[J]. Semin Nucl Med, 2002, 32(1):47-59.
[16]Zhang XG, Ai HS, Li G,et al. Studies on clinical features and causal analysis of multiple organs dysfunction syndrome caused by an extremely severe bone marrow form of acute radiation sickness[J]. Med J Chin PLA, 2007, 32(5):441-443. [張錫剛,艾輝勝, 李光, 等. 極重度骨髓型急性放射病病人MODS的臨床特征及成因分析究[J]. 解放軍醫(yī)學(xué)雜志, 2007, 32(5):441-443.]
[17]Waselenko JK, MacVittie TJ, Blakely WF,et al. Medical management of the acute radiation syndrome:recommendations of the Strategic National Stockpile Radiation Working Group[J]. Ann Intern Med, 2004, 140(12):1037-1051.
[18]Moroni M, Lombardini E, Salber R,et al. Hematological changes as prognostic indicators of survival:similarities between Gottingen minipigs, humans, and other large animal models[J]. PloS One, 2011, 6(9):e25210.
[19]Anno GH, Young RW, Bloom RM,et al. Dose response relationships for acute ionizing radiation lethality[J]. Health Phys, 2003, 84(5):565-575.
[20]Hall EJ. Radiobiology for the radiologist[M]. Philadelphia:Lippincott Williams & Wilkins, 2005. 88.
[21]Nukata J. The influences of a whole body irradiation on the host immune system in mice. Distribution and traffic of lymphocytes[J]J Osaka Univ Dent Sch, 1981, 26(1):84-104.
[22]Abouzied MM, Crawford ES, Nabi HA.18F-FDG imaging:pitfalls and artifacts[J]. J Nucl Med Technol, 2005, 33(3):145-155.
[23]Schillaci O, Calabria F, Tavolozza M,et al.18F-choline PET/CT physiological distribution and pitfalls in image interpretation:experience in 80 patients with prostate cancer[J]. Nucl Med Commun, 2010, 31(1):39-45.
[24]Kvacheva I. The repair processes and cell populations relationship in bone marrow of patients with acute radiation injury:morphological study[J]. Radiats Biol Radioecol, 2000, 40(1):5-9.
[25]Meller J, Sahlmann CO, Scheel AK.18F-FDG PET and PET/CT in fever of unknown origin[J]. J Nucl Med, 2007, 48(1):35-45.
[26]Mochizuki T, Tsukamoto E, Kuge Y,et al. Difference of FDG uptake and GLUT expression between inflammation and malignant tumor[J]. J Nucl Med, 2000, 41(2):257.
[27]Mochizuki T, Tsukamoto E, Kuge Y,et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models[J]. J Nucl Med, 2001, 42(10):1551-1555.
[28]Kubota R, Yamada S, Kubota K,et al. Intratumoral distribution of 18-fluorodeoxy glucosein vivo:high accumulation in macrophages and granulation tissues studied by microautoradiography[J]. J Nucl Med, 1992, 33(11):1972-1980.
[29]Bleeker-Rovers CP, Vos FJ, Corstens FH,et al. Imaging of infectious diseases using [18F]fluorodeoxy-glucose PET[J]. J Nucl Med Mol Imaging, 2008, 52(1):17-29.
[30]Nunez R, Rini JN, Tronco GG,et al. Correlation of hematologic parameters with bone marrow and spleen uptake in FDG PET [J]. Rev Esp Med Nucl, 2005, 24(2):107-112.
Diagnostic value of18F-FDG uptake by spleen in acute radiation disease
WU Shao-jie1, WANG Yu-jue2, GUO Kun-yuan1*1Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
2Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
*< class="emphasis_italic">Corresponding author, E-mail: gao_yi10@163.com
, E-mail: gao_yi10@163.com
This work was supported by the Third Phase Project of Chinese National 211 Leading Academic Discipline (C1030380); the Doctoral Start-up Projects of Southern Medical University (B1012041)
ObjectiveTo investigate whether18F-FDG uptake can be applied in dosimetry to facilitate a rapid and accurate evaluation of individual radiation dosage after a nuclear accident.MethodsForty-eight Tibetan minipigs were randomly assigned into 6 groups, i.e., 0, 1, 2, 5, 8 and 11Gy groups. Animals in all except 0Gy group
total body irradiation (TBI) with a 8MV X centrifugal linear accelerator, and18F-FDG combined positron-emission tomography and computed tomography (PET/CT) were carried out before TBI, and also at 6, 24 and 72h after receiving TBI in different doses ranging from 1 to 11Gy. Spleen tissues and blood samples were collected for histological examination, apoptosis, and routine blood analysis.ResultsMean standardized uptake values (SUVs) of the spleen showed significant differences between experimental groups and control group. The spleen SUVs at 6h post-irradiation showed significant correlation with radiation dose; Spearman's correlation coefficient was 0.95(P<0.01). Histopathological observations showed that the degree of splenic damage was proportional to the radiation dose. Moreover, flow cytometry revealed that apoptosis was one of the major forms of splenic lymphocyte death.ConclusionIn the Tibetan minipig model, it was shown that radiation doses bear a close relationship with the18F-FDG uptake of spleen. This finding suggests that18F-FDG PET/CT may be useful for the rapid detection of individual radiation dosage after acute radiation disease (ARD).
fluorodeoxyglucose F18; positron-emission tomography and computed tomography; spleen; radiation dosage; acute radiation syndrome
R818.04
A
0577-7402(2015)07-0554-05
10.11855/j.issn.0577-7402.2015.07.08
2015-01-05;
2015-05-30)
(責(zé)任編輯:李恩江)
廣東省211工程三期重點(diǎn)學(xué)科建設(shè)項(xiàng)目(C1030380);南方醫(yī)科大學(xué)博士啟動(dòng)項(xiàng)目(B1012041)
吳少杰,醫(yī)學(xué)博士。主要從事血液腫瘤相關(guān)機(jī)制的研究
510282 廣州 南方醫(yī)科大學(xué)珠江醫(yī)院血液科(吳少杰、郭坤元);510515 廣州 南方醫(yī)科大學(xué)動(dòng)物中心(王玉玨)
郭坤元,Email:gao_yi10@163.com