• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    關(guān)于有理函數(shù)系數(shù)微分方程的亞純解

    2015-06-24 14:39:05袁文俊孟凡寧傅懋準(zhǔn)
    關(guān)鍵詞:亞純信息科學(xué)廣州大學(xué)

    袁文俊,劉 芝,孟凡寧,傅懋準(zhǔn)

    (廣州大學(xué)a.數(shù)學(xué)與信息科學(xué)學(xué)院;b.數(shù)學(xué)與交叉科學(xué)廣東普通高校重點(diǎn)實(shí)驗(yàn)室,廣東廣州 510006)

    關(guān)于有理函數(shù)系數(shù)微分方程的亞純解

    袁文俊,劉 芝,孟凡寧,傅懋準(zhǔn)

    (廣州大學(xué)a.數(shù)學(xué)與信息科學(xué)學(xué)院;b.數(shù)學(xué)與交叉科學(xué)廣東普通高校重點(diǎn)實(shí)驗(yàn)室,廣東廣州 510006)

    亞純解;線性無關(guān)解;微分方程;有理系數(shù)

    1 Introduction and main results

    In the past 30 years,many authors have been interested in the maximum number M of distinct meromorphic solutions and about the maximum number L of linearly independent meromorphic solutions of the differential equation

    In order to state our results in the paper,we need some notations and denotations.

    The number n is the highest order of Eq.(1),the number d is distinct zeros of Rn,and dkdenotes the degree of Pkfor each 0≤k≤n.Let H denote the lowest common polynomial of Q0,Q1,…,Qn-1and the number d*is distinct zeros of H.can possess at most a finite number of distinct meromorphic solutions.

    In 1987,GAO[2]had generalized the result above to Eq.(1)and had got that Eq.(1)can possess at most a finite number of distinct meromorphic.

    In 1987,HE[3]gave an estimation below,which depends on n+2 parameters.

    Theorem 2[3]For n≥3,the differential Eq. (2)can have at most K distinct meromorphic solutions where K is a constant depending on n,dk,1≤k ≤n meromorphic solutions.

    In 1989,ZHANG[4]generalized Theorem 2 to the rational coefficients and also got the result that Eq.(1)can have at most K distinct meromorphic solutions where K is a constant depending on n,dk,1 ≤k≤n meromorphic solutions.

    Remark 3 The maximum number M of distinct meromorphic solutions and the maximum numbers L of linearly independent meromorphic solutions all depend on n and other n+2 parameters in Theorem 2.

    In 1992,YUAN[5]showed that we can estimate the maximum number M of distinct meromophic solutions of(2)in terms of n and dnonly.

    Theorem 4[5]Eq.(2)can possess at most M distinct meromorphic solutions,where

    In 2008,GUNDERSEN[6]proved the following two theorems.

    Theorem 5[6]The Eq.(2)can possess at most L linearly independent meromorphic solutions,where L satisfies the following:

    Theorem 6[6]Eq.(2)can possess at most M distinct meromorphic solutions,where

    Theorem 6 maybe is the first general estimation for M in terms of d and n only.

    In the paper,we generalize both Theorems 5 and 6 to Theorems 7 and 10 by using the same method and arguments of GUNDERSEN in Ref.[6]and obtain the following results.

    Theorem 7 Eq.(1)can possess at most L*linearly independent meromorphic solutions,where L*satisfies the following:

    This example gives equality in Theorem 7(a),because here we have d+d*=1 and L*=2.

    Theorem 10 Eq.(1)can possess at most M*distinct meromorphic solutions,where

    where d*is the number of distinct zeros of H.

    Example 11 For Example 8,we know it possesses 2n-1 distinct meromorphic solutions,namely 0,ei,ei/z(eiis an(n-1)-th root of unity,i=1,2,…n-1).This example also shows that Theorem 10 is sharp,because here we have d+d*=n and M*=2n-1.

    Example 12 Let u1,u2…un+1(n≥3)be n+1 distinct rational functions.Consider the equationsolutions of Eq.(4)with rational coefficients.So,Eq.(4)has at least n+1 meromorphic solutions. Here we have d+d*≥2 and n+1≤1+(n-1)[(d +d*)(d+d*-1)+1].

    Example 13[1]If n is a positive integer,then the equation

    possesses n constant solutions,where the constants are the n-th roots of unity.This gives an equality in Theorem 10,because we have d+d*=0 and M*=n.

    This paper is organized as follows:In Section 2,the lemmas are given.The proofs of Theorems 7 and 10 are respectively given in Sections 3 and 4.

    2 Lemmas

    In order to prove Theorems 7 and 10,we need to improve some lemmas.

    Lemma 14[7-8]Let Q1,Q2and Q3be three relatively prime polynomials which satisfy

    Lemma 15 For Eq.(1),the following statements hold:

    (a)if u is any meromorphic solution of(1),then u is a rational function and HPnu is a polynomial;

    (b)if u1and u2are two distinct meromorphic solutions of(1),then any zero of u1-u2must be a zero of HPn.

    Proof. If u is a meromorphic solution of(1),then from the classical theorem of Malmquist[9],we know u is a rational function.Suppose that u(z)is a meromorphic solution of Eq.(1).If z0is a pole of u(z)of multiplicity atτ,set

    then z0is a zero of v(z)of multiplicityτ.And v(z)satisfies the equation

    From Eq.(7),we have two cases.

    Case 1.When z0is not the pole of arbitrary Rk,(k=0,1…,n-1),so z0must be a zero of Rnof multiplicity at leastτ.

    Case 2.When z0is a pole of some Rki(i=1,2,…,m)of multiplicityτki.We have two subcases:

    Subcase 2.1:we haveτki<(n-ki)τfor all ki,and let

    therefore,z0is a zero of Rnof multiplicity at least min {τ,(n-kλ)τ-τkλ}.

    Subcase 2.2:whenτkδ≥(n-kδ)τ,z0is a zero of Rnof multiplicity at leastτ[2,10].

    is a polynomial.

    In fact,if z0is a pole of u(z)of multiplicityτ and not a zero of all Q1,Q2,…Qn.then z0must be a zero of H(z)P(z)of multiplicity at leastτ,and z0is not a zero of Qn.It is easy to prove that the assertion holds in Case1 and Subcase 2.2.Nevertheless,Subcase 2.1 needs to be discussed.When

    Obviously,the assertion is right.When

    We know that H denotes the lowest common pol-ynomial of Q0,Q1,…,Qn-1,so z0is a zero of H(z)of multiplicityτh≥τkλ.Then

    so,it is right when the assertion in Subcase 2.1.

    If z1is a zero of Qnof multiplicity k,z1must be a zero of one or more than one of Q1(i=0,1…,n-1)of multiplicity at least k.

    Thus,the assertion is right.For the sake of convenience without loss generally,we can suppose that Qn≡1.This proves(a).

    Next,if u1and u2are distinct meromorphic solutions of(1),and z0is a zero of u1-u2,then from the uniqueness of solutions of(1),z0is a pole of both u1and u2.Then(a)implies HPn(z0)=0,which proves(b).This proves this lemma.

    Lemma 16[6]Assumption that u1,u2,u3are three meromorphic solutions of Eq.(1),such that u1-u2and u1-u3are linearly independent.Then there exists a rational function R such that the three functions

    are polynomials whose zeros all occur at zeros of HPn.By dividing all three of these polynomials by another polynomial,we know that there exists a rational function R such that the three functions

    Suppose that Q1and Q3are both constants,so u1-u2and u1-u3are linearly dependent,which contradicts the hypothesis.Thus,Q1,Q2,Q3are not all constants.Because

    and all the zero of Q1,Q2,Q3occur at zeros of HPn,we can apply Lemmas 14 to Eq.(11),and obtain (10).So we can prove Lemma 16.

    Lemma 17 Let u1,u2,…,uk,(k≥3),be k meromorphic solutions of(1),so there are k-1 functions

    Proof. Let i and j be two distinct integers satisfying 2≤j≤k and 2≤j≤k.Due to the hypothesis,u1-uiand u1-ujare linearly independent.From Lemma 16,there exists rational function S such that the three functions

    are k-1 linearly independent relatively prime polynomials whose zeros all occur at zeros of HPn.

    Hence,if z0is a zero of R(u1-uj)of multiplicity μ,and some j satisfying 2≤j≤k,so we can deduce that

    Because HPnhas d distinct zeros,R(u1-uj)has at most d+d*distinct zeros,2≤j≤k.Therefore,according to(14),we get

    Lemma 18 Suppose that u1be a fixed meromorphic solution of Eq.(1),and R is a rational function,where R?0,the function R(u1-u)is a polynomial,for any meromorphic solution u of(1). If α is an integer and for any meromorphic solution u of(1),we have

    which each Sk,j+1is a rational function,and where Sn(j+1)-j,j+1?0 for any j.Because T(a+1)≡0,we obtain

    whereeachSk,α+1isarationalfunction,and Sn(α+1)-α,α+1?0.Observe that(19)is a functional equation in g with rational function coeffcients,that is satisfied by any rational g in(17),i.e.g=uu1.Both members of Eq.(19)multiplied by a polynomial make Eq.(19)which the left side of(19)is a polynomial in g of degree n(α+1)-α,we get basic field theory that Eq.(19)can possess at most n (α+1)-α distinct rational solution g of the form g =u-u1.It follows that Eq.(1)can possess at most n(α+1)-α distinct meromorphic solutions u.So Lemma 18 is proved.

    Lemma 19[6,11]Suppose that u1,u2,…,uk,(k≥2)be k linearly independent meromorphic solutions of(1),and R is a rational function,where R?0,so R(u1-uj)is a polynomial for all j satisfying 2 ≤j≤k.If we let

    Lemma 20 Suppose that u1and u2be two distinct meromorphic solutions of(1)and for any meromorphic solution u of(1),the two functions u1-u2and u1-u are linearly dependent.Then Eq.(1)can admit at most n distinct meromorphic solutions.

    Proof. Suppose that u is any meromorphic solution of(1),so there exists a constant C=C(u)such that

    Both members of the Eq.(25)multiplied by a polynomial make Eq.(25)which the right side of (25)is a polynomial in C of degree n,there exist at most n distinct meromorphic solutions.Hence Lemma 20 is proved.

    3 Proof of Theorem 7

    The way to prove Theorem 7 is similar to Theorem 5.

    Proof. To prove part(a),we need to suppose that 0≤d+d*≤1.So,provided that Eq.(1)possesses at most two linearly independent meromorphic solutions,so part(a)is immediately true. Therefore,the assumption is that Eq.(1)possesses three linearly independent meromorphic solutions u1,u2,u3.Hence,according to Lemma 16,there is a rational function R such that the three functions

    If d+d*=0,so(26)is a contradiction.If d +d*=1,so(26)suggests that the three rational function R(u1-u2),R(u2-u3),R(u1-u3)are all constants,which contradicts our assumption,so u1,u2,u3are linearly independent.These contradictions show that our assumption that u1,u2,u3are linearly independent,must be false.So any three meromorphic solutions of(1)must be linearly dependent,when d+d*satisfies 0≤d+d*≤1,which proves part(a).

    In order to prove parts(b)and(c),we assume that d+d*≥2.We suppose that there exist k linearly independent meromorphic solutions u1,u2,…,uk,where k≥4,otherwise,there is nothing to prove.So according to Lemma 17,there is a rational function S such that

    We prove part(b).We let d+d*=2 and make the assumption that(1)possesses four linearly independent meromorphic solutions u1,u2,u3,u4,since otherwise,there is nothing to prove.In this case,we let k=4 in(27),which gives

    From the proof of Lemma 17,we get that all the zeros of S occur at zeros of HPn.So by Lemma 15,all the zeros of S(ui-uj)(1≤i,j≤4)occur at zeros of HPn.Because d+d*=2,Suppose a and b be the two distinct zeros of HPn.Then according to(30),each of the six functions

    which C is a non-zero constant.Furthermore,since u1,u2,u3,u4,are linearly independent,there must be a one-to-one correspondence between the six functions in(31)and the six forms in(32).

    But S(ui-uk)must have one of the six forms in(32),and this contradicts(34).This contradiction means that our assumption in(33)must be false. Hence,we can suppose without loss of generality that

    But S(uj-u2)must have one of the forms in (32),which contradicts(37).This contradiction implies that(36)cannot hold for i=1.Analogously we obtain a contradiction in(36)when i=2,3,or 4.Hence,we get a contradiction in all possible cases,which means that our original assumption that u1,u2,u3,u4are linearly independent,must be false.There can exist at most three linearly independent meromorphic solutions of Eq.(1),when d+d*=2.So it proves part(b).This proves Theorem 7.

    4 Proof of Theorem 10

    The way to prove Theorem 10 is similar to Theorem 6.

    Proof. First,let 0≤d+d*≤1.So according to Theorem 5(a),there exist at most two linearly independent meromorphic solutions of(1).We have two cases.

    Case 1.1.Assume that Eq.(1)does not possess two linearly independent meromorphic solutions. In this case,if u1is a meromorphic solution of(1),where u1?0,then any meromorphic solution u of (1)must have the form u≡Cu1,where C is a constant.Substituting u≡Cu1into(1)gives

    Both members of the equation above multiplied by a polynomial and choose a point z0such that HPn(z0)≠0 and u1(z0)≠0.Then

    Because the right side is a polynomial of degree n in C,it has at most n possible values for C.It follows that the maximum number M of distinct meromorphic solutions of(1)satisfies M≤n.On the other side,if it does not exist a meromorphic solution u1of(1),where u1?0,then M≤1.Therefore,Case 1.1 yields M≤n.

    Case 1.2.Assume that Eq.(1)has two linearly independent meromorphic solutions u1and u2.We can suppose there exist at least three distinct meromorphic solutions of(1),since otherwise,there is nothing to prove.There are two subcases.

    For the first subcase,assume that there exists a meromorphic solution u3of(1)such that u1-u2and u1-u3are linearly independent.So according to Lemma 16,there exists a rational function R such that three functions

    are all constants,But this suggests that u1-u2and u1-u3are linearly dependent,which contradicts our assumption.Hence,this first subcase cannot occur.

    For the second subcase,it assumes that for any meromorphic solution u of(1),the two functions u1-u2and u1-u are linearly dependent.According to Lemma 20,we get that M≤n.Therefore,Case 1.2 yields M≤n.

    Case 1.1 and case 1.2 show that M≤n,when 0 ≤d+d*≤1.

    Now we assume that d+d*≥2 and(1)possesses at least three distinct meromorphic solutions,since otherwise,there would be nothing to prove. There are two cases.

    Case 2.1.Assume there are two distinct meromorphic solutions u1and u2of(1),so for any mero-morphic solution u of(1),u1-u2and u1-u are linearly dependent.So according to Lemma 20,M≤n.

    Case 2.2.Suppose there is k distinct meromorphic solutions u1,u2,…,uk,(k≥3)of(1),such that the k-1 functions

    are linearly independent.We choose k to be as large as possible,so that if u is any meromorphic solution of(1),then the k functions

    According to(39)and(40),it has that if u is any meromorphic solution of(1),then R(u1-u)is a polynomial satisfying

    Case 2.1 and case 2.2 show that Theorem 10 hold when d+d*≥2.Therefore,it shows that M*≤n when 0≤d+d*≤1.Then Theorem 10 is proved.

    Acknowledgment

    The authors finally wish to thank Professor GUNDERSEN G G for supplying his useful reprints and suggestions.

    [1] GUNDERSEN G G,LAINE I.On the meromorphic solutions of some algebraic differential equation[J].J Math Anal Appl,1985,111(1):281-300.

    [2] GA0S A.On the number of meromorphic solutions of one class of ordinary differential equations[J].Acta Math Sin,1987,30(2):160-167.

    [3] HE Y Z.On the number of solutions of a class of ordinary differential equations[J].Kexue Tongbao,1987,32(7):80-85.

    [4] ZHANG X K.On the number of meromorphic solutions of some algebraic differential equations[J].J Hunan NorUniv,1989,12(1):16-20.

    [5] YUAN W J.On the number of meromorphic solutions of some first order algebraic differential equations[J].J Math Anal Appl,1992,167(2):316-321.

    [6] GUNDERSEN G G.Meromophic solutions of differential equation with polynomial coefficients[J].Comput Math Funct Th,2008,8(1):1-14.

    [7] LANG S.Algebra[M].3rd ed.New York:Springer,2002:194.

    [8] NATHANSON B M.Elementary methods in number theory[M].New York:Springer,2000:182.

    [9] MALMQUIST J.Sur les fonctions à un nombre fini des branches définies par les équations différentielles du premier ordre [J].Acta Math,1913,36(1):297-343.

    [10]GA0S A.On the number of meromorphic solutions of one class of ordinary differential equations[J].Kexue Tongbao,1987,30(2):1652-1653.

    [11]GUNDERSEN G G,LAINE I.Existence of meromorphic solutions of algebraic differential equation[J].Math Scand,1990,67(1):35-55.

    【責(zé)任編輯:周 全】

    On meromophic solutions of differential equation with rational coefficients

    YUAN Wen-jun,LIU Zhi,MENG Fan-ning,F(xiàn)U Mao-zhun
    (a.School of Mathematics and Information Sciences;b.Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes,Guangzhou University,Guangzhou 510006,China)

    meromorphic solutions;linearly independent solutions;differential equation;rational coefficients

    0175.4

    :A

    date:2015-05-25; Revised date:2015-07-23

    s:This work was supported by the Visiting Scholar Program of Department of Mathematics and Statistics at Curtin University of Technology,the support with the NSF of China(11271090)and NSF of Guangdong Province(2015A030313346,S2012010010121).

    0175.4

    A

    1671-4229(2015)05-0001-08

    Biography:YUAN Wen-jun(1957-),male,professor,Ph.D.E-mail:wjyuan1957@126.com

    猜你喜歡
    亞純信息科學(xué)廣州大學(xué)
    廣州大學(xué)作品選登
    山西大同大學(xué)量子信息科學(xué)研究所簡介
    三元重要不等式的推廣及應(yīng)用
    A Tale of Two Cities:Creating city images through “Shanghai Police Real Stories” and“Guard the Liberation West”
    亞純函數(shù)的差分多項(xiàng)式
    亞純函數(shù)與其差分的唯一性
    光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計(jì)探究
    基于文獻(xiàn)類型矯正影響因子在信息科學(xué)與圖書館學(xué)期刊中的實(shí)證分析
    《廣州大學(xué)學(xué)報(bào)( 社會(huì)科學(xué)版) 》2016 年( 第15 卷) 總目次
    亞純函數(shù)差分多項(xiàng)式的值分布和唯一性
    嫩草影视91久久| 日韩一卡2卡3卡4卡2021年| 蜜桃在线观看..| 亚洲 国产 在线| 色婷婷久久久亚洲欧美| 在线十欧美十亚洲十日本专区| 一区二区三区乱码不卡18| 免费在线观看日本一区| 丰满人妻熟妇乱又伦精品不卡| 日韩一卡2卡3卡4卡2021年| 免费不卡黄色视频| 久久久久视频综合| tocl精华| 丝袜人妻中文字幕| 午夜福利在线观看吧| 最近最新免费中文字幕在线| 久久九九热精品免费| 一二三四社区在线视频社区8| 久久久欧美国产精品| 窝窝影院91人妻| 亚洲一区二区三区欧美精品| 少妇裸体淫交视频免费看高清 | 怎么达到女性高潮| 国产成人啪精品午夜网站| 亚洲国产欧美在线一区| 色婷婷av一区二区三区视频| 亚洲人成伊人成综合网2020| 色婷婷av一区二区三区视频| 成人国产av品久久久| 精品少妇久久久久久888优播| 国产在线精品亚洲第一网站| 久久午夜综合久久蜜桃| 国产精品久久电影中文字幕 | 午夜福利在线观看吧| 久久天躁狠狠躁夜夜2o2o| 亚洲av日韩在线播放| 啪啪无遮挡十八禁网站| av超薄肉色丝袜交足视频| 色精品久久人妻99蜜桃| 又大又爽又粗| 成年人黄色毛片网站| 亚洲色图 男人天堂 中文字幕| 麻豆国产av国片精品| 美女主播在线视频| 亚洲国产av新网站| 老司机午夜福利在线观看视频 | 午夜福利影视在线免费观看| 亚洲专区国产一区二区| 热re99久久精品国产66热6| 久久久精品区二区三区| 热re99久久精品国产66热6| 少妇粗大呻吟视频| 亚洲 国产 在线| av线在线观看网站| 国产亚洲精品第一综合不卡| 亚洲第一av免费看| 搡老岳熟女国产| 国产精品国产av在线观看| 国产在线视频一区二区| 啦啦啦 在线观看视频| 一个人免费在线观看的高清视频| 中文字幕另类日韩欧美亚洲嫩草| 色94色欧美一区二区| 两个人免费观看高清视频| 另类亚洲欧美激情| 80岁老熟妇乱子伦牲交| 欧美日韩亚洲高清精品| 一本大道久久a久久精品| 黄片播放在线免费| 久久青草综合色| 日日爽夜夜爽网站| 丰满少妇做爰视频| 王馨瑶露胸无遮挡在线观看| 王馨瑶露胸无遮挡在线观看| 国产成+人综合+亚洲专区| netflix在线观看网站| 五月天丁香电影| 五月天丁香电影| 亚洲欧美激情在线| 纯流量卡能插随身wifi吗| 欧美精品高潮呻吟av久久| 国产一区有黄有色的免费视频| 另类亚洲欧美激情| 大香蕉久久网| 国产成人精品无人区| 欧美亚洲 丝袜 人妻 在线| 99精品久久久久人妻精品| 国产成人av教育| 桃花免费在线播放| 免费av中文字幕在线| 久久久久精品国产欧美久久久| 精品国产乱子伦一区二区三区| 丝袜美足系列| 国产精品熟女久久久久浪| 亚洲成人免费电影在线观看| 涩涩av久久男人的天堂| 精品人妻1区二区| 国产精品久久久av美女十八| 久久久精品免费免费高清| 一进一出好大好爽视频| 亚洲精品粉嫩美女一区| 亚洲国产精品一区二区三区在线| 亚洲国产精品一区二区三区在线| 精品福利永久在线观看| 如日韩欧美国产精品一区二区三区| 欧美乱妇无乱码| 18禁黄网站禁片午夜丰满| 操美女的视频在线观看| 老司机福利观看| 久久午夜综合久久蜜桃| 精品一区二区三区av网在线观看 | 亚洲中文字幕日韩| 欧美精品啪啪一区二区三区| 欧美人与性动交α欧美软件| 在线观看www视频免费| 欧美日韩亚洲高清精品| 国产男靠女视频免费网站| av在线播放免费不卡| 久久久欧美国产精品| 久久久久精品人妻al黑| 日本黄色日本黄色录像| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av日韩精品久久久久久密| www.999成人在线观看| 90打野战视频偷拍视频| 麻豆av在线久日| 在线观看免费午夜福利视频| 国产成人免费观看mmmm| 欧美另类亚洲清纯唯美| 亚洲精品久久午夜乱码| 啦啦啦视频在线资源免费观看| 欧美精品啪啪一区二区三区| 999精品在线视频| 亚洲成人免费av在线播放| 精品人妻在线不人妻| 亚洲人成77777在线视频| 中亚洲国语对白在线视频| 麻豆国产av国片精品| 国产精品久久电影中文字幕 | 制服诱惑二区| 美女主播在线视频| 一级毛片电影观看| 丰满少妇做爰视频| 少妇 在线观看| 亚洲伊人色综图| 久久中文看片网| 国产一区二区三区在线臀色熟女 | 手机成人av网站| 国产精品亚洲一级av第二区| 人人妻,人人澡人人爽秒播| 动漫黄色视频在线观看| 成人特级黄色片久久久久久久 | 久久久久精品人妻al黑| 叶爱在线成人免费视频播放| 久久精品成人免费网站| av片东京热男人的天堂| 欧美国产精品一级二级三级| 99精品在免费线老司机午夜| 男男h啪啪无遮挡| 成年人午夜在线观看视频| av免费在线观看网站| 久久婷婷成人综合色麻豆| 欧美精品高潮呻吟av久久| 亚洲第一青青草原| 国产精品一区二区在线观看99| 国产成人精品久久二区二区91| 欧美日韩一级在线毛片| 婷婷丁香在线五月| 搡老乐熟女国产| 国产99久久九九免费精品| 国产精品电影一区二区三区 | 黄色a级毛片大全视频| 热re99久久国产66热| 免费日韩欧美在线观看| 黄色a级毛片大全视频| 亚洲一码二码三码区别大吗| 天天躁日日躁夜夜躁夜夜| 男女下面插进去视频免费观看| 久久香蕉激情| 亚洲国产成人一精品久久久| 精品人妻1区二区| 性高湖久久久久久久久免费观看| 国产精品久久久久久人妻精品电影 | 美女扒开内裤让男人捅视频| 久久 成人 亚洲| 欧美精品亚洲一区二区| www.自偷自拍.com| 久久中文看片网| 狠狠婷婷综合久久久久久88av| 女性生殖器流出的白浆| 一级片免费观看大全| 99久久国产精品久久久| 亚洲国产中文字幕在线视频| 国精品久久久久久国模美| 久久精品亚洲精品国产色婷小说| 天堂俺去俺来也www色官网| 日本欧美视频一区| 成在线人永久免费视频| 在线观看免费午夜福利视频| 大片电影免费在线观看免费| 亚洲av片天天在线观看| 亚洲精品中文字幕在线视频| 欧美av亚洲av综合av国产av| 女性生殖器流出的白浆| 久久久精品国产亚洲av高清涩受| 少妇猛男粗大的猛烈进出视频| 亚洲精品一卡2卡三卡4卡5卡| 99re在线观看精品视频| 久久精品国产亚洲av高清一级| 成人国语在线视频| 欧美精品av麻豆av| 99re6热这里在线精品视频| 国产免费福利视频在线观看| 99香蕉大伊视频| 亚洲精品久久午夜乱码| 少妇 在线观看| 免费看a级黄色片| 国产欧美亚洲国产| 亚洲精品自拍成人| 精品久久蜜臀av无| av国产精品久久久久影院| 国产精品免费视频内射| 精品人妻1区二区| 国产在线视频一区二区| 大香蕉久久成人网| 成人三级做爰电影| 一本大道久久a久久精品| 美女视频免费永久观看网站| h视频一区二区三区| 在线看a的网站| 日本撒尿小便嘘嘘汇集6| 亚洲精品久久午夜乱码| 动漫黄色视频在线观看| 日韩欧美三级三区| 久久久久久久久久久久大奶| 免费不卡黄色视频| 亚洲成人手机| 久久人人97超碰香蕉20202| 欧美老熟妇乱子伦牲交| 男女边摸边吃奶| 免费av中文字幕在线| 国产精品熟女久久久久浪| 精品人妻1区二区| 男女床上黄色一级片免费看| 国产精品 国内视频| 精品欧美一区二区三区在线| 精品久久久精品久久久| 欧美+亚洲+日韩+国产| 十八禁网站免费在线| 免费看十八禁软件| 法律面前人人平等表现在哪些方面| 老熟妇乱子伦视频在线观看| 国产主播在线观看一区二区| 亚洲av欧美aⅴ国产| 美女扒开内裤让男人捅视频| 国产精品熟女久久久久浪| 在线观看人妻少妇| 国产精品自产拍在线观看55亚洲 | 成人黄色视频免费在线看| 成人影院久久| 精品少妇一区二区三区视频日本电影| av在线播放免费不卡| 国产成人精品久久二区二区91| 最新在线观看一区二区三区| 99国产精品99久久久久| 成人国产一区最新在线观看| 90打野战视频偷拍视频| 日本撒尿小便嘘嘘汇集6| 99国产精品99久久久久| 热re99久久精品国产66热6| 精品少妇黑人巨大在线播放| 男人操女人黄网站| 国产成人免费无遮挡视频| 91字幕亚洲| 久久久水蜜桃国产精品网| 美女主播在线视频| 在线观看免费高清a一片| 欧美av亚洲av综合av国产av| 纵有疾风起免费观看全集完整版| 久久久精品94久久精品| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲| 日韩人妻精品一区2区三区| 国产成人啪精品午夜网站| 黄色成人免费大全| 蜜桃在线观看..| 青草久久国产| 窝窝影院91人妻| 日本五十路高清| 18禁美女被吸乳视频| 美女扒开内裤让男人捅视频| 色老头精品视频在线观看| 1024香蕉在线观看| 桃红色精品国产亚洲av| 国产aⅴ精品一区二区三区波| 老熟妇仑乱视频hdxx| 黑丝袜美女国产一区| 99香蕉大伊视频| 人人澡人人妻人| 动漫黄色视频在线观看| 欧美黄色片欧美黄色片| 青草久久国产| 色视频在线一区二区三区| 动漫黄色视频在线观看| 日韩欧美一区二区三区在线观看 | 99国产极品粉嫩在线观看| 国产精品九九99| 热99re8久久精品国产| 成人永久免费在线观看视频 | 日本一区二区免费在线视频| 国产1区2区3区精品| 精品亚洲成国产av| 肉色欧美久久久久久久蜜桃| av又黄又爽大尺度在线免费看| 岛国在线观看网站| 巨乳人妻的诱惑在线观看| 亚洲av欧美aⅴ国产| 夫妻午夜视频| 精品少妇一区二区三区视频日本电影| 日韩欧美三级三区| 日本av免费视频播放| 黄色a级毛片大全视频| 三上悠亚av全集在线观看| videosex国产| 欧美日韩一级在线毛片| 丝袜美足系列| 日韩视频在线欧美| 亚洲av日韩在线播放| www.熟女人妻精品国产| 久久国产精品影院| 欧美黄色片欧美黄色片| 久久午夜亚洲精品久久| 色播在线永久视频| 丝袜喷水一区| 黄频高清免费视频| 黑人猛操日本美女一级片| 国产亚洲一区二区精品| 考比视频在线观看| 电影成人av| 在线播放国产精品三级| 国产av精品麻豆| 欧美乱妇无乱码| 淫妇啪啪啪对白视频| 动漫黄色视频在线观看| 亚洲国产看品久久| 亚洲av欧美aⅴ国产| 中文字幕最新亚洲高清| 大型黄色视频在线免费观看| 国产精品av久久久久免费| 久久久久视频综合| 五月天丁香电影| 人人妻人人爽人人添夜夜欢视频| 国产精品偷伦视频观看了| 日日摸夜夜添夜夜添小说| 99久久人妻综合| 啪啪无遮挡十八禁网站| 亚洲情色 制服丝袜| 91字幕亚洲| 香蕉丝袜av| 国产精品一区二区在线不卡| 自线自在国产av| 亚洲欧美一区二区三区黑人| 一本色道久久久久久精品综合| 老司机深夜福利视频在线观看| 午夜福利乱码中文字幕| 亚洲五月婷婷丁香| 亚洲 欧美一区二区三区| 女人被躁到高潮嗷嗷叫费观| 性色av乱码一区二区三区2| 搡老乐熟女国产| 好男人电影高清在线观看| 亚洲国产欧美一区二区综合| 国产在线精品亚洲第一网站| 国产在线一区二区三区精| 久久久久久久久久久久大奶| 午夜免费鲁丝| 波多野结衣av一区二区av| 99国产精品一区二区蜜桃av | 午夜成年电影在线免费观看| 精品少妇一区二区三区视频日本电影| 亚洲熟妇熟女久久| 日韩大片免费观看网站| 岛国在线观看网站| 十八禁网站网址无遮挡| 最新在线观看一区二区三区| 中文亚洲av片在线观看爽 | 国产午夜精品久久久久久| 成人三级做爰电影| 国产视频一区二区在线看| 国产精品自产拍在线观看55亚洲 | 国产高清国产精品国产三级| 国产视频一区二区在线看| 亚洲精品国产精品久久久不卡| 高清av免费在线| 老司机靠b影院| 少妇裸体淫交视频免费看高清 | 国产激情久久老熟女| 亚洲中文日韩欧美视频| 一边摸一边做爽爽视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 十八禁网站免费在线| 一边摸一边抽搐一进一小说 | 欧美黑人欧美精品刺激| 99国产精品一区二区蜜桃av | 精品国产乱码久久久久久男人| 中文欧美无线码| www.熟女人妻精品国产| 在线 av 中文字幕| 女人高潮潮喷娇喘18禁视频| 国产一区二区三区综合在线观看| 最近最新免费中文字幕在线| 免费久久久久久久精品成人欧美视频| 国产精品电影一区二区三区 | 首页视频小说图片口味搜索| 日本av手机在线免费观看| 亚洲五月色婷婷综合| 极品少妇高潮喷水抽搐| 国产在线视频一区二区| 波多野结衣一区麻豆| 国产成人av激情在线播放| 亚洲三区欧美一区| 久久久精品免费免费高清| 狠狠狠狠99中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 免费日韩欧美在线观看| 国产一区二区三区综合在线观看| 亚洲第一欧美日韩一区二区三区 | 国产在线一区二区三区精| 国产精品 国内视频| 热re99久久国产66热| 他把我摸到了高潮在线观看 | 激情在线观看视频在线高清 | 国产欧美亚洲国产| 99久久国产精品久久久| 777久久人妻少妇嫩草av网站| 免费在线观看完整版高清| 日韩一卡2卡3卡4卡2021年| 啦啦啦视频在线资源免费观看| 亚洲成国产人片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 热99久久久久精品小说推荐| 成人国产av品久久久| 国产亚洲av高清不卡| 免费观看av网站的网址| avwww免费| 高清毛片免费观看视频网站 | 免费黄频网站在线观看国产| 一区在线观看完整版| 午夜激情av网站| 99国产综合亚洲精品| 亚洲 欧美一区二区三区| 久久久精品免费免费高清| 免费在线观看黄色视频的| 黑人巨大精品欧美一区二区mp4| 国产亚洲精品久久久久5区| 国产99久久九九免费精品| 少妇被粗大的猛进出69影院| 18禁裸乳无遮挡动漫免费视频| 少妇粗大呻吟视频| 免费看十八禁软件| 老司机深夜福利视频在线观看| 成年人免费黄色播放视频| svipshipincom国产片| 好男人电影高清在线观看| 欧美亚洲 丝袜 人妻 在线| 国产精品熟女久久久久浪| 性高湖久久久久久久久免费观看| 丰满人妻熟妇乱又伦精品不卡| 新久久久久国产一级毛片| 高清毛片免费观看视频网站 | 国产又爽黄色视频| 国产成人av教育| 亚洲熟女毛片儿| 69av精品久久久久久 | 大香蕉久久网| 久久久精品94久久精品| 99re在线观看精品视频| 日本一区二区免费在线视频| 亚洲专区国产一区二区| 在线看a的网站| 一区二区三区乱码不卡18| 一二三四社区在线视频社区8| 亚洲精品国产色婷婷电影| 在线观看一区二区三区激情| 天天操日日干夜夜撸| 一级毛片电影观看| 动漫黄色视频在线观看| 亚洲成av片中文字幕在线观看| bbb黄色大片| 咕卡用的链子| 精品国产一区二区三区四区第35| 交换朋友夫妻互换小说| 老司机福利观看| 亚洲专区国产一区二区| 国产精品二区激情视频| 久久九九热精品免费| 日日摸夜夜添夜夜添小说| 亚洲专区中文字幕在线| 俄罗斯特黄特色一大片| 国产男女内射视频| 丰满饥渴人妻一区二区三| 女人久久www免费人成看片| 一本色道久久久久久精品综合| 国产精品98久久久久久宅男小说| 久久精品aⅴ一区二区三区四区| 夜夜爽天天搞| 黄色a级毛片大全视频| 成人av一区二区三区在线看| 国产成人精品在线电影| 亚洲第一欧美日韩一区二区三区 | 欧美日韩亚洲高清精品| 欧美日韩成人在线一区二区| 黄色视频在线播放观看不卡| 国产免费福利视频在线观看| 午夜91福利影院| 欧美激情极品国产一区二区三区| 人人妻人人添人人爽欧美一区卜| 国产精品免费一区二区三区在线 | 丝袜人妻中文字幕| 欧美日韩av久久| 久久久久久久精品吃奶| 欧美人与性动交α欧美软件| 男女之事视频高清在线观看| 不卡av一区二区三区| 91av网站免费观看| 国产在视频线精品| 91成年电影在线观看| 国产99久久九九免费精品| 天堂动漫精品| 久久影院123| 精品乱码久久久久久99久播| 久久影院123| 日韩欧美三级三区| 国产在线精品亚洲第一网站| 一本一本久久a久久精品综合妖精| 久久人人爽av亚洲精品天堂| 欧美黑人欧美精品刺激| 精品一区二区三区av网在线观看 | 91国产中文字幕| 亚洲成人免费电影在线观看| 欧美亚洲 丝袜 人妻 在线| 黄网站色视频无遮挡免费观看| 麻豆av在线久日| 侵犯人妻中文字幕一二三四区| 十八禁人妻一区二区| 一级黄色大片毛片| 国产成人精品无人区| 曰老女人黄片| 亚洲国产精品一区二区三区在线| 色婷婷久久久亚洲欧美| 久久99一区二区三区| 久久精品亚洲熟妇少妇任你| 精品免费久久久久久久清纯 | 欧美日韩av久久| 最近最新免费中文字幕在线| 国产视频一区二区在线看| 91国产中文字幕| 国产精品久久久久久精品古装| 欧美日韩视频精品一区| 老司机靠b影院| 国产国语露脸激情在线看| 老熟女久久久| 十分钟在线观看高清视频www| 在线观看免费视频日本深夜| 好男人电影高清在线观看| 亚洲国产av新网站| 国产欧美日韩一区二区三区在线| 别揉我奶头~嗯~啊~动态视频| 12—13女人毛片做爰片一| 麻豆国产av国片精品| 久久久久久人人人人人| 黄色片一级片一级黄色片| 精品亚洲乱码少妇综合久久| 菩萨蛮人人尽说江南好唐韦庄| 精品亚洲成a人片在线观看| 亚洲精品乱久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美精品永久| 一区二区日韩欧美中文字幕| 成人影院久久| 老汉色av国产亚洲站长工具| 久久青草综合色| 老司机影院毛片| av不卡在线播放| 亚洲av欧美aⅴ国产| 女同久久另类99精品国产91| 欧美日韩成人在线一区二区| 另类精品久久| 免费观看a级毛片全部| 女人被躁到高潮嗷嗷叫费观| 精品一区二区三区四区五区乱码| 极品少妇高潮喷水抽搐| 成人三级做爰电影| kizo精华| 人人妻人人添人人爽欧美一区卜| 亚洲熟妇熟女久久| 亚洲av成人一区二区三| 亚洲九九香蕉| 亚洲一区中文字幕在线| 中亚洲国语对白在线视频| 精品国产超薄肉色丝袜足j| bbb黄色大片| 国产日韩欧美在线精品| 国产精品久久电影中文字幕 | 国产精品国产高清国产av | 久久久久久久精品吃奶| 777久久人妻少妇嫩草av网站| 久久精品91无色码中文字幕| 国产无遮挡羞羞视频在线观看| 国产国语露脸激情在线看| 精品亚洲乱码少妇综合久久| 精品久久蜜臀av无| 另类亚洲欧美激情| 看免费av毛片| 99国产综合亚洲精品|