• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of carbon nanotube on physicaland mechanical properties of natural fiber/glass fiber/cement composites

    2015-06-19 18:30:11HamedYounesiKordkheiliShokouhEtedaliShehniGhorbanNiyatzade
    Journal of Forestry Research 2015年1期

    Hamed Younesi Kordkheili?Shokouh Etedali Shehni?Ghorban Niyatzade

    Effect of carbon nanotube on physicaland mechanical properties of natural fiber/glass fiber/cement composites

    Hamed Younesi Kordkheili?Shokouh Etedali Shehni?Ghorban Niyatzade

    The objective of this investigation was to introduce a cement-based composite of higher quality.For this purpose new hybrid nanocomposite from bagasse fiber, glass fiber and multi-wall carbon nanotubes(MWCNTs) were manufactured.The physical and mechanical properties of the manufactured composites were measured according to standard methods.The properties of the manufactured hybrid nanocomposites were dramatically better than traditional composites.Also all the reinforced composites with carbon nanotube,glass fiber or bagasse fiber exhibited better properties rather than neat cement. The results indicated thatbagasse fiber proved suitable for substitution of glass fiber as a reinforcing agent in the cement composites.The hybrid nanocomposite containing 10%glass fiber,10%bagasse fiber and 1.5%MWCNTs was selected as the best compound.

    Cement hybrid nanocompositesMulti-wall carbon nanotubesBagasse fiberPhysicaland mechanical properties

    Introduction

    Glass–fiber is the mostcommon of allreinforcing fibers in cement composites due to its advantages such as high tensile strength and stiffness,high water and chemical resistance,excellent insulating properties and good fire resistance(Enfedaque et al.2012).Adding glass–fiber to cement composites as a reinforcing agent by incorporating a small amount of fibers in cement mortar was used to overcome the traditional weakness of inorganic cements, namely poor tensile strength and brittleness(Enfedaque et al.2010).The use of glass fiber for manufacturing cement composites has been investigated by number of researchers(Enfedaque et al.2012,2010;Purnell et al. 2000;Shah et al.1988).

    Previous research showed that the use of glass fiber in the composites had several disadvantages such as nonbiodegradability,high density,high cost and health problems for workers due to the skin irritations caused during processing and handling(Kazemi et al.2008).For this reason,some fibers such as carbon,polypropylene and naturalfibers were introduced to substitute forglass fiberin cementitious composites(Tonoli et al.2011;Zakaria and Abdul Awal2011).

    With the advent of natural fibers in cement composites, a new group of composites was produced and named wood–cementcomposites.Wood–cement composites are a class of construction materials made by binding together wood particles or fibers with cementpaste or mortar.These composites can also be made from non-wood agricultural fibers(e.g.sisal,bamboo,kenaf and flax)and other lingocellulosic wastes(e.g.bagasse,wheat straw,paper mill sludge,newsprint)(Cheumanietal.2011).

    One of the natural fibers that is widely produced in the world is bagasse fiber.Bagasse is the residue aftersugarcane stalks are crushed for sap extraction.Approximately 320 kg of bagasse is produced per metric ton of processed sugarcane(Lee and Mariatti2007).Compared to glass fibers,bagasse fibers,which are natural fibers,have lower density and cost and are renewable and biodegradable.These composites also have low thermalconductivity, reduce environmentalpollution by recycling bagasse fiber, and do not emit formaldehyde as do typical composite panels(such as MDF and Particle board)during their service life(Younesi Kordkheili et al.2012).Previous research showed thatthe main disadvantage of cementtype panels made from bagasse fiber was vulnerability to moisture and reduced mechanical properties as compared to panels made with polypropylene fiber or glass fiber (Pehanich et al.2004;Aggarwal 1995).To counter these disadvantages,researchers tested new cement composites (Balland Wackers 2001;Liang etal.2003)and found the bestproducts to be hybrid composites and nanocomposites. Hybrid composites manufactured from two reinforcing agents(naturaland synthetic fiber)had desirable properties such as being lightweight,easy to construct,economical, demountable,recyclable and reusable(Abeysinghe et al. 2013).Use of nano-materials(such as carbon nanotubes or nanoclay)to produce nanocomposites is another suggested method to overcome the negative effects of cementitious composites(Younesi Kordkheili et al.2012).

    Although there are some advantages of hybrid composites and nanocomposites(Musso etal.2009;Chong and Garboczi 2002),there are no reports of performance by hybrid nanocomposites.To exploit the advantages of composites and produce cement composites of higher quality,cement hybrid nanocomposites including bagasse fiber,glass fiber and CNTs were manufactured and investigated the physicaland mechanicalproperties of produced panels.

    Materials and methods

    Chopped E-Glass fibers of 25 mm length and aspect ratio of 1,250–3,570 were supplied by Diba Glass Fiber Company and were used as a reinforcing agent in the composites.Commercially manufactured Portland cement(type II)and bagasse fiber supplied by a local company were used to produce experimental panels.Bagasse fibers were initially soaked in water for 2 days to enhance their disintegration quality before being dried in a laboratory oven at 80C for 3 days.Average dimensions and tensile strength of the bagasse fibers provided by the supplier are 1.4 mm in length,0.5 mm in diameter,2.9 in length/ diameter,and 120.2 in tensile strength.Multi-wall carbon nanotubes(MWCNT)with average diameter and length of 50 nm and 500 nm,respectively,were provided by the Research Institute of Petroleum Industry.Nanotube material was mixed with acetone in an ultrasonic mixer so that the mixture could be uniformly dispersed in a suspension, thereby minimizing the aggregation size of the MWCNT. Sonification was carried out for 4 h before acetone was allowed to evaporate.A rotating drum was employed for 5 min to a mix of Portland cement,water,CaCl2,bagasse fiber,glass fiber and nanotubes to be converted into a homogeneous compound.

    Eight types of panels with different ratios of raw material were manufactured(Table 1).The amount of CaCl2was fixed at3%for alltypes of samples.In addition to the above ratios,the cementcomposites contained 20% glass and bagasse fibers manufactured for comparison properties between the composites reinforced with bagasse and glass fibers at a fixed level.Neat cement was also manufactured as a control sample for investigating the effectof MWCNTs,bagasse and glass fiberas a reinforcing agent.In the case of cement-based panels,the cement to water ratio was two.Water was eliminated by applying vacuum to the mats that had been poured into a mold similarto the other specimens manufactured using different ratios of raw materials.A computer controlled press was employed to compress the mats ata pressure of 30 kg/cm2at room temperature for 24 h.The sample mats were held for 24 days atambienttemperature before they were cured at 75C for 10 h in a laboratory oven.

    Water absorption and thickness swelling of the samples

    Water absorption and thickness swelling tests of the panels were performed according to the ASTMC 67-03a standard.

    Five specimens of each type of panel were dried in an oven for 24 h at 100±3C.Weight and thickness of dried specimens were measured to±0.001 g and ±0.001 mm,respectively.The specimens were then immersed in distilled water for two weeks at 20±2C. Weights and thicknesses of the specimens were measured at timed intervals during the two-week immersion process after excessive water was rinsed from their surface.Water absorption was calculated as a percentage using the following equation:

    where WA(t)is the water absorption(%)at time t,WOis the oven dried weightand W(t)is the weightof specimen at a given immersion time t.

    Thickness swelling was calculated as a percentage using Eq.2:

    Table 1 Composition of the cement hybrid nanocomposites(see legend in Fig.1)

    where TS(t)isthe thickness swelling(%)attime t,T0is the initial thickness of specimens,and T(t)is the thickness at time t.

    Mechanicaltests

    Three-point bending of the panels was carried out according to the ASTM C 67-03a standard by employing an Instron 1,186 with load cell of 50 KN.The impact strength of the samples was carried out using equipment Model Zwick 5102.

    Results and discussion

    Fig.1 Water absorption behavior of the studied composites

    Water absorption and thickness swelling of the hybrid nanocomposites are listed in Figs.1 and 2,respectively. Water absorption and thickness swelling increased with increasing immersion time and reached a plateau at saturation point.The composites made from 20%bagasse fiber exhibited greatestwater absorption and thickness swelling. The hybrid composites made from 5%glass fiber and 15%bagasse fiber exhibited higher water absorption and thickness swelling compared to those made from 10% glass fiber and 10%bagasse fiber.In contrast to bagasse fiber,glass fiber is intrinsically water resistant and hydrophilic due to its fewer water residence sites.Hence,with increased glass fiber content,there were fewer water residence sites and therefore less water was absorbed.Increase of bagasse fiber content from 10 to 15%increased water absorption and thickness swelling.Since lingocellulosic materials such as bagasse fibers are hygroscopic and hydrophilic,they have reactive OH groups in cellulose and hemicellulose structures that can absorb moisture from theirsurroundings.Composites containing 20%glass fiber exhibited the lowest water absorption and thickness swelling(Figs.1,2).Hydrophobic properties generally have a positive effect on physical and mechanical properties of composites and broaden their range of use in final applications.Adding multi-wall nanocarbon tubes had a positive effect on the hygroscopic characteristics of the cement hybrid composites.At a constant level of glass fiber,increasing MWCNTs from 0.5 to 1.5%decreasedwater absorption and thickness swelling.In the woody composites,watersaturates the cellwallthrough the porous tubular structure of the natural fiber and fills the voids of the composites.Because composite voids and the lumens of bagasse fibers were filled with MWCNTs,they prevented the penetration of water by capillary action into the deeper parts of the composite as described by Younesi Kordkheilietal.(2013).

    Fig.2 Thickness swelling behavior of the studied composites

    Fig.3 Flexural properties of the studied composites

    Also,MWCNTs are naturally waterproof which causes an increase in water resistance properties of the manufactured composites.YounesiKordkheilietal.(2012)reported thatincreasing MWCNTs from 0.5 to 1.5%reduced water absorption and thickness swelling in bagasse fiber-cement composites.

    A flexuralmodulus ofthe samples is displayed in Fig.3. The use ofbagasse and glass fibers as wellas MWCNTs as reinforcing agents of cementitious composites had a positive effecton theirflexuralmodulus.Atconstantcontentof MWCNTs,the composites manufactured from 10%glass fiber exhibited higher flexural modulus as compared to composites produced from 5%glass fiber.The flexural modulus of the composites is a primary function of the modulus of individual components(Kazemi and Younesi Kordkheili 2011).Since the flexural modulus of glass or bagasse fiber is considerably higher than for neat cement, the flexuralmodulus ofthe panels containing the fibers was higher than for neat cement.Also the higher flexural modulus of the composites manufactured from glass fiber rather than bagasse fiber(at fixed level=20%)can be related to the higher flexural modulus of glass fiber rather compared to bagasse fiber.

    Fig.4 Impact strength of the studied composites

    MWCNTs increased flexuralproperties ofthe panels.In the presence of 10%bagasse fiber and 10%glass fiber, the flexural modulus of samples with 0.5,1 and 1.5% MWCNTs were 19,29 and 34%higher than for neat cement,respectively.Panels containing 15%bagasse fiber and 5%glass fiber with 0.5,1 and 1.5%MWCNTs had a flexural modulus 14,33 and 43%higher than did panels made with neat cement.Increased flexural properties of composites with 1.5%carbon nanotubes can be attributed to the greater stiffness of carbon nanotubes and their high aspect ratio.Salvetat et al.(1999)investigated the elastic behavior ofcarbon nanotubes and reported thatthe flexural modulus of such panels was approximately 1 TPa.In addition to the high strength and elastic constants of MWCNTs,they have extremely high aspect ratios,with values typically higher than 1,000:1 and as high as 2,500,000:1(Zheng et al.2004).

    Increasing the content of carbon nanotube,glass fiber and bagasse fiber increased the overallflexuralstrength of the neat cement panels(Fig.3).The flexural strength of fiber-reinforced cement-based composites is affected by adhesion between the matrix and fibers.Due to carbon nanotube size,MWCNTs can be evenly distributed in the composites and improve adhesion between the fibers and the cement(Musso et al.2009;Li et al.2007),indicating thatcarbon nanotubes have a positive effecton the flexural strength of the carbon nanotube reinforced cement composites.

    The composites incorporating glass fiber exhibited higher flexural strength than composites made of bagasse fiber.Also,the composites with higher content of glass fiber(10%)had higher flexural strength rather than composites with 5%glass fiber.(Nouriand Morshedian 1995) also reported thatthe flexuralmodulus and flexuralstrength values of glass fiber-cement composites were higher than neatcement.

    Generally,the panels incorporating 10%glass fiberand 1.5%MWCNTs exhibited the highest flexural modulus and flexural strength.The composites manufactured from 20%glass fiber had higher flexural modulus and flexural strength than composites made from 20%bagasse fiber or from neat cement.

    Figure 4 illustrates the effect of bagasse and glass fiber loading and MWNCTs on the un-notched impact strength of cement hybrid nanocomposites.Adding carbon nanotubes,bagasse and glass fibers to the neatcementgenerally increased the impact strength of the samples.Cement is abrittle material but when reinforcing agents are used as reinforcement,the resulting flexibility and energy absorption capacity of the panels increases(Majumdar and Nurse 1974).Panels incorporating 1%MWCNTs and 10% bagasse fiber had the highest un-notched impact strength, whereas neatcementexhibited the lowestimpactstrength. Glass and bagasse fiber can control cracks in the concrete and improve the impact strength of the composites.For high impactproperties a slightly weaker adhesion between fiber and cement should result in a higher degradation of impact energy,supporting fiber-pullout.On the contrary, good adhesion results in abrupt fiber fracture with minor energy degradation.Due to the MWCNT size and aspect ratio,it yields more efficient crack bridging at the very preliminary stage of crack propagation within composites (Musso et al.2009).

    Conclusions

    Bagasse fibers,glass fibers,and MWCNTs as reinforcing agents of neat cement increased the physical and mechanical properties of manufactured panels.Bagasse fiber was a suitable substitute for glass fiber as a reinforcing agentin cementcomposites.Addition of MWCNTs yielded positive effects on the physical and mechanical properties of the glass and bagasse fiber cement hybrid nanocomposites.Composites with 20%bagasse fiber exhibited the highest water absorption and thickness swelling values,whereas those made from 20%glass fiber exhibited the lowest values.Composites with 10%glass fiber and 1.5%MWCNTs exhibited the highest flexural modulus and flexural strength.Panels having 1% MWCNTs and 10%bagasse and glass fibers exhibited the highestun-notched impactstrength.Neatcementgenerally exhibited the lowest flexural properties and un-notched impactstrength.

    Abeysinghe CM,Thambiratnam DP,Perera NJ(2013)Flexural performance of an innovative hybrid composite floor plate system comprising glass–fibre reinforced cement polyurethane and steel laminate.Compos Struct 95:179–190

    AggarwalLK(1995)Bagasse-reinforced cementcomposites.Cement Concr Compos 17:107–112

    Ball H,Wackers M(2001)Long term durability of naturally aged GFRC containing Forton polymer.In:Clarke N,Ferry R(eds) Proceedings ofthe 13th congress ofthe International Glass Fiber Reinforced Concrete Association.Concrete Society,Dublin, pp 83–95

    Cheumani YAM,Dikontar MN,DeJeso B,Sebe G(2011)Probing of wood–cement interactions during hydration of wood–cement composites by proton low-field NMR elaxometry.J Mater Sci 46:1167–1175

    Chong KP,GarbocziEJ(2002)Smartand designerstructuralmaterial systems.Prog Struct Eng Mater 4:417–430

    Enfedaque A,Cendon D,Galvez F,Galvez VS(2010)Analysis of glass fiber reinforced cement(GRC)fracture surfaces.Constr Build Mater 24:1302–1308

    Enfedaque A,Cendon D,Galvez F,Galvez VS(2012)An alternative methodology to predict aging effects on the mechanical properties of glass fiber reinforced cements(GRC).Constr Build Mater 27:425–431

    Kazemi NS,Younesi Kordkheili H(2011)Effect of sea water on water absorption and flexuralproperties of wood-polypropylene composites.Eur J Wood Wood Prod 69:553–556

    KazemiNS,Kiaeifar A,TajvidiM(2008)Effectofbark flourcontent on the hygroscopic characteristics of wood-polypropylene composites.J Appl Polym Sci 110:3116–3120

    Lee SC,Mariatti M(2007)The effectofbagasse fibers obtained(from rind and pith component)on the properties of unsaturated polyester composites.Mater Lett 62:2253–2256

    Li GV,Wang PM,Zhao X(2007)Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites.Cem Concr Compos 29:377–382

    Liang W,Cheng J,Hu YY,Luo H(2003)Improved properties of GRC composites using commercial e-glass fibers with new coatings.Mater Res Bull 37:641–646

    Majumdar AJ,Nurse RW(1974)Glass fibre reinforced cement.Mater Sci Eng 15:107–127

    Musso S,Tulliani J,Ferro G,Tagliaferro A(2009)Influence of carbon nanotubes structure on the mechanical behavior of cement composites.Compos Sci Technol 69:1985–1990

    Nouri MR,Morshedian J(1995)Tensile and flexural behaviour of fibre reinforced cementitious composites.Iran J Polym Sci Technol 41:56–63

    Pehanich JLB,lanken horn PR,Silsbee MR(2004)Wood fiber surface treatmentleveleffects on selected mechanicalproperties of wood fiber–cement composites.Cem Concr Res 34:59–65

    Purnell P,Short NR,Page CL,Majumdar AJ(2000)Microstructural observations in new matrix glass fibre reinforced cement.Cem Concr Res 30(11):1747–1753

    Salvetat JP,Bonard JM,Thomson NH,Kulik AJ,Forro L,Benoit W, Zuppiroli L(1999)Mechanical properties of carbon nanotubes. Appl Phys A 69:255–260

    Shah SP,Ludirdja D,Daniel JI,Mobasher B(1988)Toughnessdurability of glass fiber reinforced concrete systems.ACI Mater J 85:352–360

    Tonoli GHD,Savastano H,Santos HF,Dias CMR,John VM,Lahr FAR(2011)Hybrid reinforcement of sisal and polypropylene fibers in cement-based composites.J Mater Civ Eng 23:177–187

    Younesi Kordkheili H,Hizoroglu S,Farsi M(2012)Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber.Mater Des 33:395–398

    Younesi Kordkheili H,Farsi M,Rezazadeh Z(2013)Physical, mechanical and morphological properties of polymer composites.Compos B 44:750–755

    Zakaria HMD,Abdul Awal ASM(2011)Flexuralresponse of hybrid carbon fiber thin cement composites.Constr Build Mater 25:670–677

    Zheng XL,Connel MJO,Doorn SK,Liao XZ,Zhao YH,Akhadov EA,Hoffbauer MA,Roop BJ,Jia QX,Dye RC,Peterson DE, Huang SM,Liu J,Zhu YT(2004)Ultralong single-wall carbon nanotubes.Nat Mater 3:673–676

    25 February 2013/Accepted:16 April 2013/Published online:8 January 2015

    The online version is available athttp://link.springer.com

    Corresponding editor:Chai Ruihai

    H.Y.Kordkheili(&)

    School of Wood and Paper Science and Technology,Maziyar University,P.O.Box:46417-76489,Noor,Mazandaran,Iran

    e-mail:younesi1363@gmail.com

    S.E.Shehni

    Department of Wood and Paper Science,Faculty of Natural Resources,Tarbiat Modares University,Noor,Iran

    G.Niyatzade

    Departmentof Chemistry,Payam Noor University,Tehran,Iran

    a级毛片在线看网站| 午夜久久久久精精品| 亚洲国产日韩欧美精品在线观看 | 一级黄色大片毛片| 免费看光身美女| 亚洲国产精品合色在线| 黑人巨大精品欧美一区二区mp4| 亚洲自拍偷在线| 老汉色av国产亚洲站长工具| 九色成人免费人妻av| 日本 av在线| 波多野结衣高清作品| 女生性感内裤真人,穿戴方法视频| 国产高清视频在线观看网站| 听说在线观看完整版免费高清| 18禁国产床啪视频网站| 亚洲成人久久性| 免费av不卡在线播放| 国产伦在线观看视频一区| 免费在线观看日本一区| 麻豆一二三区av精品| 欧美激情久久久久久爽电影| 精华霜和精华液先用哪个| av在线天堂中文字幕| 熟女人妻精品中文字幕| 一级毛片高清免费大全| 国产爱豆传媒在线观看| 波多野结衣高清作品| 午夜福利视频1000在线观看| 久久国产精品人妻蜜桃| 国产一区二区三区视频了| 亚洲,欧美精品.| 成人无遮挡网站| 久久伊人香网站| 白带黄色成豆腐渣| 色综合亚洲欧美另类图片| 搡老妇女老女人老熟妇| 亚洲一区高清亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 国产男靠女视频免费网站| 久久久国产精品麻豆| 99精品久久久久人妻精品| 欧美一级a爱片免费观看看| 亚洲国产高清在线一区二区三| 他把我摸到了高潮在线观看| 国产精华一区二区三区| 色哟哟哟哟哟哟| 午夜免费观看网址| 两性夫妻黄色片| 观看免费一级毛片| 欧美日韩黄片免| 精品国产美女av久久久久小说| 久久久久久久午夜电影| 黄频高清免费视频| 一个人观看的视频www高清免费观看 | 国产三级中文精品| 婷婷精品国产亚洲av在线| 五月伊人婷婷丁香| 丰满人妻一区二区三区视频av | 91av网站免费观看| 老司机午夜十八禁免费视频| 国产精品亚洲美女久久久| 2021天堂中文幕一二区在线观| 亚洲狠狠婷婷综合久久图片| 免费看日本二区| 日韩国内少妇激情av| 亚洲乱码一区二区免费版| 噜噜噜噜噜久久久久久91| 国内精品久久久久久久电影| 久久精品亚洲精品国产色婷小说| 国产又色又爽无遮挡免费看| 成人无遮挡网站| 最新美女视频免费是黄的| 精品一区二区三区视频在线观看免费| 日本精品一区二区三区蜜桃| 18禁黄网站禁片午夜丰满| 波多野结衣巨乳人妻| 久久久久亚洲av毛片大全| 俄罗斯特黄特色一大片| 91麻豆av在线| 国产视频一区二区在线看| 久久天堂一区二区三区四区| av女优亚洲男人天堂 | 狠狠狠狠99中文字幕| 99久久综合精品五月天人人| 亚洲精品一卡2卡三卡4卡5卡| 久久久成人免费电影| 久久久久国内视频| 可以在线观看毛片的网站| 国产乱人视频| 精品免费久久久久久久清纯| 高清在线国产一区| 国产极品精品免费视频能看的| 久久精品人妻少妇| 国产欧美日韩一区二区三| 亚洲精华国产精华精| 久久久久精品国产欧美久久久| 日本成人三级电影网站| 久久久水蜜桃国产精品网| 成人性生交大片免费视频hd| 国产精品99久久久久久久久| av欧美777| 日韩高清综合在线| 日日摸夜夜添夜夜添小说| 波多野结衣高清无吗| 国产精品自产拍在线观看55亚洲| 首页视频小说图片口味搜索| 成年版毛片免费区| 波多野结衣高清作品| 国产麻豆成人av免费视频| 欧美高清成人免费视频www| 女人高潮潮喷娇喘18禁视频| 久久亚洲真实| 国产又黄又爽又无遮挡在线| 老汉色∧v一级毛片| 琪琪午夜伦伦电影理论片6080| 国产成人一区二区三区免费视频网站| 国产精品国产高清国产av| 在线永久观看黄色视频| 午夜精品久久久久久毛片777| 99国产精品99久久久久| 最新中文字幕久久久久 | 色老头精品视频在线观看| 久久亚洲精品不卡| 国产欧美日韩一区二区精品| 国产伦在线观看视频一区| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 黑人欧美特级aaaaaa片| 久久久久亚洲av毛片大全| 18禁美女被吸乳视频| 久久伊人香网站| 日本黄大片高清| 成人特级av手机在线观看| 最新在线观看一区二区三区| 黑人巨大精品欧美一区二区mp4| www.999成人在线观看| 黄色片一级片一级黄色片| 特级一级黄色大片| 精品乱码久久久久久99久播| 黄色片一级片一级黄色片| 国产成人av激情在线播放| 国产乱人伦免费视频| 91字幕亚洲| 久久天堂一区二区三区四区| 亚洲av电影在线进入| 两性夫妻黄色片| 精品久久蜜臀av无| 亚洲av中文字字幕乱码综合| 日韩国内少妇激情av| 国内精品美女久久久久久| 国产成人系列免费观看| or卡值多少钱| bbb黄色大片| 免费电影在线观看免费观看| 久久久国产欧美日韩av| 国产伦精品一区二区三区视频9 | 制服人妻中文乱码| 一个人看的www免费观看视频| 精品一区二区三区视频在线观看免费| 久久久久久人人人人人| 99re在线观看精品视频| 床上黄色一级片| 麻豆av在线久日| 色视频www国产| 免费观看精品视频网站| 在线a可以看的网站| 99国产极品粉嫩在线观看| 天堂动漫精品| 天天躁日日操中文字幕| 日本 欧美在线| 99精品久久久久人妻精品| 精品一区二区三区av网在线观看| 亚洲自拍偷在线| www.www免费av| 人人妻人人看人人澡| 国产一区在线观看成人免费| 久久九九热精品免费| 在线国产一区二区在线| 香蕉av资源在线| 18禁黄网站禁片午夜丰满| 欧美日韩瑟瑟在线播放| АⅤ资源中文在线天堂| 午夜福利成人在线免费观看| 亚洲 国产 在线| av视频在线观看入口| 两个人看的免费小视频| 亚洲国产精品sss在线观看| 免费看十八禁软件| 搞女人的毛片| 国产精品免费一区二区三区在线| 精品一区二区三区四区五区乱码| 亚洲电影在线观看av| 国产一区二区三区在线臀色熟女| xxx96com| 一级a爱片免费观看的视频| 嫁个100分男人电影在线观看| 日日摸夜夜添夜夜添小说| 巨乳人妻的诱惑在线观看| 久久九九热精品免费| 成人永久免费在线观看视频| 宅男免费午夜| 成人三级做爰电影| 一进一出抽搐gif免费好疼| 一个人免费在线观看电影 | or卡值多少钱| 国产人伦9x9x在线观看| 国产成人系列免费观看| 狂野欧美白嫩少妇大欣赏| 免费无遮挡裸体视频| 久久久久久久久免费视频了| 又粗又爽又猛毛片免费看| 啪啪无遮挡十八禁网站| 真人做人爱边吃奶动态| 男人舔女人下体高潮全视频| 老司机午夜十八禁免费视频| 在线观看免费视频日本深夜| 天天添夜夜摸| 桃色一区二区三区在线观看| 熟妇人妻久久中文字幕3abv| 国内少妇人妻偷人精品xxx网站 | 真实男女啪啪啪动态图| www日本在线高清视频| 18禁观看日本| 亚洲国产欧美人成| 欧美乱妇无乱码| 国产成人啪精品午夜网站| 欧美精品啪啪一区二区三区| 亚洲成人精品中文字幕电影| 一个人免费在线观看电影 | 日韩欧美精品v在线| 日本a在线网址| 色综合欧美亚洲国产小说| www日本在线高清视频| 一区福利在线观看| 又大又爽又粗| 黑人欧美特级aaaaaa片| 我的老师免费观看完整版| 国产黄a三级三级三级人| 成人性生交大片免费视频hd| 亚洲国产欧美网| 日本五十路高清| 午夜福利高清视频| 精品人妻1区二区| 精品电影一区二区在线| 人妻丰满熟妇av一区二区三区| 午夜两性在线视频| av在线天堂中文字幕| 亚洲精品456在线播放app | 国产精华一区二区三区| 日韩大尺度精品在线看网址| 欧美日本亚洲视频在线播放| 巨乳人妻的诱惑在线观看| 欧美日韩黄片免| av福利片在线观看| 久久精品91蜜桃| 国产一区二区三区视频了| 欧美不卡视频在线免费观看| 免费看光身美女| 9191精品国产免费久久| 亚洲av五月六月丁香网| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久久中文| 日本熟妇午夜| 亚洲人成网站在线播放欧美日韩| 我的老师免费观看完整版| 18禁黄网站禁片免费观看直播| 97超视频在线观看视频| 日韩欧美免费精品| 午夜福利视频1000在线观看| 两人在一起打扑克的视频| 在线播放国产精品三级| 亚洲av成人一区二区三| 又紧又爽又黄一区二区| 国产高潮美女av| 91av网一区二区| 一二三四社区在线视频社区8| 成人鲁丝片一二三区免费| 成熟少妇高潮喷水视频| 99精品在免费线老司机午夜| 国产毛片a区久久久久| 国产高潮美女av| 久久亚洲精品不卡| 久久久国产精品麻豆| 18美女黄网站色大片免费观看| 天天躁日日操中文字幕| 亚洲国产欧美一区二区综合| 精品熟女少妇八av免费久了| 精品久久久久久成人av| 小蜜桃在线观看免费完整版高清| 国产精品一区二区三区四区免费观看 | 亚洲一区二区三区不卡视频| 全区人妻精品视频| 久久久久久九九精品二区国产| 色噜噜av男人的天堂激情| 国产午夜精品久久久久久| 免费搜索国产男女视频| 国产麻豆成人av免费视频| 国产久久久一区二区三区| 美女被艹到高潮喷水动态| 少妇熟女aⅴ在线视频| av在线蜜桃| 久久亚洲精品不卡| 亚洲性夜色夜夜综合| 国模一区二区三区四区视频 | 国产精品久久久久久久电影 | 精华霜和精华液先用哪个| 一个人免费在线观看的高清视频| 后天国语完整版免费观看| 在线播放国产精品三级| 亚洲午夜精品一区,二区,三区| 男人舔女人下体高潮全视频| 亚洲七黄色美女视频| 成年免费大片在线观看| 中文字幕高清在线视频| 不卡一级毛片| 美女高潮喷水抽搐中文字幕| 香蕉av资源在线| 成在线人永久免费视频| 日韩有码中文字幕| 精品国内亚洲2022精品成人| 亚洲一区二区三区色噜噜| 18禁国产床啪视频网站| 一个人观看的视频www高清免费观看 | 国产美女午夜福利| 免费观看精品视频网站| 国产亚洲精品久久久久久毛片| 亚洲片人在线观看| 欧美zozozo另类| 特大巨黑吊av在线直播| 特级一级黄色大片| 日韩成人在线观看一区二区三区| 九九热线精品视视频播放| 在线观看免费午夜福利视频| 中文字幕久久专区| 日本黄大片高清| 国产精品一区二区三区四区久久| 国产亚洲av嫩草精品影院| 国产综合懂色| 熟女电影av网| 97超视频在线观看视频| 两性夫妻黄色片| 久久久久久久久免费视频了| av在线蜜桃| 成年女人永久免费观看视频| 欧美日韩一级在线毛片| 国产av麻豆久久久久久久| 国内少妇人妻偷人精品xxx网站 | 国产在线精品亚洲第一网站| 久久香蕉精品热| 丰满人妻一区二区三区视频av | 十八禁网站免费在线| 亚洲色图 男人天堂 中文字幕| 国产成人av激情在线播放| 999久久久精品免费观看国产| 88av欧美| av女优亚洲男人天堂 | 99精品欧美一区二区三区四区| 性色avwww在线观看| 两个人看的免费小视频| 欧美三级亚洲精品| 亚洲熟妇中文字幕五十中出| 成人av在线播放网站| 国产伦精品一区二区三区四那| 日本免费一区二区三区高清不卡| 黄频高清免费视频| www国产在线视频色| 国产精品乱码一区二三区的特点| 此物有八面人人有两片| 九九热线精品视视频播放| 精品无人区乱码1区二区| 99久久99久久久精品蜜桃| 女人高潮潮喷娇喘18禁视频| 偷拍熟女少妇极品色| aaaaa片日本免费| 午夜日韩欧美国产| 波多野结衣高清无吗| 九九热线精品视视频播放| 狂野欧美白嫩少妇大欣赏| 国产精品野战在线观看| 18禁观看日本| 亚洲精品粉嫩美女一区| 一级作爱视频免费观看| 日日摸夜夜添夜夜添小说| 日韩欧美 国产精品| 亚洲精品美女久久av网站| 一级作爱视频免费观看| 国产av麻豆久久久久久久| 999久久久国产精品视频| 亚洲av日韩精品久久久久久密| 熟女人妻精品中文字幕| 真人做人爱边吃奶动态| 亚洲 国产 在线| 亚洲精品美女久久av网站| 久久久色成人| 波多野结衣巨乳人妻| 99国产极品粉嫩在线观看| 欧美性猛交╳xxx乱大交人| aaaaa片日本免费| 免费在线观看视频国产中文字幕亚洲| 美女午夜性视频免费| 一个人观看的视频www高清免费观看 | 色视频www国产| 不卡av一区二区三区| 国产真人三级小视频在线观看| 欧美在线一区亚洲| 日韩欧美在线二视频| 全区人妻精品视频| 国产av不卡久久| 老司机午夜十八禁免费视频| 国产熟女xx| 97人妻精品一区二区三区麻豆| 两个人视频免费观看高清| 国产精品久久电影中文字幕| 九九在线视频观看精品| 亚洲熟妇中文字幕五十中出| 一进一出抽搐动态| 亚洲无线观看免费| avwww免费| 国产精品 国内视频| 久久国产精品人妻蜜桃| 日本黄色视频三级网站网址| 老汉色av国产亚洲站长工具| 精品熟女少妇八av免费久了| 国产亚洲精品av在线| 丁香欧美五月| 又大又爽又粗| 一级毛片精品| 国产三级在线视频| 色播亚洲综合网| 日韩欧美国产在线观看| 麻豆久久精品国产亚洲av| 亚洲无线在线观看| 久久久久国产一级毛片高清牌| 老熟妇乱子伦视频在线观看| 久久天堂一区二区三区四区| 国产淫片久久久久久久久 | 亚洲美女黄片视频| 国产伦在线观看视频一区| 日韩成人在线观看一区二区三区| 亚洲黑人精品在线| 国产 一区 欧美 日韩| 每晚都被弄得嗷嗷叫到高潮| 嫩草影院精品99| 亚洲 欧美一区二区三区| 国产精品,欧美在线| 美女扒开内裤让男人捅视频| 午夜影院日韩av| 亚洲人与动物交配视频| 亚洲电影在线观看av| 最近最新免费中文字幕在线| 天天一区二区日本电影三级| 露出奶头的视频| 怎么达到女性高潮| 美女黄网站色视频| 老司机福利观看| 国产男靠女视频免费网站| 99精品久久久久人妻精品| 午夜两性在线视频| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品合色在线| 久久中文字幕人妻熟女| 少妇的逼水好多| 国产一区二区在线av高清观看| 制服人妻中文乱码| 一区福利在线观看| 精品久久蜜臀av无| 亚洲乱码一区二区免费版| 精品无人区乱码1区二区| 999久久久国产精品视频| 18禁裸乳无遮挡免费网站照片| 欧美不卡视频在线免费观看| 精品免费久久久久久久清纯| 欧美日本视频| 亚洲无线在线观看| 精品久久久久久久人妻蜜臀av| 中文字幕人妻丝袜一区二区| 亚洲国产中文字幕在线视频| 97人妻精品一区二区三区麻豆| e午夜精品久久久久久久| 亚洲 国产 在线| 欧美日韩福利视频一区二区| 国产一级毛片七仙女欲春2| 黄片大片在线免费观看| 夜夜看夜夜爽夜夜摸| 色精品久久人妻99蜜桃| 色老头精品视频在线观看| 在线观看美女被高潮喷水网站 | 久久久国产精品麻豆| 美女被艹到高潮喷水动态| 99在线人妻在线中文字幕| 欧美最黄视频在线播放免费| 亚洲熟妇中文字幕五十中出| 亚洲av成人精品一区久久| 日本精品一区二区三区蜜桃| 亚洲人成网站高清观看| 国产91精品成人一区二区三区| www.熟女人妻精品国产| 黄色女人牲交| 特大巨黑吊av在线直播| 美女午夜性视频免费| 欧美色欧美亚洲另类二区| 成人国产一区最新在线观看| 精品一区二区三区视频在线 | av天堂在线播放| 麻豆成人午夜福利视频| 我的老师免费观看完整版| 亚洲色图 男人天堂 中文字幕| 午夜福利在线观看免费完整高清在 | 99久久综合精品五月天人人| 五月伊人婷婷丁香| 精品久久蜜臀av无| 国产真人三级小视频在线观看| 精品日产1卡2卡| 亚洲成人中文字幕在线播放| 久久久久国产一级毛片高清牌| 亚洲国产精品999在线| 成年女人毛片免费观看观看9| 亚洲国产精品999在线| 精品久久蜜臀av无| 欧美在线黄色| 亚洲国产精品久久男人天堂| 他把我摸到了高潮在线观看| 国产高清videossex| 免费电影在线观看免费观看| 日本一本二区三区精品| 亚洲18禁久久av| 啦啦啦韩国在线观看视频| 亚洲av免费在线观看| 真实男女啪啪啪动态图| 18禁国产床啪视频网站| 最近最新中文字幕大全电影3| 欧美极品一区二区三区四区| 美女大奶头视频| 99久久综合精品五月天人人| av欧美777| 久久午夜综合久久蜜桃| 99精品欧美一区二区三区四区| 亚洲在线观看片| 国产高清视频在线观看网站| 啦啦啦韩国在线观看视频| 久久精品综合一区二区三区| 亚洲 欧美一区二区三区| 成年女人永久免费观看视频| 亚洲av成人一区二区三| 免费大片18禁| 欧美激情久久久久久爽电影| 久久亚洲真实| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片| 一区二区三区激情视频| 久久性视频一级片| 三级国产精品欧美在线观看 | 999久久久精品免费观看国产| 最近在线观看免费完整版| 亚洲 国产 在线| 美女高潮的动态| 少妇丰满av| 国产 一区 欧美 日韩| 日韩三级视频一区二区三区| 亚洲中文日韩欧美视频| 中文字幕熟女人妻在线| 搡老熟女国产l中国老女人| 亚洲无线在线观看| 欧美绝顶高潮抽搐喷水| 母亲3免费完整高清在线观看| 久久国产精品影院| 麻豆成人午夜福利视频| 久久欧美精品欧美久久欧美| 免费在线观看成人毛片| 日本与韩国留学比较| 欧美日韩亚洲国产一区二区在线观看| 国产免费av片在线观看野外av| 天堂影院成人在线观看| 波多野结衣高清作品| 国产成人精品久久二区二区免费| 91av网站免费观看| 欧美日韩精品网址| 午夜福利视频1000在线观看| 日韩欧美 国产精品| aaaaa片日本免费| 欧美在线黄色| 一本精品99久久精品77| 免费高清视频大片| 中文字幕高清在线视频| 观看美女的网站| 变态另类成人亚洲欧美熟女| 国产精华一区二区三区| 国产精品综合久久久久久久免费| x7x7x7水蜜桃| 丁香欧美五月| 黄色丝袜av网址大全| 亚洲国产欧洲综合997久久,| 亚洲中文日韩欧美视频| 一夜夜www| 在线a可以看的网站| 两性夫妻黄色片| 欧美又色又爽又黄视频| 亚洲第一欧美日韩一区二区三区| 男女下面进入的视频免费午夜| xxx96com| 露出奶头的视频| 婷婷亚洲欧美| 久久性视频一级片| 伊人久久大香线蕉亚洲五| 老司机午夜福利在线观看视频| 最新中文字幕久久久久 | 18禁观看日本| 久久精品国产99精品国产亚洲性色| 国内揄拍国产精品人妻在线| 亚洲av成人精品一区久久| 噜噜噜噜噜久久久久久91| 亚洲国产精品合色在线| 给我免费播放毛片高清在线观看| 老熟妇仑乱视频hdxx|