• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Carbon stocks of different land uses in the Kumrat valley,Hindu Kush Region of Pakistan

    2015-06-19 18:30:50AdnanAhmadSyedMoazzamNizami
    Journal of Forestry Research 2015年1期

    Adnan Ahmad?Syed Moazzam Nizami

    Carbon stocks of different land uses in the Kumrat valley,Hindu Kush Region of Pakistan

    Adnan Ahmad?Syed Moazzam Nizami

    Changes in land use cover,particularly from forest to agriculture,is a major contributing factor in increasing carbon dioxide(CO2)level in the atmosphere. Using satellite images of1999 and 2011,land use and land use changes in the Kumrat valley KPK,Pakistan,were determined:a netdecrease of11.56 and 7.46%occurred in forest and rangeland,while 100%increase occurred in agriculture land(AL).Biomass in different land uses, forest land(FL),AL,and range land(RL)was determined by field inventory.From the biomass data,the amount of carbon was calculated,considering 50%of the biomass as carbon.Soilcarbon was also determined to a depth of0–15 and 16–30 cm.The average carbon stocks(C stocks)in all land uses ranged from 28.62±13.8 tha-1in AL to 486.6±32.4 tha-1in pure Cedrus deodara forest.The results of the study confirmed that forest soil and vegetation stored the maximum amount of carbon followed by RL.Conversion of FL and RL to AL notonly leads to total loss of about 56%(from FL conversion)and 37%(RL conversion)of soil carbon in the last decades but also the loss of a valuable carbon sink.In order to meet the emissions reduction obligations of the Kyoto Protocol,Conservation of forest and RL in the mountainous regions ofthe Hindu Kush will help Pakistan to meet its emissions reduction goals under the Kyoto Protocol.

    Hindu KushKumrat valleyLand usesBiomassCarbon stocks

    Introduction

    Land-use,land-use change and forestry(LULUCF)contribute to ongoing anthropogenic climate change(Houghton 2003),and have consequently received increasing research attention over the lastdecade(Rokityanskiy etal. 2007;Running 2008;Smith 2008;Strassmann etal.2008; Zomer etal.2008).LULUCF is one of the five sources of greenhouse gases(GHGs)included in the United Nations Framework Convention on Climate Change(UNFCC) (UNFCCC 1992),and impact global GHGs emissions, biodiversity and land quality(Cowie etal.2007).However, LULUCF can also make a significant contribution to the reduction of GHGs,by increasing the carbon storage of terrestrial ecosystems(carbon sequestration),by conserving existing C stocks(e.g.by avoiding deforestation orland degradation),and by providing renewable energy(biomass production)(Andersson et al.2009).Such LULUCF activities are expected to provide a significant and costeffective way by which atmospheric CO2concentration can be reduced,at leastin the short-to medium-term(Nabuurs et al.2007).They can also assist countries in meeting part of their emissions reduction targets thatare being proposed for the years after the Kyoto Protocol’s first compliance period(2008–2012)(Gainza-Carmenates et al.2010). Furthermore,mitigation-driven LULUCF activities could have positive effects on the provision of other ecosystem services(Schroter et al.2005).

    The effects of mitigation-driven LULUCF activities are expected to be regionally unique,as changes in C stocks depend on many regional factors including suitability for different land uses,and the effectiveness of policy for carbon sequestration(Nabuurs et al.2007).Detailed regional-level analyses are therefore needed to provide accurate estimates of LULUCF offsetpotentials,in orderto help achieve the GHGs targetreduction under a post-2012 climate agreement.Nevertheless,relatively few spatially explicit studies have been undertaken to date on the potential effects of land-use change on C stocks(Bolliger et al.2008;Tappeiner et al.2008).

    The forests of Pakistan,especially the northern mountain forests,are rich in biodiversity and considered integral to the nationaleconomy.However they are under extreme threats from deforestation(Tanviretal.2007).The present study was carried out in the Kumrat valley of the Hindu Kush region.The aim of the study was to quantify C stock in differentland uses and to find outthe effectof land use conversion on C stocks.The objectives of the study were to estimate above-ground and below-ground biomass in different land uses and to estimate C stock in these land uses.

    Materials and methods

    Study area

    The study was conducted in Kumratvalley Dir(U),Khyber Pukhtoonkhwa Khwa(KPK),which is located on the northwest side of KPK and to the north of Dir proper(Dir upper).The latitude and longitude of study area is 3532011.4400N 7213045.0100E.The elevation of the area ranges from 2,439 to 3,048 m.Average precipitation ranges from 1,200 to 600 mm.Major types of rocks in study area are granite,diorite,norites and schist.The soil is mostly loam or sandy loam.

    Land use and land use cover change assessment

    To assess land use and land use cover change,temporal images from 1999 and 2011 were downloaded from the website of US Geological Survey departmenthttp://glovis. usgs.gov/.These images were of 30 m spatial resolution. The images were putin ERDAS Imagine software and the area of interestwas clipped from a complete scene.Image enhancement techniques,such as NDVI(Normalized Difference Vegetation Index),was applied to enhance the vegetation.Then signatures for different classes,including forests,agriculturallands,range lands(RLs),barren lands, and water bodies were taken in the software ERDAS. Using these signatures,the entire study area was organized into defined classes and then the classified images were imported to ArcGIS.The area for each class of each year was calculated in ArcGIS and two maps(1999 and 2011) were prepared(Fig.1).In addition,forest maps,topographic sheets,and the 1995 working plan of the Upper Dir KPK were also used for land-use assessment.

    Field enumeration in each land use

    Overall60 plots(10 plots each in RL and agriculturalland, while 40 plots in forest land(FL)use;Fig.1)were laid out according to terrain,time,and budgetconstraint.The size of each plotwas 1 ha in FL,while in agriculture and RL,the size ofeach plotwas 0.1 ha.Plots were randomly located in study area(Fig.1).In each plotofFL,tree height(m),tree diameter (cm)atbreastheight(dbh)wasmeasured.Treeheight(m)was measured by Abney’s level.Tree volume(m3ha-1)of all sampling sites in each foreststand was calculated as:

    where SV is stem volume(m3);h is the heightof the tree in meters;d2is the square of bdh and f is form factor.The calculated volume(m3ha-1)in each stand was multiplied with the basic wood density(kg m-3)of respective tree species to calculate total stem biomass.Wood density of the respective tree species was sourced from the available literature(Haripriya 2000).

    where SB is the stem biomass(kg),SV is the stem volume, and WD is the wood density

    Biomass expension factors(BEF)of the respective species were sourced from available literature(Haripriya 2000).The BEF was used to calculate the total biomass of an entire forest.In order to calculate the biomass of understory vegetation(Usv),rangeland,and AL,10 sub plots of 1 m2were laid outin each sample plot,then the vegetation was harvested and put in bags and their fresh weight was determined.The samples were dried in an oven at 72C for 48 h to obtain their dry weight.

    Calculation of C stocks in each land use

    The total C stock in each land use was calculated from total biomass.The totalbiomass of each land use was multiplied with conversion factor of 0.5 that has been used globally (Roy et al.2001;Brown and lugo 1982;Malhi et al.2004; Nizami2012).

    Soil sampling and analysis

    To calculate soil carbon,soil samples were taken from all sample plots of the respective land uses.Three soilsamples from each plot,at depths of 0–15 and 16–30 cm,weretaken by auger yielding soil cores of known volume 198.29 cm3(height=7.25 cm and diameter=5.9 cm). The weight of each sample was determined and the soil bulk density was calculated by dividing the weight of soil (gm)with the volume(cm3)of the core.Soil carbon was calculated,using the Walkley and Black method(1934). Total soil in tha-1was calculated by using the following formula(Nizami 2012).

    Fig.1 Classified Image of the study area in years 1999 and 2011

    where SC means Soil carbon(t ha-1),SOC-soil organic carbon(t ha-1),SBD-Soil Bulk density(gm cm-3),THThickness of horizon(cm).

    Results

    Land use and land use cover change

    Based on satellite images from 1999 and 2011,land use and land use cover changes were determined,including the totalarea of each land use(Table 1).In 2011,four overall land uses—water bodies,FL,barren lands,and RLs—were identified in addition to one new land use,agriculture. Based on ground verification and surveys,FL was further classified into pure Pinus wallichiana forest(PPWF),pure Cedrus deodara forest(PCDF),pure Abies pindrow forest (PAPF),and mixed conifer forest(MCF).Stem density,stem volume,stem biomass,and totaltree biomass in FL

    Table 1 Land use in 1999 and2011 in the study area

    Table 2 Average stem density(D),basalarea(BA),volume(V),stem biomass(STB),totaltree biomass(TTBM)and totalbiomass(TBM)in each forest stand(FS)

    In each forest,the stem density(No.of trees ha-1),stem volume(m3ha-1),upper-story vegetation biomass (USVB),and under-story vegetation biomass(uSVB; t ha-1)was calculated(Table 2).Stem density was maximum in MCF and minimum in PCDF.Stem density decreased with increases in diameter(Fig.2).The maximum basal area(m2ha-1)and volume(m3ha-1)was recorded in PCDF,followed by PAPF.The minimum basal area(m2ha-1)and volume(m3ha-1)was recorded in PPWF.The average stem biomass in the foreststand ranges from 304.2±37.7 to 548.33±36(t ha-1).The highest stem biomass was recorded in PCDF and lowest in PPWF.

    In the present study,two forests(PCDF and PAPF) consist of old-age trees with large diameters,which resulted in more basal area,stem volume,and stem biomass as compared to PPWF and MCF.Stem volume and stem biomass has a direct relationship with basal area.In each foreststand,the relation of stem volume and biomass with basal area is given in Figs.3,4).In PPWF and MCF, there were fewer old-age trees.Total tree biomass in each forest was calculated using the allomatric equations.The value of above and below-ground biomass was calculated as 459.2.9±56.9 t ha-1in PPWF to 827.9±55.4 tha-1in PCDF.

    Understory vegetation(uSV)in each foreststand mainly consisted of various grasses,forbs and shrubs.Among grasses Cynodon dacttylon,Agropyron dentatum,A.canaliculatum and Poa species dominates while major forbs are Caltha alba,Bergenia ciliate,Rumux dentatus,Pomi emodia,and Plantago major.In PPWF,the dominant uSV were grasses with an average understorey biomass equals to 1.69 t ha-1.The mean biomass of uSV in PCDF was 1.1 t ha-1.The mean uSV biomass in MCF and PAPF was 1.6 and 2.6 t ha-1.In PPWF and MCF,the USV mainly consisted of grasses with associated woody shrubs and forbs,which resulted more biomass as compared to PCDF and PAPF.

    Fig.2 Relationship between stem density(No.of trees ha-1)and stem diameter(cm)in pure Pinus wallichiana forest(PPWF),pure Abies pindrow forest(PAPF),pure Cedrus deodara forest(PCDF), mixed conifer forest(MCF),respectively

    Total biomass in agricultural land(AL)and rangeland (RL)

    The mean biomass of AL was 2.91±0.870 t ha-1.The mean biomass of RL was 5.86±2.788 t ha-1.In RL, grasses were the dominant vegetation.Species like Artemisia spp,Indigofera wallichiana,Rosa webbiana and Berberis lyceum were also found in RL.

    Fig.4 Relationship between stem biomass and basal area in pure Pinus wallichiana forest(PPWF),pure Abies pindrow forest(PAPF),pure Cedrus deodara forest(PCDF),mixed conifer forest(MCF),respectively

    Calculation of C stocks in each land use

    C stock in each land use was calculated from the total biomass.Details of C stocks in each land use are given in Table 3.The study revealed that among the different land uses FL holds maximum C stocks followed by RL.The forests of the study sites consisted of mature trees.The value of%CV in case of PCDF and PAPF yielded little variation as compared to PPWF and MCF.In PCDF and PAPF,the uniform nature(same age and diameter)of vegetation resulted in little variation.In RL,the sample plots where the vegetation was mixed(grasses,forbs andwoody spp)had more biomass and higher value of C stocks.The sites where dominant vegetation was either grasses or forbs contained a minimum value of carbon. Similarly in AL in some sites,the contribution of weed biomass was greater,which gave higher values of biomass and carbon,while on other sites,the weed contribution in biomass was less,therefore responsible forminimum value of biomass and carbon.

    Table 3 C-stocks and total ecosystem C-stocks in each land use

    Soil carbon calculation in all land uses

    The mean soil carbon in PPWF,PAPF,PCDF,MCF,AL and RL was 63.3,72.12,75.03,71.4 and 27,47.1 t ha-1, respectively.Among allland uses,FL holds the maximum soil carbon(70.78 tha-1),followed by RL(47.05 tha-1) while the AL hold minimum soil carbon of 28.62 tha-1. FL,particularly PPWF and RL,were converted to AL in last 10 years.It can be concluded from the present study that forest and RL conversion to AL resulted in a loss of 43.78 t ha-1atthe rate of 3.46 t ha-1a-1in the forestand 20.05 t ha-1(at the rate of 1.673.46 t ha-1a-1)in rangeland from 1999 to 2011.

    Total C stocks in allland uses

    The total C stocks in each land use was determined from respective componentsofcarbon.Thecomponentsofcarbon in each land use were the totalbiomassofvegetation and soil carbon(Table 3).Among the land uses,FL hold the maximum amountofcarbon of349.84±30.79 t ha-1,followed by RL(50±6.5 t ha-1).Minimum carbon stocksamong all land was recorded in AL(28.62±13.85 tha-1).Itcan be concluded from the results of presentstudy thatforestsoil and vegetation stored the highest level of carbon as compared to otherland uses.Deforestation in the study area not only caused an addition release ofcarbon to the atmosphere butalso destruction ofvaluable sink ofcarbon.

    Discussion

    The value oftotalbiomass in the presentstudy ranged from 437.76±76 tha-1MCF to 809.91±76.03 tha-1PCDF. Thehighestlevelofbiomasswasrecorded in PCDF followed by PAPF.Thesebiomassvaluesarecomparablewith thosein Gupta and Sharma(2011)in India.The forest stand was comprised of old age trees with high tree density(fully stocked),which resulted in more biomass and C stocks. PCDF and PAPF stored more carbon compared to othertwo forests(PPWF and MCf)thatcontained 405.77±38.24 and 266.50±19.tha-1,respectively.Similarresultsin Cedrus deodara and Abies pindrow forest have been reported by Gupta and Sharma(2011).Old growth foresthad more carbon stocks because of more tree layer biomass,which is a time-dependentaccretion of carbon(Zang etal.2012).

    Soil carbon is an integral part of a particular ecosystem. Soilcarbon ranged from 35.033 t ha-1(AL)to 70.78 tha-1(FL).The presentstudy revealed thatamong differentland uses,FL had more soilcarbon followed by RL.The resultsof the presentstudy also showed thatin allfour foreststands, PAPF held the maximum soilcarbon(75.02 t ha-1).Gupta and Sharma(2011)reported soil carbon of 132±22.73, 120.35±25.86,and 85.67±30.20 t ha-1in the Abies pindrow and Picia smithina mixed forest,Cedrus deodara and Pinus wallichiana forests of India respectively.In FL, they estimated an average soilcarbon as78.49 tha-1,while in horticulture and grassland,they estimated an average soil carbon of 45.13±27.25 and 75.76±44.00 tha-1, respectively.The presentstudy also showed the same pattern of higher soil carbon in respective forest stands and other land uses.The conversion of forestand RL to agricultural land can be linked to the rapid increase in population and migration of people to upland area.The present study revealed that the area was under high pressure from local people regarding forestand RL degradation and conversion to AL.The results indicated thatFL stored the highestlevel ofcarbon followed by RL.These differencesin totalcarbon in each land use confirmed thatconversion of FL and RL to AL caused enormous carbon losses.Across the land uses, totalmean C stocks range from 28.62±13 t ha-1in AL to 477.82±39.5 t ha-1in PCDF.The differences of C stocks in different land uses are consistent with Sharma and Rai (2007).

    Land use change,particularly from forest to AL,is the most significant factor in terms of change in C stocks around the globe(Lietal.2008).Forests have the ability tostore 20 to 100 times more carbon ha-1than cropland and upon conversion of forest to agricultural land(Houghton 2003).The same results were recorded in the present study where the PCDF contain about 20 times more carbon as compare to AL.

    Zang etal.(2012)pointed outthat soildisturbance due to site preparation and tree planting reduces soil carbon. Sharma and Rai(2007)reported that soil carbon loss is greater(92%)in cropped areas as compared to forests due to disturbances.The grass land conversion to cropland decreases carbon content in soil(Yan et al.2009).Conversion of forest into cropland reduced the amount of soil carbon by 32%over 15 years(Fantaw etal.2007).Similar results were found in the present study.Conversion of FL resulted in a loss of56%ofsoilcarbon ata depth of30 cm over the lastdecade.The conversion of RL to AL resulted loss of 37%of soil carbon at a depth of 30 cm.Agricultural practices like cultivation,removal of vegetation cover,and exposure of soilto erosion caused a significant reduction in soil carbon.

    The results of the present study corroborated that forest soil and vegetation sustained more carbon than AL.Similarly,RL soil and vegetation hold more carbon than AL, soiland vegetation.The results of the study confirmed that conversion of FL and RL to AL caused loss of 29.15 and 4.16 t ha-1a-1carbon from 1999 to 2011 respectively. Afforestation,reforestation,and rehabilitation of degraded forest and RL can play in important role in mitigation of atmospheric carbon dioxide.The area has greatpotentialin term of carbon trading under CDM of Article 12 of Kyoto protocol.Proper management of land,control of deforestation,reforestation of degraded land,and rehabilitation of degraded RL can be significant steps for carbon sequestration in the study area and inclusion in carbon trading.

    Andersson K,Evans TP,Richards KR(2009)National forest carbon inventories:policy needs and assessmentcapacity.Clim Change 93:69–101

    Bolliger J,Hagedorn F,Leifeld J,Bo¨hl J,Zimmermann S,Soliva R, Kienast F(2008)Effects of land-use change on carbon stocks in Switzerland.Ecosystems 11:895–907

    Brown S,Lugo AE(1982)The storage and production of organic matter in tropical forest and their role in global carbon cycle. Biotropica 14:161–187

    Cowie A,Schneider UA,Montanarella L(2007)Potential synergies between existing multilateral environmental agreements in the implementation of land use,land-use change and forestry activities.Environ Sci Policy 10:335–352

    Fantaw Y,Stig L,Abdu A(2007)Changes in soilorganic carbon and total nitrogen contents in three forest covers and land use types in the Bale Mountains,south-eastern highlands of Ethiopia.For Ecol Manage 242:337–342

    Gainza-Carmenates R,Carlos Altamirano-Cabrera J,Thalmann P, Drouet L(2010)Trade-offs and performances of a range of alternative global climate architectures for post-2012.Environ Sci Policy 13:63–71

    Gupta MK,Sharma SD(2011)Sequestrated carbon:organic carbon poolin the soils under differentland uses in Garhwal Himalayan Region of India.Int J Agricu For 1(1):14–20

    Haripriya GS(2000)Estimates of biomass in Indian forests.Biomass Bioenerg 19:245–258

    Houghton RA(2003)Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000.Tellus,Ser B 55:378–390

    LiH,Ma Y,Aide TM,Liu W(2008)Past,presentand future land-use in Xishuangbanna,China and the implications for carbon dynamics.For Ecol Manage 255:16–24

    Malhi Y,Baker TR,Phillips OL,Almeida S,Alvarez E,Arroyo L, Chave J,CzimczikI CI,Fiore AD,Higuchi N,Killeen TJ, Laurance SG,Laurance WF,Lewis SL,Montoya LMM,Lloyd J (2004)The above ground coarse wood productivity of 104 Neotropical forest plots.Glob Change Biol 10:563–591

    Nabuurs GJ,Masera O,Andrasko K,Benitez-Ponce P,Boer R, Dutschke M,Elsiddig E,Ford-Robertson J,Frumhoff P, Karjalainen T,Krankina O,Kurz W,Matsumoto M,Oyhantcabal W,Ravindranath NH,Sanz Sanchez MJ,Zhang X(2007) Forestry.In:Metz B,Davidson OR,Bosch PR,Dave R,Meyer LA(eds)Climate change 2007:mitigation.Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change,Cambridge University Press,Cambridge,UK

    Nizami SM(2012)The inventory of the carbon stocks in sub-tropical forestof Pakistan for reporting under Kyoto Protocol.J For Res 23(2):377–384

    Philip MS(1994)Measuring trees and forests,2nd edn.CAB. International,Wallingford

    Rokityanskiy D,Benitez PC,Kraxner F,McCallum I,Obersteiner M, Rametsteiner E,Yamagata Y(2007)Geographically explicit global modeling of land-use change,carbon sequestration,and biomass supply.Technol Forecast Soc Chang 74:1057–1082

    Roy J,Saugier B,Mooney H(2001)Terrestrial global productivity: past.Academic Press,San Diego

    Running SW(2008)Climate change:ecosystem disturbance,carbon, and climate.Science 321:652–653

    Schroter D,Cramer W,Leemans R,Prentice IC,Araujo MB,Arnell NW,Bondeau A,Bugmann H,Carter TR,Gracia CA,de la Vega-Leinert AC,Erhard M,Ewert F,Glendining M,House JI, Kankaanpaa S,Klein RJT,Lavorel S,Lindner M,Metzger MJ, Meyer J,Mitchell TD,Reginster I,Rounsevell M,Sabate S, Sitch S,Smith B,Smith J,Smith P,Sykes MT,Thonicke K, Thuiller W,Tuck G,Zaehle S,Zierl B(2005)Ecosystem service supply and vulnerability to global change in Europe.Science 310:1333–1337

    Sharma S,Rai SC(2007)Carbon sequestration with land-use cover change in a Himalayan watershed.Geoderma 139:371–378

    Smith P(2008)Land use change and soil organic carbon dynamics. Nutr Cycl Agroecosyst 81:169–178

    Strassmann KM,Joos F,Fischer G(2008)Simulating effects of land use changes on carbon fluxes:past contributions to atmospheric CO2increases and future commitments due to losses of terrestrial sink capacity.Tellus,Ser B 60:583–603

    Tanvir A,Ahmad M,Shahbaz B,Suleri A(2007)Impact of participatory forest management on vulnerability and livelihood assets of forest-dependentcommunities in northern Pakistan.Int J Sustain Dev World Ecol 14(2):211–223

    Tappeiner U,Tasser E,Leitinger G,Cernusca A,Tappeiner G(2008) Effects of historical and likely future scenarios of land use onabove-and belowground vegetation carbon stocks of an Alpine valley.Ecosystems 11:1383–1400

    UNFCCC 1992 united nations framework convention on climate change,article 4.Available at http://unfccc.int/resource/docs/ convkp/conveng.pdf.Accessed 10 March 2013

    Walkley A,Black JA(1934)An examination of the degtjaref method fordetermining soilorganic matterand proposed modification of the chromic.titration method.Soil Sci 37:29–38

    Yan J,Zhu X,Jiaohong Z(2009)Effects of grassland conversion to cropland and foreston soilorganic carbon and dissolved organic carbon in farming pastoralecotone of Inner Mongolia.Acta Ecol Sin 29:150–154

    Zang Y,Fengxue G,Shirong L,Yanchun L,Chao L(2012)Variation of carbon stock with forest types subalpine region of South Western China.For Ecol Manage 30:88–95

    Zomer RJ,Trabucco A,Bossio DA,Verchot LV(2008)Climate change mitigation:a spatialanalysis ofgloballand suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80

    15 August 2013/Accepted:24 January 2014/Published online:8 January 2015

    The online version is available at http://www.springerlink.com

    Corresponding editor:Hu Yanbo

    A.Ahmad

    Shaheed Benazir Bhutto University,Sheringal,KPK 18050, Pakistan

    S.M.Nizami(&)

    Arid Agriculture University,Rawalpindi,Punjab 46300, Pakistan

    e-mail:moazzam.nizami@uaar.edu.pk

    黄片无遮挡物在线观看| 久久精品夜色国产| 成年女人在线观看亚洲视频| 精品国产露脸久久av麻豆| 中文欧美无线码| 免费av中文字幕在线| av卡一久久| 香蕉精品网在线| 在线播放无遮挡| 肉色欧美久久久久久久蜜桃| 少妇被粗大猛烈的视频| 少妇猛男粗大的猛烈进出视频| 国产免费一区二区三区四区乱码| 久久久久精品性色| 精品一品国产午夜福利视频| 欧美xxⅹ黑人| 又粗又硬又长又爽又黄的视频| 一二三四中文在线观看免费高清| 免费看av在线观看网站| 少妇的逼水好多| 免费观看在线日韩| 在线观看三级黄色| 男人爽女人下面视频在线观看| 亚洲精品国产av蜜桃| 亚洲国产精品999| a级毛片在线看网站| 日韩三级伦理在线观看| 一本一本综合久久| 亚洲精品久久成人aⅴ小说 | 99热国产这里只有精品6| 亚洲av电影在线观看一区二区三区| 丝袜美足系列| 免费黄频网站在线观看国产| 高清午夜精品一区二区三区| 在线观看三级黄色| 狂野欧美激情性bbbbbb| 欧美老熟妇乱子伦牲交| 国产熟女午夜一区二区三区 | 麻豆成人av视频| 国产精品 国内视频| 大码成人一级视频| 在线 av 中文字幕| 精品视频人人做人人爽| 亚洲av中文av极速乱| 多毛熟女@视频| 男人爽女人下面视频在线观看| 九九爱精品视频在线观看| 91精品三级在线观看| 亚洲精品,欧美精品| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久久精品古装| 秋霞伦理黄片| 欧美日韩成人在线一区二区| 日本av手机在线免费观看| 啦啦啦啦在线视频资源| 色5月婷婷丁香| 亚洲精品aⅴ在线观看| 精品午夜福利在线看| 春色校园在线视频观看| 久久精品熟女亚洲av麻豆精品| 久久女婷五月综合色啪小说| 极品人妻少妇av视频| 亚洲婷婷狠狠爱综合网| 一级爰片在线观看| 天堂中文最新版在线下载| 国产欧美另类精品又又久久亚洲欧美| 欧美 亚洲 国产 日韩一| 精品亚洲成国产av| 欧美精品一区二区大全| 狂野欧美激情性xxxx在线观看| 热99国产精品久久久久久7| 又黄又爽又刺激的免费视频.| 国产精品一区二区在线观看99| 国产 一区精品| 国产综合精华液| 另类精品久久| 波野结衣二区三区在线| 精品国产一区二区久久| 女性被躁到高潮视频| 国产色婷婷99| 久久免费观看电影| 国产黄片视频在线免费观看| 亚洲国产精品国产精品| 我的老师免费观看完整版| 大片电影免费在线观看免费| 日韩一区二区三区影片| 国产成人freesex在线| 欧美人与性动交α欧美精品济南到 | 欧美激情 高清一区二区三区| 国产女主播在线喷水免费视频网站| 99热网站在线观看| 国产精品熟女久久久久浪| 一级爰片在线观看| 久久99蜜桃精品久久| 久久综合国产亚洲精品| 日日啪夜夜爽| 母亲3免费完整高清在线观看 | 我的老师免费观看完整版| 有码 亚洲区| 精品人妻熟女av久视频| 精品人妻熟女毛片av久久网站| 免费人妻精品一区二区三区视频| 制服人妻中文乱码| 免费黄网站久久成人精品| .国产精品久久| 97超视频在线观看视频| 久久精品夜色国产| videosex国产| 国产国拍精品亚洲av在线观看| av不卡在线播放| 美女中出高潮动态图| 母亲3免费完整高清在线观看 | 91久久精品电影网| 欧美另类一区| 久久久久久人妻| 99视频精品全部免费 在线| 亚州av有码| 精品一区二区三区视频在线| 国产在线视频一区二区| 亚洲一级一片aⅴ在线观看| 亚洲国产色片| 不卡视频在线观看欧美| 日韩三级伦理在线观看| 少妇 在线观看| 久久亚洲国产成人精品v| 一区在线观看完整版| 国产免费视频播放在线视频| 青春草视频在线免费观看| 久久免费观看电影| 亚洲欧美日韩卡通动漫| 久久婷婷青草| av福利片在线| 久久久久精品性色| 亚洲,欧美,日韩| 欧美bdsm另类| 曰老女人黄片| 大香蕉久久网| 国产精品免费大片| 中文字幕亚洲精品专区| 欧美精品一区二区大全| 午夜福利视频精品| 国产av一区二区精品久久| 只有这里有精品99| 午夜老司机福利剧场| 中文字幕久久专区| 国产极品天堂在线| 能在线免费看毛片的网站| 日韩视频在线欧美| 欧美日韩视频精品一区| 日本欧美国产在线视频| 久久久久国产网址| 免费久久久久久久精品成人欧美视频 | 亚洲色图综合在线观看| 久久久久久久亚洲中文字幕| 亚洲美女黄色视频免费看| 男男h啪啪无遮挡| 亚洲国产毛片av蜜桃av| 这个男人来自地球电影免费观看 | 岛国毛片在线播放| 国产精品人妻久久久影院| 国产精品熟女久久久久浪| 蜜桃在线观看..| 五月伊人婷婷丁香| 日韩免费高清中文字幕av| 成人午夜精彩视频在线观看| 国产伦精品一区二区三区视频9| 啦啦啦中文免费视频观看日本| 成人二区视频| 欧美最新免费一区二区三区| 2018国产大陆天天弄谢| 亚洲av不卡在线观看| 国产精品久久久久久久电影| 日韩成人av中文字幕在线观看| 在线亚洲精品国产二区图片欧美 | 在线 av 中文字幕| 国产精品.久久久| 日韩三级伦理在线观看| 久热久热在线精品观看| 边亲边吃奶的免费视频| 毛片一级片免费看久久久久| 秋霞伦理黄片| av福利片在线| 51国产日韩欧美| 在线精品无人区一区二区三| 成人国产av品久久久| 纵有疾风起免费观看全集完整版| 在线观看国产h片| 精品人妻在线不人妻| 午夜av观看不卡| 最后的刺客免费高清国语| 久久精品熟女亚洲av麻豆精品| 国产黄色免费在线视频| 最后的刺客免费高清国语| 少妇的逼水好多| 久久久久精品久久久久真实原创| a级毛片黄视频| 99国产精品免费福利视频| 精品一区二区免费观看| 天堂俺去俺来也www色官网| 国产白丝娇喘喷水9色精品| 亚洲综合色网址| 超碰97精品在线观看| 你懂的网址亚洲精品在线观看| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲网站| 国产免费福利视频在线观看| 国精品久久久久久国模美| 精品一区二区三卡| 国产成人91sexporn| 亚洲人与动物交配视频| 亚洲第一区二区三区不卡| 亚洲情色 制服丝袜| 国产亚洲精品第一综合不卡 | 一级a做视频免费观看| 欧美日韩亚洲高清精品| 午夜日本视频在线| 亚洲综合精品二区| 亚洲性久久影院| 国产极品粉嫩免费观看在线 | 久久精品国产亚洲av天美| www.av在线官网国产| 哪个播放器可以免费观看大片| 99久久综合免费| 80岁老熟妇乱子伦牲交| 草草在线视频免费看| 最近的中文字幕免费完整| 亚洲中文av在线| 欧美国产精品一级二级三级| 丝袜喷水一区| 久久精品久久久久久噜噜老黄| 美女cb高潮喷水在线观看| 久久亚洲国产成人精品v| 99久久中文字幕三级久久日本| 欧美日韩av久久| 精品酒店卫生间| 欧美国产精品一级二级三级| 天天影视国产精品| 日本wwww免费看| 免费黄色在线免费观看| 最近中文字幕2019免费版| 18禁在线播放成人免费| 99久久精品一区二区三区| 日韩精品有码人妻一区| 天堂俺去俺来也www色官网| 欧美xxⅹ黑人| 人妻人人澡人人爽人人| 久久精品人人爽人人爽视色| 久久99热这里只频精品6学生| 国产乱人偷精品视频| 欧美亚洲 丝袜 人妻 在线| 国产在视频线精品| 看十八女毛片水多多多| 日本爱情动作片www.在线观看| 国产高清三级在线| 人人妻人人澡人人看| 一边摸一边做爽爽视频免费| 久久久久久久久久久久大奶| 老司机影院成人| 伦理电影大哥的女人| 亚洲欧洲精品一区二区精品久久久 | 国产一区二区三区综合在线观看 | 春色校园在线视频观看| 色94色欧美一区二区| 伦理电影免费视频| 男女无遮挡免费网站观看| 九九久久精品国产亚洲av麻豆| 最近的中文字幕免费完整| 一级毛片黄色毛片免费观看视频| 一区二区三区四区激情视频| 亚洲国产精品999| 啦啦啦在线观看免费高清www| 婷婷成人精品国产| 久久久午夜欧美精品| 免费观看的影片在线观看| 日韩,欧美,国产一区二区三区| 国产精品人妻久久久影院| 18禁观看日本| av福利片在线| 欧美亚洲日本最大视频资源| 亚洲av中文av极速乱| av不卡在线播放| 亚洲av二区三区四区| 成人18禁高潮啪啪吃奶动态图 | 26uuu在线亚洲综合色| 一边摸一边做爽爽视频免费| 男女边摸边吃奶| 夜夜骑夜夜射夜夜干| 看免费成人av毛片| 狂野欧美激情性xxxx在线观看| 极品少妇高潮喷水抽搐| 国产精品成人在线| 三级国产精品片| 我的老师免费观看完整版| 国模一区二区三区四区视频| 国产白丝娇喘喷水9色精品| 久久综合国产亚洲精品| 色5月婷婷丁香| 欧美国产精品一级二级三级| 午夜免费观看性视频| 99久久中文字幕三级久久日本| 亚洲精品456在线播放app| 久久久久久久久久久久大奶| 中文乱码字字幕精品一区二区三区| 成年人免费黄色播放视频| 伦理电影免费视频| 热99久久久久精品小说推荐| 国产片内射在线| 美女中出高潮动态图| 日韩大片免费观看网站| 午夜福利视频在线观看免费| 最近最新中文字幕免费大全7| 国产亚洲一区二区精品| 2022亚洲国产成人精品| 国产老妇伦熟女老妇高清| 色网站视频免费| 国精品久久久久久国模美| 伦精品一区二区三区| √禁漫天堂资源中文www| 免费少妇av软件| 少妇人妻久久综合中文| 丝袜在线中文字幕| 欧美日韩视频精品一区| 婷婷成人精品国产| 国产精品成人在线| 99热6这里只有精品| 天天操日日干夜夜撸| 夜夜骑夜夜射夜夜干| 亚洲人成77777在线视频| 啦啦啦中文免费视频观看日本| 另类亚洲欧美激情| av一本久久久久| 丝袜喷水一区| 精品午夜福利在线看| 精品人妻一区二区三区麻豆| 七月丁香在线播放| 精品亚洲成a人片在线观看| 久久精品久久久久久噜噜老黄| 亚洲精品第二区| 欧美精品人与动牲交sv欧美| 水蜜桃什么品种好| 亚洲精品亚洲一区二区| 亚洲精品第二区| a级毛片在线看网站| 曰老女人黄片| 国产成人精品无人区| 99久久精品国产国产毛片| 精品国产露脸久久av麻豆| 国模一区二区三区四区视频| 99精国产麻豆久久婷婷| 国产在视频线精品| 大话2 男鬼变身卡| 国产 精品1| 我的老师免费观看完整版| 国产精品熟女久久久久浪| 免费观看av网站的网址| 国产成人av激情在线播放 | 国产伦精品一区二区三区视频9| 国产视频内射| 亚洲精品,欧美精品| 麻豆精品久久久久久蜜桃| 亚洲精品日韩在线中文字幕| 国产乱来视频区| 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 哪个播放器可以免费观看大片| 久久精品夜色国产| 亚洲精品,欧美精品| 国产视频内射| 哪个播放器可以免费观看大片| 最近的中文字幕免费完整| 男的添女的下面高潮视频| 亚洲欧美中文字幕日韩二区| 一级,二级,三级黄色视频| 国产精品一区www在线观看| 美女大奶头黄色视频| 欧美日韩av久久| 日韩人妻高清精品专区| 人妻系列 视频| 最新的欧美精品一区二区| 51国产日韩欧美| 满18在线观看网站| 熟女人妻精品中文字幕| 午夜日本视频在线| 国产精品久久久久久精品古装| 亚洲激情五月婷婷啪啪| 国产精品国产三级国产专区5o| 边亲边吃奶的免费视频| 久久人人爽人人片av| 汤姆久久久久久久影院中文字幕| 久久久久国产精品人妻一区二区| 男的添女的下面高潮视频| 午夜激情av网站| 母亲3免费完整高清在线观看 | 亚洲精品乱久久久久久| 夜夜爽夜夜爽视频| 丰满乱子伦码专区| a级片在线免费高清观看视频| 欧美少妇被猛烈插入视频| 男人添女人高潮全过程视频| 伦理电影免费视频| 亚洲精品一二三| 一本—道久久a久久精品蜜桃钙片| 国产乱来视频区| 91国产中文字幕| 五月天丁香电影| 色94色欧美一区二区| 王馨瑶露胸无遮挡在线观看| 国产av码专区亚洲av| 日本欧美国产在线视频| 日韩av不卡免费在线播放| 一级黄片播放器| 国产精品偷伦视频观看了| 丝袜在线中文字幕| 国产成人91sexporn| 久久久a久久爽久久v久久| 五月玫瑰六月丁香| 国产成人午夜福利电影在线观看| 99九九线精品视频在线观看视频| 欧美激情 高清一区二区三区| 国产高清国产精品国产三级| 99re6热这里在线精品视频| 久久 成人 亚洲| 亚洲经典国产精华液单| 国产在视频线精品| 精品人妻偷拍中文字幕| 啦啦啦啦在线视频资源| 日本wwww免费看| 国产高清三级在线| 久久久精品94久久精品| 伦精品一区二区三区| 黄色毛片三级朝国网站| 欧美三级亚洲精品| 最近2019中文字幕mv第一页| 成人手机av| 免费黄网站久久成人精品| 我的女老师完整版在线观看| 久热这里只有精品99| 欧美性感艳星| 亚洲成色77777| 国产亚洲精品久久久com| 国产永久视频网站| 亚洲精品中文字幕在线视频| 少妇人妻 视频| videos熟女内射| 日韩中文字幕视频在线看片| 两个人免费观看高清视频| 人人澡人人妻人| 看十八女毛片水多多多| 色婷婷久久久亚洲欧美| 免费人妻精品一区二区三区视频| 国产精品久久久久久久久免| 亚洲av.av天堂| 夜夜爽夜夜爽视频| 9色porny在线观看| 色94色欧美一区二区| 久久国内精品自在自线图片| 亚洲av中文av极速乱| 飞空精品影院首页| 欧美精品一区二区大全| 日韩一区二区三区影片| 亚洲美女视频黄频| 久久国产精品男人的天堂亚洲 | 一本久久精品| 伊人亚洲综合成人网| 丰满饥渴人妻一区二区三| 少妇被粗大猛烈的视频| 国产精品麻豆人妻色哟哟久久| 一本色道久久久久久精品综合| 在线观看人妻少妇| 国产精品欧美亚洲77777| 99re6热这里在线精品视频| 国产免费一区二区三区四区乱码| 国产精品久久久久久久电影| 欧美xxxx性猛交bbbb| 国产一区二区三区av在线| 乱人伦中国视频| 少妇的逼好多水| 国产伦理片在线播放av一区| 热re99久久国产66热| 三级国产精品欧美在线观看| 妹子高潮喷水视频| 亚洲综合色惰| 热99久久久久精品小说推荐| 91精品伊人久久大香线蕉| 永久网站在线| 热re99久久精品国产66热6| 成人国产麻豆网| 亚洲三级黄色毛片| 久久久久久久精品精品| 一级毛片黄色毛片免费观看视频| 下体分泌物呈黄色| 亚洲熟女精品中文字幕| 亚洲国产毛片av蜜桃av| 国产精品女同一区二区软件| 九九在线视频观看精品| 97精品久久久久久久久久精品| 亚洲精品,欧美精品| 老熟女久久久| 国产精品欧美亚洲77777| 亚洲精品美女久久av网站| 免费观看的影片在线观看| 这个男人来自地球电影免费观看 | 成人国语在线视频| 欧美激情 高清一区二区三区| 国产高清有码在线观看视频| 你懂的网址亚洲精品在线观看| 国产 精品1| 看非洲黑人一级黄片| 黄色欧美视频在线观看| 黄片播放在线免费| 欧美日韩一区二区视频在线观看视频在线| 国产成人aa在线观看| 看非洲黑人一级黄片| 精品久久久噜噜| 欧美性感艳星| 中文字幕人妻丝袜制服| a级毛色黄片| 国产成人91sexporn| 国产又色又爽无遮挡免| 美女内射精品一级片tv| 亚洲一区二区三区欧美精品| 黑人巨大精品欧美一区二区蜜桃 | 久久久久网色| 日韩中字成人| 国产色婷婷99| 一区二区三区四区激情视频| 边亲边吃奶的免费视频| 三上悠亚av全集在线观看| 国产亚洲欧美精品永久| 岛国毛片在线播放| 欧美日韩av久久| 99热国产这里只有精品6| 免费人成在线观看视频色| 国产av国产精品国产| 国产成人精品久久久久久| 性色av一级| 各种免费的搞黄视频| 久久久久久久久久成人| 国产精品熟女久久久久浪| 成人黄色视频免费在线看| 免费少妇av软件| 最近中文字幕高清免费大全6| 在线天堂最新版资源| 国产精品一二三区在线看| 亚洲国产av影院在线观看| 国产av一区二区精品久久| 大片免费播放器 马上看| 亚洲av中文av极速乱| 高清在线视频一区二区三区| 久久ye,这里只有精品| .国产精品久久| 一边摸一边做爽爽视频免费| 成人国语在线视频| 久久精品国产亚洲av涩爱| 女性被躁到高潮视频| 少妇被粗大猛烈的视频| 成人午夜精彩视频在线观看| 久久午夜福利片| 婷婷色麻豆天堂久久| 中文字幕人妻熟人妻熟丝袜美| 精品久久国产蜜桃| 黄色一级大片看看| 午夜激情av网站| 国产伦精品一区二区三区视频9| av专区在线播放| 男男h啪啪无遮挡| 婷婷色麻豆天堂久久| 91成人精品电影| 亚洲国产精品一区三区| 午夜福利在线观看免费完整高清在| 99热这里只有是精品在线观看| 精品久久久久久电影网| 欧美老熟妇乱子伦牲交| 亚洲四区av| 国产一区二区在线观看日韩| 国产av一区二区精品久久| 能在线免费看毛片的网站| 欧美精品一区二区免费开放| 国产色婷婷99| 亚洲成人手机| 超色免费av| 精品久久久噜噜| 国产成人a∨麻豆精品| 亚洲精品日韩在线中文字幕| 午夜福利视频在线观看免费| av在线播放精品| 亚洲激情五月婷婷啪啪| 日本91视频免费播放| av在线播放精品| 亚洲精品自拍成人| 在线观看人妻少妇| 久久97久久精品| 亚洲一区二区三区欧美精品| av在线老鸭窝| 久久 成人 亚洲| 蜜臀久久99精品久久宅男| 日本欧美视频一区| 中文字幕av电影在线播放| 久久热精品热| 午夜福利视频在线观看免费| 亚洲,一卡二卡三卡| 久久久亚洲精品成人影院| 精品亚洲成a人片在线观看| 最近中文字幕高清免费大全6| 人妻夜夜爽99麻豆av| 熟妇人妻不卡中文字幕| 欧美性感艳星| 午夜福利网站1000一区二区三区| 如何舔出高潮| 夫妻午夜视频| 国产熟女欧美一区二区| 三上悠亚av全集在线观看| 青春草亚洲视频在线观看| 在线看a的网站| 亚洲精品乱码久久久v下载方式|