• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Forest aboveground biomass estimates in a tropical rainforest in Madagascar:new insights from the use of wood specific gravity data

    2015-06-19 18:30:40TahianaRamananantoandroHerimanitraRafidimanantsoaMioraRamanakoto
    Journal of Forestry Research 2015年1期

    Tahiana Ramananantoandro?Herimanitra P.Rafidimanantsoa?Miora F.Ramanakoto

    Forest aboveground biomass estimates in a tropical rainforest in Madagascar:new insights from the use of wood specific gravity data

    Tahiana Ramananantoandro?Herimanitra P.Rafidimanantsoa?Miora F.Ramanakoto

    To generate carbon credits under the Reducing Emissions from Deforestation and forest Degradation program(REDD?),accurate estimates of forest carbon stocks are needed.Carbon accounting efforts have focused on carbon stocks in aboveground biomass(AGB). Although wood specific gravity(WSG)is known to be an important variable in AGB estimates,there is currently a lack of data on WSG for Malagasy tree species.This study aimed to determine whether estimates of carbon stocks calculated from literature-based WSG values differed from those based on WSG values measured on wood core samples.Carbon stocks in forest biomass were assessed using two WSG data sets:(i)values measured from 303 wood core samples extracted in the study area,(ii)values derived from international databases.Results suggested that there is difference between the field and literaturebased WSG at the 0.05 level.The latter data set was on average 16%higher than the former.However,carbon stocks calculated from the two data sets did not differ significantly at the 0.05 level.Such findings could be attributed to the form ofthe allometric equation used which gives more weightto tree diameter and tree heightthan toWSG.The choice of dataset should depend on the level of accuracy(Tier II or III)desired by REDD?.As higher levels of accuracy are rewarded by higher prices,speciesspecific WSG data would be highly desirable.

    Biomass estimatesCarbon stocksData qualityMadagascarREDD?Wood specific gravity

    Introduction

    Forests,including tropicalforests,play an importantrole in reducing greenhouse gas concentrations in the atmosphere because of the amountofcarbon they contain per unitarea (Canadelletal.2008;Luyssaertetal.2008).Deforestation and forest degradation have an impact on the future potentialofthe forests to remove additionalcarbon dioxide (CO2)from the atmosphere(Chave et al.2008;Saatchi et al.2011).The relative contribution of deforestation and degradation of tropicalforests to the totalemissions of CO2was 20%in the 1990’s,but was revised in 2008 to 12±6%by van der Werf et al.(2009).To reduce CO2emissions from forests,a new conservation approach,‘‘Reducing Emissions from Deforestation and forest Degradation’’(REDD?),was set up in 2007.REDD?is characterized by its directlink between financialincentives for conservation and the amount of carbon stored in the forest(Ebeling and Yasue 2008;Kindermann et al.2008). To generate benefits from REDD?,governments must develop an effective system of measurement,reporting and verification(MRV)of carbon stocks(Herold and Skutsch 2011;Plugge et al.2011).Quantification of carbon emissions—or avoided emissions—requires information on the rate of deforestation and the carbon stocks ata given time (Gibbs et al.2007;Moutinho and Schwartzman 2005).InREDD?,estimating the carbon in aboveground biomass (AGB)is the mostpragmatic approach(Plugge etal.2011). AGB is commonly quantified using allometric equations. Most often,variables involved in such equations are tree diameter,height,and wood specific gravity(WSG).For Tier III,high resolution methods and accurate allometric equations are required.In principle,potentialbenefits from carbon credits should result in higher value since methodologies for monitoring carbon stocks and emission reductions are more accurate.The development of sitespecific allometric models adapted to Malagasy forests constituted a major step towards this goal(Vieilledentetal. 2012).They estimate above ground biomass better than generic models of Brown(1997),Brown etal.(1989)and Chave etal.(2005),which are often used as references.

    WSG is considered as an important variable for estimating AGB(Brown 1997;Chave etal.2005,2009;Henry et al.2010;Nogueira et al.2005;Vieilledent et al.2012; Williamson and Wiemann 2010a).However,data on the specific gravity of Malagasy wood are almostnon-existent. There are more than 4,000 tree species in Madagascar (MEF 2009)and yetthe only localdata available are those of Vieilledent et al.(2012)for 256 species or genera. Rakotovao et al.(2012)studied the properties of 187 Malagasy commercial wood species but the species considered were already included in Vieilledent et al.(2012). Some authors(Blanc et al.2009;Bryan et al.2010)use internationaldatabases(e.g.Chave etal.2005,2009;Reyes et al.1992;Zanne et al.2009)to obtain WSG values for their species of interest.The research question is whether specific local data are needed to estimate AGB given that 96%of Malagasy trees and shrubs species are endemic (Schatz 2000).More specifically,this paper addresses the following two questions:(1)Do carbon stocks estimated using(i)WSG data collected in the field and(ii)data from international databases,differ significantly?(2)Given the difficulty of sampling wood in the field,is the WSG of the most abundant species sufficient to represent the WSG of congeneric species?

    Materials and methods

    Our general approach was to assign a value of WSG per species.Once a WSG value had been assigned to each species,these values were used to calculate the AGB and forest carbon stock using an allometric equation.Finally, carbon stocks were compared statistically.

    Study site

    This study was carried out in the natural forest of Mandraka,District of Manjakandriana,Region of Analamanga, Madagascar(47540–47560E and 18530–18550S).It is located 67 km eastof the capital,Antananarivo,and can be reached via National Highway#2.This site is an educationaland experimentalsite for the Departmentof Forestry of the Agronomy School,University of Antananarivo.No previous studies of WSG had been undertaken atthis site. Annual precipitation averages 2,300 mm varying from 40 to 310 mm on a monthly basis.The temperature ranges from 13.7 to 20.2C,with an annual average of 17.5C. The relatively high elevation(800–1,300 m)confers a permanent relative humidity on the region with an average value of 82%.The climate is tropical and humid.The terrain is rugged,characterized by overall slopes of 50%, reaching 90%in some places(Rajaonera 2008).The natural vegetation is a montane eastern wet forest type, characterized by evergreen foliage,high tree density, reduced heightand pluristratified structure.More than half of trees in Mandraka foresthave diameter at breastheight (DBH)between 5 and 15 cm.Trees of DBH greater than 40 cm are almost non-existent(Rajaonera 2008).

    Field sampling

    Species abundance and tree diameter and height were drawn from the work of Rajaonera(2008)who established thatthe primary forestof Mandraka covered a totalarea of 9.91 ha fragmented into four forests(Fig.1).In each fragment,a floristic inventory was conducted on a transect of 125 9 20 m,i.e.an area of 0.25 ha,divided into three compartments according to predefined tree diameter ranges (Fig.2).The overall forest contained 73 species of 52 families and 42 genera(Rajaonera 2008).

    Fig.1 The fourforestfragments in Mandraka forest,Madagascar:F1 3.40 ha,altitude 1,277–1,328 m;F2 4.47 ha,altitude 1,278–1,313 m; F3 1.61 ha,altitude 1,281–1,312 m;(4)F4 0.42 ha,altitude 1,339–1,366 m(Rajaonera 2008).Forest inventories were taken in each forest fragment

    Fig.2 Forestinventory plotused by Rajaonera(2008).Compartment A:area 125 9 5 m for the inventory of trees with diameters between 5 and 15 cm;Compartment B:area 125 9 10 m for trees with diameters between 15 and 40 cm;compartment C:area 125 9 20 m for trees with diameters greater than 40 cm

    Allometric equation used

    The choice of a model is a crucial step because the largest source of error in estimating biomass is associated with it (Chave et al.2004).Site-specific models are preferred to international standard models(Vieilledent et al.2012) because allometric relationships differ from one region to another depending on environmental factors(such as soil and climate)and functional traits of species(such as wood density and crown architecture).However,there are no allometric equations available for Mandraka natural forest. Thus,based on the climatic conditions of the study site and Vieilledent et al.(2012)findings,AGB was calculated following Chave etal.(2005),using the formula formoist/ wet forests and taking tree height into account.

    where,A is estimated aboveground biomass(kg),D is mean diameter at breastheight(cm),H is mean tree height (m)and q is the WSG(dimensionless).

    The modelincluding tree heightwas chosen since Chave et al.(2005),Feldpausch et al.(2012),Marshall et al. (2012)and Scaranello et al.(2012)pointed out that neglecting tree heightin the estimation of biomass leads to significanterrors.This modelwas developed from various tropicalforests based on the compilation of data since the 1950s from 27 study sites in America,Asia and Oceania. The samples were collected from 2,410 trees of DBH ranging from 5 to 156 cm.

    Assigning a value of wood specific gravity to species

    Three approaches were tested for assigning values of WSG to species.The first approach consisted of measuring the WSG ofeach species.However,due to the amountofwork involved in this first approach,a second approach was considered.In Approach 2,the species of the same genus were assigned the WSG value of the most abundant species.In these two approaches,the WSG values used were determined through laboratory measurements on wood samples taken from trees in the forestunder study.Finally, in Approach 3,the WSG values assigned to each species were drawn from existing databases without collecting samples.Each approach is detailed below.

    Determination wood specific gravity by sampling (Approach 1)

    Due to time and budget constraints,the study was limited to 44 tree species out of the 73 species existing in Mandraka forest.These 44 species belonged to 35 genera and 33 families(Table 2 Appendix 1).The species identifi ed by Rajaonera(2008)as most abundant,were all part of the species studied(indicated by the symbol*in Table 2 Appendix 1).The 44 studied species accounted for 78%of total tree abundance in the natural forest of Mandraka.

    Wood samples were taken from healthy trees,i.e.trees that were neither hollow nor suffering from decay inside the trunk.These trees were selected randomly.Species vernacular names were provided by a local guide,and confirmed by herbarium specimens for the most difficult species to identify.

    Wood properties vary radially from the pith to the bark (Baille`res et al.2005).These variations may be strong or weak,depending on the shade tolerance ofthe species,tree age and diameter,soil fertility or other factors(Wiemann and Williamson 1989a,1989b,2010b;Woodcock and Shier 2003).To avoid harvesting trees,WSG of each standing tree was estimated by a non-destructive method. 15 mm-diameter wood cores were sampled at 1.30 m above ground,with an electric drill powered by a generator.Due to the possible existence of tension wood caused by the sloping ground,wood cores were taken in the downstream part of the slopes.Each core was stored in a sealed plastic bag to minimize moisture loss priorto arrival at the laboratory.In order to take account of the radial variation of WSG,each core was cut into 1 cm segments, starting 0.5 cm from the pith.Segments containing bark and pith were excluded.In sum,303 core samples were collected.The number of cores obtained per species varied from 2 to 13 with an average of 6–7.In total 3,250 segments were cut from these cores.

    WSG ofa core segmentis defined as its oven-dry weight divided by its saturated volume,relative to the density of water(Williamson and Wiemann 2010b).The saturated state wasobtained by immersing the segmentsin a container filled with water for 5–7 days.The anhydrous state was obtained by oven-drying the cores to constant weight at 103C.Weight was measured using a precision balance with 0.01 g resolution.The saturated volume was measured using the Archimedes water displacement method(Nogueira etal.2005).

    Two cases were considered to define the WSG ofa tree: the pith was situated at the centre of the trunk or the pith was eccentric due to the presence of tension wood.If thepith was located in the centre,and assuming a circular trunk shape,the area of the ring of each core segment was determined.The area-weighted mean of the core segments was used to determine the average WSG for an individual tree(Eq.2),as demonstrated by Muller-Landau(2004)and (Williamson and Wiemann 2010b).

    where,WSGis the wood specific gravity of a tree,n represents any segment,Mnis the anhydrous weight of the segmentn(g),Vnis the saturated volume of the segmentn (cm3),Lnis the distance between the pith and the distalend of segment n(cm),Lmaxis the radius of the tree(cm).

    If the pith was eccentric,Eq.3 was used instead and WSG calculations are similar to the calculation of a circular segment area.

    where,WSGis the specifi c gravity of a tree,qnis the specific gravity of a segment Bn,ABnis the surface of the ring represented by the segment Bn.ABnAnAn1wherewith n:Distance of the segment Bnrelative to the center of the wood core,hnis an angle depending on Rnand calculated as follows hn2 arccoswhere d is the distance between the center of the wood core and the pith.

    Each species’WSGwas defined as the average WSGof the sampled trees.Calculations were performed with R software,version i386 2.15.3(R Development Core Team 2012).

    Determination of WSG using a genus approach (Approach 2)

    For Approach 2,the value of the WSG attributed to a species was the WSG of the most abundant species belonging to the same genus.This approach was proposed by Slik(2006)for estimating the WSG of Indonesian trees butthe impacton AGB estimates was notinvestigated.The abundance ofeach species was calculated in each inventory plot and generalized to the scale of each forest fragment and the whole forest.

    Determination of WSG using published data(Approach 3)

    With the third approach,WSG values were collected from the literature.Two databases were used(i)Vieilledentetal. (2012)bringing togetherthe values of WSG of 256 species or genera from Madagascar,and(ii)the Global Wood Density Database(Zanne etal.2009)compiling information from 205 sources worldwide.The latter gives information on WSG of 8,412 taxa,1,683 genera,and 191 families from different regions of the world.To assign WSG values to each species,localdatabases were preferentially selected.If values were not available,the Global Wood Density Database was used by firstapplying a selection filter‘‘Region’’(Madagascar),and if necessary,the filter‘‘Continent’’(tropical Africa)and finally,if needed,any other tropical regions(South East Asia,Papua New Guinea,Australia, Oceania).For each tree,the WSG was taken as the mean species value.If the species was not cited,density was estimated as the genus mean,or family mean if the genus was not represented.

    Estimate of aboveground biomass and carbon stock

    Tree AGB was calculated using allometric equations, inventory data and WSG values.AGB within a given inventory plot was the sum of tree AGBs belonging to this plot.Fragment AGB was based on AGB plotand fragment area.Finally,the whole forest AGB was the sum of fragment AGBs.Carbon stocks were estimated at50%of dryweight biomass,as per the common practice in the literature(Ziter et al.2013).

    Comparison of the three approaches

    WSG values obtained for each approach were compared. Given that there are four forest fragments in Mandraka,to verify the three approaches statistically,carbon stocks were calculated for each forestfragment.Carbon stock estimated using WSG data according to each approach was then compared.

    The Shapiro–Wilk test was used to verify whether the observations were normally distributed and Levene’s test checked homogeneity ofvariances.Ifthe assumptions were met(normality of observations and homogeneity of variance),an analysis of variance(ANOVA)along with Fisher’s LSD test were used to compare the averages and identify identical groups.Otherwise,the non-parametric Kruskal–Wallis test was used for comparison of the averages and then the Mann–Whitney U test for paired comparison.

    Results

    WSG data characteristics for each approach

    WSG measured on the segments varied from 0.18 to 0.89 with an average of 0.49.Table 2 Appendix 1 summarizes the WSG data characteristics foreach approach considered. The WSG of the 44 species studied varied from 0.26(Trema orientalis)to 0.75(Brexiela sp.)with an average of 0.506.Sixty percentof the values were in the range 0.4–0.6 for Approach 1,and 66%for Approach 2.In Approach 3, WSG varied from 0.33 to 0.84,which seems higher than densities encountered in the first two approaches.Sixty percent of the values were within the range 0.5–0.7 and 77%were from Zanne et al.(2009)and 23%from Vieilledent etal.(2012).Of 44 species and the two databases combined,17 were exact matches,19 were estimated by genus(G)and 8 by family(F).ANOVA followed by Fisher’s LSD test showed that the average values of WSG in Approach 3 were significantly higher,on average by 16%,than those calculated using the first two approaches (p=0.001,d f=129,a=0.05).The most notable differences occurred when WSG was estimated by the family approach.

    Comparison of carbon stocks calculated based on each approach

    The average carbon stocks calculated on the basis of WSG values by species in Table 2 Appendix 1 were(36.8±6.5), (36.8±6.5)and(41.7±7.4)Mgha-1forApproaches1,2 and 3,respectively.ANOVA associated with Fisher LSD testconcluded thatcarbon stocks calculated using the three approaches were not significantly different(p=0.959, a=0.05,d f=2).Variances were notsignificantly different between the groups(p=0.958,a=0.05,d f=2 for Levene and p=0.971,a=0.05,d f=9 for Bartlett). Samples were normally distributed(a=0.05,p=0.995 and 0.976 for Shapiro–Wilk and Lilliefors respectively). Such findings could be attributed to the form of the allometric equation used which gives more weight to tree diameter(square)and tree heightthan to WSG.

    The amount of biomass and carbon stock per approach based on the four forest fragments is detailed in Table 1. AGB calculated using the WSG values of Approach 1 and Approach 2 were almostthe same.Despite the factthatthe analysis of variance did notshow a significantdifference at the 0.05 level,AGB for Approach 3 was systematically higher than that calculated for Approaches 1 and 2.The amountof carbon was 5 Mgha-1greater with Approach 3 than with Approaches 1 and 2.

    Discussion

    Since estimating the carbon stock is a basic requirementof REDD?,this study responds to a relevantquestion on the estimation of AGB and carbon stocks using allometric equations including WSG as a covariate.Although this study found no statisticaldifference between carbon stocks calculated using the three approaches,the current trend is towards a requirement for better accuracy.Calculations have shown that there is a difference of 5 Mgha-1between the carbon stocks obtained using data measured in the field and data available in the internationalliterature.In 2011,the carbon price for a REDD?project was$12 per ton of CO2 equivalent(Peters-Stanley and Hamilton 2012) or$44 perton ofcarbon.Therefore,the difference between Approach 1 and Approach 3 is$220 per hectare.This difference is of considerable importance for extensive forests,especially given the low purchasing power of the Malagasy population.

    Site-specific allometric equations are considered to be the most accurate and it is also necessary to include accurate data in order to be able to sellcarbon credits ata better price.Tree diameter is easily measured and height measurementhas recently undergone marked development thanks to ultrasonic instruments(Feldpausch et al.2012; Marshall et al.2012;Vieilledent et al.2012).For WSG, two aspects must be considered:the method of calculation and the phylogenetic levelofinterest.This study hasshown that for Mandraka forest,the WSG of the most abundant species is sufficiently representative to be taken as the WSG of congeneric species.This result is in accordance with results from Slik(2006)who found thatwood density of tree species in Palaeotropicalforests of South–EastAsia can be estimated based on the average wood density of the genera to which they belong.Information on species abundance is accessible via inventory data.Ultimately,the choice between using local values or data from databasesdepends on the level of accuracy desired(Marshall et al. 2012)and the price difference between such levels.

    Table 1 Aboveground biomass density(AGBD)and carbon stock per approach

    This study focused on 44 species thatrepresent 78%of the forest as a whole.If complete data for all 73 existing species is considered on the basis of WSG data reported in international databases,the carbon stock of the whole Mandraka forest would be(45.48±3.47)Mgha-1.For comparison,carbon stocks in other rainforests of Madagascar:Fandriana Marolambo,Betaolana and Fort Dauphin,are 97.78,(155±44)and(193±56)Mgha-1respectively(Vieilledent et al.2012).The difference may be due to the very small proportion of trees with diameter greater than 20 cm in the Mandraka forest.

    This study provided WSG values for 14 species notyet listed in either of the databases consulted.These data will therefore be added to existing databases.The calculation of the WSG from core samples performed in this study followed the method of Williamson and Wiemann(2010b). These authors pointed out the various errors that could occur in the determination of tree WSG,such as failure to consider the radial variation of WSG.Taking account of this radial variability required us(i)to cutwood cores into 1 cm segments and(ii)to calculate the WSG of the tree as the weighted average of the WSGs of the individual segments.In the calculation,weightsare the surface ofthe ring represented by the segment.To date,few studies using WSG have considered this method of calculation.In addition,we propose a formula to calculate WSG for trees with eccentric pith,a novel feature of this work.WSG values listed in the databases were not determined by this same segmenting method,but on rectangular samples and using a simple arithmetic mean.

    The values of WSG obtained in this study are not significantly differentfrom those obtained by Vieilledentetal. (2012)on 8 Malagasy species common to both studies: Anthocleista madagascariensis,Syzygium emirnense, Chrysophyllum boivinianum,Oncotsemum sp.,Tambourissa madagascariensis,Homalium sp.,Macaranga sp., Schefflera sp.(ANOVA,p=0.237,d f=16,a=0.05). Vieilledent et al.(2012)measured WSG values on rectangular samples 10–15 cm long 9 2 cm wide 9 2 cm thickness taken from harvested trees atboth ends and in the middle of the tree bole,and on a branch.The method of determining WSG from wood cores used in this study therefore leads to similar results obtained from a destructive method.

    Conclusions

    A firstconclusion ofthisstudy is that,for Mandraka natural forest,the WSG values obtained from wood core samples extracted in the study area are significantly different from WSGs reported in the existing international databases. However,carbon stocks calculated from the two data sets do not differ significantly at the 0.05 level.Therefore,the estimation of AGB and carbon stock in forests can rely on the available WSG data.In addition,this study also suggests that the most abundant species of a given genus may be sufficientto represent other species of the same genus. This result is important as it could alleviate the tedious work of wood sampling in the field.Ultimately,the choice between using localvalues ordata from available databases depends on the level of accuracy desired within REDD? and price differences between accuracy levels.These results are valid for Mandraka forest in Madagascar but they should be validated for other types of forests that differ in forest biomass,climate and species richness.

    AcknowledgmentsThe equipment used for this study was supported by TWAS(The World Academy of Sciences)and CIRAD (Centre de Coope′ration Internationale en Recherche Agronomique pour le De′veloppement).The authors thank Rado Razafimahatratra forhis assistance with the R software,Susan Beckerand Mark Irle for proofreading the manuscript.

    Appendix

    See Table 2.

    Table 2 Wood specific gravity per species and per approach

    Baille`res H,Vitrac O,Ramananantoandro T(2005)Assessment of continuous distribution ofwood properties from a low numberof samples:application to the variability of modulus of elasticity between trees and within a tree.Holzforschung 59:524–530

    Blanc L,Echard M,Herault B,Bonal D,Marcon E,Chave J,Baraloto C(2009)Dynamics of aboveground carbon stocks in a selectively logged tropical forest.Ecol Appl 19:1397–1404

    Bryan J,Shearman PL,Ash J,Kirkpatrick JB(2010)Estimating rainforestbiomass stocks and carbon loss from deforestation and degradation in Papua New Guinea 1972–2002:best estimates, uncertainties and research needs.J Environ Manag 91:995–1001

    Brown S(1997)Estimating biomass and biomass change of tropical forests:a primer.Food and Agriculture Organisation,Rome, pp 1–55

    Brown S,Gillespie AJR,Lugo AE(1989)Biomass estimation methods for tropicalforests with applications to forestinventory data.For Sci 35:881–902

    Canadell JG,Raupach M(2008)Managing forests for climate change mitigation.Science 320:1456–1457

    Chave J,Condit R,Aguilar S,Hernandez A,Lao S,Perez R(2004) Error propagation and scaling for tropical forest biomass estimates.Philos Trans R Soc B 359:409–420

    Chave H,Andalo C,Brown S,Cairns MA,Chambers JQ,Eamus D, Fo¨lster H,Fromard F,Higuchi N,Kira T,Lescure JP,Nelson BW,Ogawa H,Puig H,Rie′ra B,Yamakura T(2005)Tree allometry and improved estimation of carbon stocks and balance in tropical forests.Oecologia 145:87–99

    Chave J,Condit R,Muller-Landau HC,Thomas SC,Ashton PS, Bunyavejchewin S,Co LL,Dattaraja HS,Davies SJ,Esufali S, Ewango CEN,Feeley KJ,Foster RB,Gunatilleke N,Gunatilleke S,Hall P,Hart TB,Hernandez C,Hubbell S.P,Itoh A, Kiratiprayoon S,LaFrankie JV,Loo de Lao S,Makana J,Noor MNS,Kassim AR,Samper C,Sukumar R,Suresh HS,Tan S, Thompson J,Tongco MDC,Valencia R,Vallejo M,Villa G, Yamakura T,Zimmermann JK,Losos EC(2008)Assessing evidence for a pervasive alteration in tropical tree communities.PLoS Biol 6(3):e45 http://www.plosbiology.org/article/ fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pbio. 0060045&representation=PDF.Accessed April 2013

    Chave J,Coomes D,Jansen S,Lewis SL,Swenson NG,Zanne AE (2009)Towards a worldwide wood economics spectrum.Ecol Lett 12:351–366

    Ebeling J,Yasue M(2008)Generating carbon finance through avoided deforestation and its potential to create climatic, conservation and human development benefits.Philos Trans R Soc B 363:1917–1924

    Feldpausch TR,Lloyd J,Lewis SL,Brienen RJW,Gloor M, Monteagudo Mendoza A,Lopez-Gonzalez G,Banin L,Salim KA,Affum-Baffoe K,Alexiades M,Almeida S,Amaral I, Andrade A,Araga?o LEOC,Araujo Murakami A,Arets EJMM, Arroyo L,Aymard GA,Baker TR,Banki OS,Berry NJ,Cardozo N,Chave J,Comiskey JA,Alvarez E,de Oliveira A,Di Fiore A, Djagbletey G,Domingues TF,Erwin TL,Fearnside PM,Franc?a MB,Freitas MA,Higuchi N,Honorio E,Iida Y,Jime′nez E, Kassim AR,Killeen TJ,Laurance WF,Lovett JC,Malhi Y, Marimon BS,Marimon-Junior BH,Lenza E,Marshall AR, Mendoza C,Metcalfe DJ,Mitchard ETA,Neill DA,Nelson BW, Nilus R,Nogueira EM,Parada A,Peh KSH,Pena Cruz A, Pen?uela MC,Pitman NCA,Prieto A,Quesada CA,Ramirez F, Ramirez-Angulo H,Reitsma JM,Rudas A,Saiz G,Saloma?o RP, Schwarz M,Silva N,Silva-Espejo JE,Silveira M,Sonke′B, Stropp J,Taedoumg HE,Tan S,ter Steege H,Terborgh J, Torello-Raventos M,van der Heidjen GMF,Vasquez R, Vilanova E,Vos VA,White L,Willcock S,Woell H,Phillips OL(2012)Tree heightintegrated into pantropicalforestbiomass estimates.Biogeosciences 9:3381–3403

    Gibbs HK,Brown S,Niles JO,Foley AJ(2007)Monitoring and estimating tropicalforestcarbon stocks:making REDD a reality. Environ Res Lett 2:1–13

    Henry M,Besnard A,Asante WA,Eshun J,Adu-Bredu S,Valentini R,Bernoux M,Saint-Andre′L(2010)Wood density,phytomass variations within and among trees,and allometric equations in a tropical rainforest of Africa.For Ecol Manage 260:1375–1388

    Herold M,Skutsch M(2011)Monitoring,reporting and verification for national REDD?programmes:two proposals.Environ Res Lett 6:1–10

    Kindermann G,Obersteiner M,Sohngen B,Sathaye J,Andrasko K, Rametsteiner E,Schlamadinger B,Wunder S,Beach R(2008) Global cost estimates of reducing carbon emissions through avoided deforestation.Proc Natl Acad Sci105:10302–10307

    Luyssaert S,Schulze ED,Bo¨rner A,Knohl A,Hessenmo¨ller D,Law BE,Ciais P,Grace J(2008)Old-growth forests as globalcarbon sinks.Nature 455:213–215

    Marshall AR,Willcock S,Platts PJ,Lovett JC,Balmford A,Burgess ND,Latham JE,Munishi PKT,Salter R,Shirima DD,Lewis SL (2012)Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient.Biol Conserv 154:20–33

    MEF-Ministe`re de l’Environnement et de Fore?ts(2009)Quatrie`me rapport national de la convention sur la diversite′biologique. MEF/UNEP,Madagascar,pp 1–120

    Moutinho P,Schwartzman S(2005)Tropical deforestation and climate change.Para′:Instituto de Pesquisa Ambiental da Amazo?nia Bele′m,Environmental Defense,Washington DC, p 1–131

    Muller-Landau HC(2004)Interspecific and inter-site variation in wood specific gravity of tropical trees.Biotropica 36:20–32

    Nogueira EM,Nelson BW,Fearnside PM(2005)Wood density in dense forest in central Amazonia,Brazil.For Ecol Manage 208:261–286

    Peters-Stanley M,Hamilton K(2012)Developing dimension:state of the voluntary carbon markets 2012.Washington DC.Ecosystem Marketplace.Bloomberg New Energy Finance,New York, pp 17–26

    Plugge D,Thomas B,Kohl M(2011)Reduced Emissions from Deforestation and ForestDegradation(REDD):why a robustand transparent monitoring,reporting and verification(MRV)System is mandatory?In:Blanco J,Kheradmand H(eds)Climate change—research and technology for adaptation and mitigation Croatia.In Tech,Europe,pp 1–488

    R Development Core Team(2012)R:a language and environmentfor statistical computing.R Foundation for Statistical Computing, Vienna,Austria.http://www.R-project.org/.Accessed April2013

    Rajaonera ML(2008)Mise en place d’un e′tat de re′fe′rence et d’un plan de suivi e′cologique permanent des vestiges de fore?t primaire de la station forestie`re de Mandraka.Ecole Supe′rieure des Sciences Agronomiques,Antananarivo,pp 1–84

    Rakotovao G,Rabevohitra AR,Collas de Chaptelperron P,Guibal D, Ge′rard J(2012)Atlas des bois de Madagascar.Edition Quae, France,pp 1–13

    Reyes G,Brown S,Chapman J,Lugo AE(1992)Wood densities of tropical tree species.United States Department of Agriculture, Louisiana,pp 1–15

    Saatchi SS,Harris NL,Brown S,Lefsky M,Mitchard ETA,Salas W, Zutta BR,Buermann W,Lewis SL,Hagen S,Petrova S,White L,Silman M,Morel A(2011)Benchmark map of forest carbon stocks in tropicalregions across three continents.Proc NatlAcad Sci 108:9899–9905

    Scaranello MA,Alves LF,Vieira SA,de Camargo PB,Joly CA, Martinelli LA(2012)Height-diameter relationships of tropical Atlantic moist forest trees in southeastern Brazil.Scientia Agricola 69(1):26–37

    Schatz GE(2000)Endemism in the Malagasy tree flora.In:Lourenc?o WR,Goodman SM(eds)Diversity and endemism in Madagascar.Me′moires de la Socie′te′de Bioge′ographie,Paris,pp 1–9

    Slik JWF(2006)Estimating species-specific wood density from the genus average in Indonesian trees.J Trop Ecol 22:481–482

    van der Werf GR,Morton DC,DeFries RS,Olivier JGJ,Kasibhatla PS,Jackson RB,Collatz GJ,Randerson JT(2009)CO2emissions from forest loss.Nat Geosci 2:737–738

    Vieilledent G,Vaudry R,Andriamanohisoa SFD,Rakotonarivo OS, Randrianasolo HZ,Razafindrabe HN,Bidaud Rakotoarivony C, Ebeling J,Rasamoelina M(2012)A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models.Ecol Appl22(2):572–583

    Wiemann MC,Williamson GB(1989a)Radial gradients in the specific gravity of wood in some tropical and temperate trees. For Sci 35:197–210

    Wiemann MC,Williamson GB(1989b)Wood specific gravity gradients in tropical dry and montane rain forest trees.Am J Bot76:924–928

    Williamson GB,Wiemann MC(2010a)Age-dependent radial increases in wood specific gravity of tropical pioneers in Costa Rica.Biotropica 42(5):590–597

    Williamson GB,Wiemann MC(2010b)Measuring wood specific gravity correctly.Am J Bot 97(3):519–524

    Woodcock DW,Shier AD(2003)Does canopy position affect wood specific gravity in temperate forest trees?Ann Bot 91:529–537

    Zanne AE,Lopez-Gonzalez G,Coomes DA,Ilic J,Jansen S,Lewis SL,Miller RB,Swenson NG,Wiemann MC,Chave J(2009) Data from:towards a worldwide wood economics spectrum. Dryad Digit Repos.doi:10.5061/dryad.234

    Ziter C,Bennett EM,Gonzalez A(2013)Functional diversity and managementmediate aboveground carbon stocks in smallforest fragments.Ecosphere 4(7):85

    7 April 2014/Accepted:27 April 2014/Published online:23 January 2015

    The online version is available at http://www.springerlink.com

    Corresponding editor:Zhu Hong

    T.Ramananantoandro(&)

    Groupe Ecole Supe′rieure du Bois,Atlanpo?le Rue Christian Pauc, BP 10605,44306 Nantes Cedex 3,France

    e-mail:ramananantoandro@gmail.com

    国产成人av教育| 国产老妇伦熟女老妇高清| 欧美国产精品一级二级三级| 成人黄色视频免费在线看| 母亲3免费完整高清在线观看| cao死你这个sao货| 久久人妻福利社区极品人妻图片| av有码第一页| kizo精华| 无遮挡黄片免费观看| 久久婷婷成人综合色麻豆| 91九色精品人成在线观看| 91老司机精品| 国产成人av激情在线播放| 熟女少妇亚洲综合色aaa.| 日本撒尿小便嘘嘘汇集6| 三级毛片av免费| 日本撒尿小便嘘嘘汇集6| 一本—道久久a久久精品蜜桃钙片| 日本撒尿小便嘘嘘汇集6| 久久久久久亚洲精品国产蜜桃av| 女警被强在线播放| 汤姆久久久久久久影院中文字幕| 母亲3免费完整高清在线观看| 欧美日韩亚洲综合一区二区三区_| 岛国毛片在线播放| 91精品三级在线观看| 亚洲精品久久成人aⅴ小说| 人妻 亚洲 视频| 国产精品影院久久| 日韩欧美国产一区二区入口| 亚洲全国av大片| 每晚都被弄得嗷嗷叫到高潮| 一级黄色大片毛片| 国产日韩欧美视频二区| 亚洲三区欧美一区| 国产精品久久久久久精品电影小说| 又黄又粗又硬又大视频| 我要看黄色一级片免费的| 国产精品久久久久久精品电影小说| 一二三四在线观看免费中文在| 九色亚洲精品在线播放| 亚洲欧美激情在线| 丰满饥渴人妻一区二区三| 国产一区二区三区视频了| 99国产极品粉嫩在线观看| 日本欧美视频一区| 久久精品熟女亚洲av麻豆精品| 日韩欧美一区二区三区在线观看 | 一级毛片电影观看| 中文字幕最新亚洲高清| 淫妇啪啪啪对白视频| 亚洲午夜理论影院| 欧美人与性动交α欧美软件| 美女福利国产在线| 黄色毛片三级朝国网站| 国产亚洲精品一区二区www | 脱女人内裤的视频| 国产av国产精品国产| 久久青草综合色| 在线观看免费高清a一片| 精品卡一卡二卡四卡免费| 成人永久免费在线观看视频 | 日本黄色日本黄色录像| 国产在线免费精品| 大陆偷拍与自拍| 亚洲av日韩在线播放| 欧美乱妇无乱码| 亚洲五月婷婷丁香| 一区在线观看完整版| 在线观看免费午夜福利视频| 操出白浆在线播放| 亚洲国产中文字幕在线视频| 欧美中文综合在线视频| 色视频在线一区二区三区| 免费在线观看日本一区| 久久久久久久久免费视频了| 正在播放国产对白刺激| 天堂8中文在线网| 中文字幕高清在线视频| 久久精品亚洲熟妇少妇任你| 一边摸一边做爽爽视频免费| 黄网站色视频无遮挡免费观看| 三上悠亚av全集在线观看| 啦啦啦免费观看视频1| 亚洲成人国产一区在线观看| 国产精品一区二区在线观看99| 久久人妻熟女aⅴ| 母亲3免费完整高清在线观看| 视频区图区小说| 少妇的丰满在线观看| av网站在线播放免费| 青青草视频在线视频观看| 免费一级毛片在线播放高清视频 | xxxhd国产人妻xxx| 久久影院123| 久久 成人 亚洲| 亚洲午夜理论影院| 我要看黄色一级片免费的| 亚洲欧美日韩另类电影网站| 国产无遮挡羞羞视频在线观看| 女人高潮潮喷娇喘18禁视频| 美女午夜性视频免费| 国产欧美日韩一区二区三| 欧美黄色片欧美黄色片| 国产亚洲欧美在线一区二区| 视频区欧美日本亚洲| 男女边摸边吃奶| 亚洲国产av新网站| 久久久久精品国产欧美久久久| av天堂久久9| 丝袜美足系列| 亚洲色图av天堂| 黄色视频在线播放观看不卡| 婷婷成人精品国产| 亚洲国产看品久久| 国产在线视频一区二区| 国产免费福利视频在线观看| 欧美日韩成人在线一区二区| 亚洲伊人久久精品综合| 自拍欧美九色日韩亚洲蝌蚪91| 在线播放国产精品三级| 亚洲色图综合在线观看| 亚洲国产欧美网| 下体分泌物呈黄色| 自线自在国产av| 久久精品aⅴ一区二区三区四区| 亚洲精品国产精品久久久不卡| 男女免费视频国产| 久久精品亚洲av国产电影网| 日本一区二区免费在线视频| 美女扒开内裤让男人捅视频| av天堂久久9| 欧美日韩国产mv在线观看视频| 手机成人av网站| 亚洲欧美日韩另类电影网站| 热re99久久精品国产66热6| 久久精品国产a三级三级三级| 精品亚洲成国产av| 亚洲欧美色中文字幕在线| 国产伦理片在线播放av一区| 99国产精品免费福利视频| 肉色欧美久久久久久久蜜桃| 免费人妻精品一区二区三区视频| av片东京热男人的天堂| 最近最新中文字幕大全电影3 | 欧美精品高潮呻吟av久久| 午夜福利一区二区在线看| 亚洲人成77777在线视频| 国产福利在线免费观看视频| 男人操女人黄网站| 成人国语在线视频| 国产成人av激情在线播放| 在线 av 中文字幕| 日韩免费av在线播放| 午夜福利一区二区在线看| 黄色视频,在线免费观看| 大香蕉久久成人网| av网站在线播放免费| 啦啦啦中文免费视频观看日本| 手机成人av网站| 女人高潮潮喷娇喘18禁视频| 国产av一区二区精品久久| 一个人免费在线观看的高清视频| 制服诱惑二区| 亚洲欧洲日产国产| 国产成人精品久久二区二区免费| 悠悠久久av| 午夜福利乱码中文字幕| 久久久精品免费免费高清| 女性生殖器流出的白浆| 亚洲av国产av综合av卡| 老司机午夜福利在线观看视频 | 麻豆成人av在线观看| 亚洲精品在线观看二区| 免费在线观看完整版高清| 精品国产乱码久久久久久男人| 国产极品粉嫩免费观看在线| 欧美国产精品一级二级三级| 伦理电影免费视频| 日本精品一区二区三区蜜桃| 亚洲欧美一区二区三区黑人| 菩萨蛮人人尽说江南好唐韦庄| 国产精品 欧美亚洲| 99精品在免费线老司机午夜| 久久国产精品影院| 国产xxxxx性猛交| 国产三级黄色录像| 汤姆久久久久久久影院中文字幕| 欧美一级毛片孕妇| 咕卡用的链子| 18禁观看日本| 久热这里只有精品99| 久久中文字幕人妻熟女| 香蕉国产在线看| 夫妻午夜视频| 啦啦啦中文免费视频观看日本| 曰老女人黄片| 少妇粗大呻吟视频| 最新在线观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 一本大道久久a久久精品| 老司机靠b影院| 久热这里只有精品99| 久久中文字幕人妻熟女| 欧美日韩成人在线一区二区| 午夜久久久在线观看| 国产成+人综合+亚洲专区| 老熟妇仑乱视频hdxx| 欧美老熟妇乱子伦牲交| 亚洲av日韩在线播放| 亚洲国产av影院在线观看| 成人18禁高潮啪啪吃奶动态图| 高清欧美精品videossex| 国产无遮挡羞羞视频在线观看| av欧美777| 国产有黄有色有爽视频| 午夜老司机福利片| 国产1区2区3区精品| 亚洲专区国产一区二区| 国产亚洲精品第一综合不卡| 亚洲成av片中文字幕在线观看| av网站免费在线观看视频| 夫妻午夜视频| 国产日韩欧美视频二区| 国产真人三级小视频在线观看| 国产免费现黄频在线看| 欧美精品一区二区免费开放| 国产精品久久电影中文字幕 | 免费女性裸体啪啪无遮挡网站| 国产精品美女特级片免费视频播放器 | 法律面前人人平等表现在哪些方面| 91老司机精品| 高清欧美精品videossex| 成人国产一区最新在线观看| 一二三四社区在线视频社区8| 性色av乱码一区二区三区2| 欧美成狂野欧美在线观看| 亚洲avbb在线观看| 91精品国产国语对白视频| 激情在线观看视频在线高清 | 黄色 视频免费看| 久久中文看片网| 一级,二级,三级黄色视频| 桃花免费在线播放| 国产精品电影一区二区三区 | 热99国产精品久久久久久7| 天天躁狠狠躁夜夜躁狠狠躁| 国产有黄有色有爽视频| 久久久精品国产亚洲av高清涩受| 色综合婷婷激情| 黑人巨大精品欧美一区二区蜜桃| 国产在线免费精品| tocl精华| 91大片在线观看| 激情在线观看视频在线高清 | 韩国精品一区二区三区| 老汉色av国产亚洲站长工具| 久久午夜亚洲精品久久| 人人澡人人妻人| 少妇 在线观看| 亚洲成人国产一区在线观看| 18禁美女被吸乳视频| 成年女人毛片免费观看观看9 | 免费在线观看黄色视频的| 男女高潮啪啪啪动态图| 777久久人妻少妇嫩草av网站| 国产真人三级小视频在线观看| 免费观看人在逋| 久久精品国产99精品国产亚洲性色 | 一边摸一边抽搐一进一小说 | 一级毛片电影观看| 一级a爱视频在线免费观看| 国产精品国产av在线观看| 一级片免费观看大全| 国产亚洲欧美精品永久| 欧美激情久久久久久爽电影 | 免费在线观看完整版高清| 18在线观看网站| 国产精品 欧美亚洲| 9热在线视频观看99| 午夜福利视频在线观看免费| 露出奶头的视频| 男人操女人黄网站| 国产99久久九九免费精品| 老司机靠b影院| 成年人免费黄色播放视频| 亚洲色图 男人天堂 中文字幕| 国产99久久九九免费精品| 999久久久国产精品视频| 午夜福利在线免费观看网站| 日本vs欧美在线观看视频| 亚洲精品av麻豆狂野| 亚洲专区中文字幕在线| 成人亚洲精品一区在线观看| 三级毛片av免费| 丝袜美足系列| 嫩草影视91久久| 90打野战视频偷拍视频| 无人区码免费观看不卡 | 国产三级黄色录像| 色精品久久人妻99蜜桃| 搡老乐熟女国产| 妹子高潮喷水视频| 亚洲精品美女久久久久99蜜臀| 操出白浆在线播放| 国产精品麻豆人妻色哟哟久久| 肉色欧美久久久久久久蜜桃| 首页视频小说图片口味搜索| 高清欧美精品videossex| 国产又色又爽无遮挡免费看| 精品福利永久在线观看| 美女扒开内裤让男人捅视频| 亚洲va日本ⅴa欧美va伊人久久| 巨乳人妻的诱惑在线观看| 欧美精品一区二区大全| 国产97色在线日韩免费| 99国产精品一区二区三区| 天天影视国产精品| 亚洲国产欧美一区二区综合| 久久久久精品国产欧美久久久| 亚洲欧美激情在线| 亚洲男人天堂网一区| 人人妻人人澡人人看| 高清欧美精品videossex| 国产精品久久久人人做人人爽| 99久久国产精品久久久| 欧美性长视频在线观看| 欧美老熟妇乱子伦牲交| 视频区图区小说| 夜夜骑夜夜射夜夜干| 日韩成人在线观看一区二区三区| 免费女性裸体啪啪无遮挡网站| 黄色丝袜av网址大全| 亚洲成人免费电影在线观看| 中文字幕人妻丝袜一区二区| 国产欧美日韩综合在线一区二区| 黄色毛片三级朝国网站| 伊人久久大香线蕉亚洲五| 大香蕉久久网| 欧美日韩一级在线毛片| 日韩大片免费观看网站| 国产精品.久久久| 又紧又爽又黄一区二区| 99精品久久久久人妻精品| 久久国产精品男人的天堂亚洲| 在线十欧美十亚洲十日本专区| 99国产精品99久久久久| 99国产精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产精品 国内视频| 精品国产乱子伦一区二区三区| 国产精品久久久久久精品电影小说| 国产深夜福利视频在线观看| 国产精品免费一区二区三区在线 | 成人国产一区最新在线观看| 亚洲人成77777在线视频| 18禁黄网站禁片午夜丰满| 久久久久网色| 欧美黑人欧美精品刺激| 精品一区二区三区四区五区乱码| 亚洲一区中文字幕在线| 久久av网站| 国产精品秋霞免费鲁丝片| 免费在线观看视频国产中文字幕亚洲| 日韩成人在线观看一区二区三区| av超薄肉色丝袜交足视频| 我的亚洲天堂| 无遮挡黄片免费观看| 日韩大码丰满熟妇| 大片免费播放器 马上看| 一区福利在线观看| 欧美乱妇无乱码| 午夜91福利影院| 欧美午夜高清在线| 国产av又大| 又黄又粗又硬又大视频| 国产91精品成人一区二区三区 | 欧美亚洲日本最大视频资源| 日韩视频一区二区在线观看| 国产精品欧美亚洲77777| 女人被躁到高潮嗷嗷叫费观| 中文字幕另类日韩欧美亚洲嫩草| 制服人妻中文乱码| 亚洲国产成人一精品久久久| 亚洲性夜色夜夜综合| 国产精品欧美亚洲77777| 欧美日韩黄片免| 欧美激情高清一区二区三区| 国产在线精品亚洲第一网站| 97在线人人人人妻| 亚洲精品自拍成人| 一区二区三区国产精品乱码| 在线观看一区二区三区激情| 黄频高清免费视频| 淫妇啪啪啪对白视频| videos熟女内射| 汤姆久久久久久久影院中文字幕| 黑人操中国人逼视频| 国产欧美日韩一区二区三| 午夜老司机福利片| 亚洲成人免费电影在线观看| 久久人妻福利社区极品人妻图片| 制服人妻中文乱码| 午夜福利视频在线观看免费| 国产精品偷伦视频观看了| 国产精品久久久久成人av| 宅男免费午夜| 日韩大片免费观看网站| 国产一区二区三区视频了| 丝袜美腿诱惑在线| 久久久久久久久免费视频了| 国产一区有黄有色的免费视频| 久久九九热精品免费| 在线 av 中文字幕| 亚洲av美国av| 国产黄色免费在线视频| 啦啦啦中文免费视频观看日本| 精品亚洲成国产av| 后天国语完整版免费观看| 国产精品熟女久久久久浪| 中文字幕人妻丝袜一区二区| 久久久久视频综合| 每晚都被弄得嗷嗷叫到高潮| 夜夜爽天天搞| 精品少妇内射三级| 美女高潮喷水抽搐中文字幕| 亚洲精品乱久久久久久| 久久久久久免费高清国产稀缺| 免费观看av网站的网址| 精品少妇久久久久久888优播| 亚洲少妇的诱惑av| 汤姆久久久久久久影院中文字幕| 精品高清国产在线一区| 热99久久久久精品小说推荐| 国产成人免费观看mmmm| 亚洲精品国产区一区二| 99国产精品一区二区蜜桃av | 真人做人爱边吃奶动态| 美国免费a级毛片| 久久久水蜜桃国产精品网| 丰满人妻熟妇乱又伦精品不卡| 精品亚洲乱码少妇综合久久| 久久性视频一级片| 成年人午夜在线观看视频| 午夜福利在线免费观看网站| 亚洲情色 制服丝袜| 天天躁狠狠躁夜夜躁狠狠躁| 99香蕉大伊视频| 麻豆成人av在线观看| 亚洲七黄色美女视频| 亚洲午夜理论影院| 91精品三级在线观看| 国产高清videossex| 精品一区二区三卡| 免费不卡黄色视频| 国产成人欧美| 午夜福利在线观看吧| 国产精品久久久久成人av| 欧美激情极品国产一区二区三区| 伦理电影免费视频| 免费少妇av软件| 精品久久久久久电影网| 黄色 视频免费看| 亚洲一区二区三区欧美精品| 一本大道久久a久久精品| 视频区欧美日本亚洲| 淫妇啪啪啪对白视频| 久久天堂一区二区三区四区| 久久久久国产一级毛片高清牌| 悠悠久久av| 日韩人妻精品一区2区三区| 大片免费播放器 马上看| 深夜精品福利| 黄色片一级片一级黄色片| 超碰成人久久| 午夜福利在线免费观看网站| 亚洲色图综合在线观看| 欧美午夜高清在线| 欧美日韩亚洲国产一区二区在线观看 | 如日韩欧美国产精品一区二区三区| 午夜激情av网站| 亚洲欧美一区二区三区黑人| 国产成人精品久久二区二区免费| 国产在线视频一区二区| 成人18禁高潮啪啪吃奶动态图| 久久精品aⅴ一区二区三区四区| 两人在一起打扑克的视频| 午夜视频精品福利| 亚洲人成电影观看| 在线观看66精品国产| 亚洲黑人精品在线| 国产在视频线精品| 精品久久久久久久毛片微露脸| 精品一区二区三区av网在线观看 | 1024视频免费在线观看| 国产精品久久久久成人av| 欧美激情高清一区二区三区| 中文字幕高清在线视频| 久久久水蜜桃国产精品网| 50天的宝宝边吃奶边哭怎么回事| 久久天堂一区二区三区四区| 亚洲精品国产一区二区精华液| 精品国产一区二区三区四区第35| 18禁裸乳无遮挡动漫免费视频| 韩国精品一区二区三区| 国产精品偷伦视频观看了| 变态另类成人亚洲欧美熟女 | 啦啦啦视频在线资源免费观看| 国产免费av片在线观看野外av| 高清av免费在线| 波多野结衣av一区二区av| 国产精品秋霞免费鲁丝片| 国产高清视频在线播放一区| 两性夫妻黄色片| 欧美精品亚洲一区二区| 高清黄色对白视频在线免费看| 国产亚洲精品一区二区www | 在线看a的网站| 亚洲专区字幕在线| 黄色视频不卡| 国产精品电影一区二区三区 | 国产精品九九99| 日日夜夜操网爽| 99国产精品免费福利视频| 久久人人爽av亚洲精品天堂| 91麻豆精品激情在线观看国产 | 国产在线视频一区二区| xxxhd国产人妻xxx| 亚洲熟妇熟女久久| 国产一区二区 视频在线| 亚洲av美国av| 最近最新中文字幕大全电影3 | 国产高清videossex| 美女午夜性视频免费| av又黄又爽大尺度在线免费看| 免费黄频网站在线观看国产| 成人国产av品久久久| 国产成人精品久久二区二区91| 一边摸一边抽搐一进一出视频| 日本a在线网址| 老司机亚洲免费影院| 高清黄色对白视频在线免费看| 在线十欧美十亚洲十日本专区| 天天操日日干夜夜撸| 亚洲午夜精品一区,二区,三区| 叶爱在线成人免费视频播放| 久久精品国产综合久久久| 一个人免费在线观看的高清视频| 精品国内亚洲2022精品成人 | 丝袜喷水一区| 亚洲第一欧美日韩一区二区三区 | 亚洲七黄色美女视频| 色婷婷久久久亚洲欧美| 欧美在线一区亚洲| 欧美精品亚洲一区二区| 麻豆av在线久日| 一边摸一边做爽爽视频免费| 久久精品亚洲av国产电影网| 不卡一级毛片| 一区在线观看完整版| 男人舔女人的私密视频| 黄色片一级片一级黄色片| 国产男靠女视频免费网站| av片东京热男人的天堂| 一个人免费看片子| 色综合欧美亚洲国产小说| 人妻 亚洲 视频| 国产精品一区二区免费欧美| 十八禁网站网址无遮挡| 黄色毛片三级朝国网站| 黑丝袜美女国产一区| 美国免费a级毛片| 狠狠狠狠99中文字幕| 侵犯人妻中文字幕一二三四区| 成人手机av| 18禁观看日本| 亚洲成a人片在线一区二区| 巨乳人妻的诱惑在线观看| 国产成人啪精品午夜网站| 麻豆国产av国片精品| 国产成人欧美| 性少妇av在线| 国产xxxxx性猛交| 制服人妻中文乱码| 国产精品九九99| 色综合婷婷激情| 极品教师在线免费播放| 不卡av一区二区三区| 久久天躁狠狠躁夜夜2o2o| 精品国产亚洲在线| 成年人黄色毛片网站| 国产欧美日韩一区二区三区在线| 无人区码免费观看不卡 | 精品一区二区三区四区五区乱码| 精品亚洲成国产av| 亚洲avbb在线观看| 亚洲男人天堂网一区| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 国产精品熟女久久久久浪| 一边摸一边抽搐一进一小说 | 嫩草影视91久久| 亚洲精品乱久久久久久| 在线观看免费视频网站a站| 伦理电影免费视频| 十八禁网站网址无遮挡| 色综合婷婷激情| 男女下面插进去视频免费观看| 黄色成人免费大全| 香蕉国产在线看| 99国产极品粉嫩在线观看| 一级片'在线观看视频| 欧美午夜高清在线| 啦啦啦中文免费视频观看日本|