• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Advances in experimental methods for root system architecture and root development

    2015-06-19 18:30:10JunbangWangXiujuanZhangChuWu
    Journal of Forestry Research 2015年1期

    Jun-bang Wang?Xiu-juan Zhang?Chu Wu

    Advances in experimental methods for root system architecture and root development

    Jun-bang Wang?Xiu-juan Zhang?Chu Wu

    Plant roots play important roles in acquisition of water and nutrients,storage,anchoring,transport,and symbiosis with soil microorganisms,thus quantitative researches on rootdevelopmentalprocesses are essentialto understand rootfunctions and rootturnover in ecosystems, and atthe same time such researches are the mostdifficult because roots are hidden underground.Therefore,how to investigate efficiently root functions and root dynamics is the core aspect in underground ecology.In this article,we reviewed some experimental methods used in root researches on rootdevelopmentand rootsystem architecture,and summarized the advantages and shortages of these methods.Based on the analyses,we proposed three new ways to more understand root processes:(1)new experimental materials for root development;(2)a new observatory system comprised ofmultiple components,including many observatory windows installed in field,analysis software,and automatic data transport devices;(3)new techniques used to analyze quantitatively functional roots.

    Rootsystem analysisFractal geometryNovel materials

    Introduction

    There are greatdifferences in developmentbetween aboveand below-ground parts of plants.The development of above-ground plantparts is less affected by environmental factors,thus branching patterns of above-ground parts are similar among individuals of the same species.In contrast, the developmentof root systems is greatly affected by the soilenvironmentalfactors,such as soilnutrients(especially the availability of nitrogen and phosphate)(Zhang and Forde 1998;Williamson et al.2001;Linkohr et al.2002; Wu etal.2005;Hilletal.2006;Jain etal.2007;Vidaletal. 2010;Peretetal.2011;Gan etal.2012;Gruber etal.2013; White et al.2013),soil water(Berntson and Woodward 1992;Manschadi et al.2006,2008;Henry et al.2011; Bengough et al.2011),soil temperature(Mackay and Barber 1984;Kaspar and Bland 1992;Clausnitzer and Hopmans 1994),soil pH(Walter et al.2000),soil compaction(Bushamuka and Zobel1998;Busscher etal.2000; Tracy et al.2010a),and slope gradients(Di Iorio et al. 2005;Pierret et al.2007;Sun et al.2008),thus the morphology and physiology of roots show great plasticity. Because of the relationships between above-and belowground parts of plants,it is necessary to maximize root/ rhizosphere efficiency to improve plant productivity and nutrient efficiency(Shen et al.2013).Root traits can be used to create phosphate efficientcrop varieties in response to limited global phosphate resources(Gahoonia andNielsen 2004).Therefore,root development,root system architecture,and root dynamics have been the focuses in botany and ecology.An obstacle to the study ofrootsystem architecture is to measure and quantify the three-dimensional configuration of root systems in soil.At the same, root dynamics is not monitored efficiently because of hidden roots in dark medium.Researchers have attempted to overcome the two obstacles in order to understand root functions and rootresponses to soilenvironmentalfactors. In this paper,we review some advantages and shortages in experimental methods for study of root development,root system architecture,and root dynamics,and propose some new ways to enhance root research.

    The theoretic bases for analysis of root system

    Root system architecture,as defined by Lynch(1995), refers to the spatialconfiguration ofthe rootsystem,i.e.the explicit geometric deployment of the root axes.The root system architecture of plant seedlings is relatively simple but adult plants,especially adult trees,such as Sequoia sempervirens,have complex root system architecture (Nadezhdina and Cˇerma′k 2003;DiIorio etal.2005)thatis difficult to study.

    Although plant root systems show plasticity and complexity,within a given species root systems are similar because of shared genetic characteristics.The similarity provides the basis for their analysis.

    Mandelbrot(1975)coined the term‘‘fractal’’.A fractalis generally a rough or fragmented geometric shape that can be splitinto parts,each ofwhich is(atleastapproximately) a reduced-size copy ofthe whole shape,i.e.self-similarity. A fractal often has traits including:(1)self-similarity;(2) fine or detailed structure at arbitrarily small scales;(3) simple and recursive definition;(4)irregularity which is difficultto describe by Euclidean geometry;(5)Hausdorff dimension which is greater than its topological dimension. Based these traits of fractals,smaller parts of roots are fractal representations of larger parts of roots,thus fractal analysis is an appropriate tool for study of root systems. Therefore,fractal analysis was used to describe root systems of many plant species(Table 1).Fractal analysis has also been used to compare the responses of root system architecture to nutrient deficiency(Eghball et al.1993; Nielsen etal.1999),droughtstress(Wang etal.2009),and efficiency of soil exploration by roots(Walk et al.2004).

    These applications offractalanalysis are deficientbecause they were only involved in two-dimension structures of root systems,and spatial configurations of root systems are not taken into consideration.In natural ecosystems,most soil nutrients are in the soil layer of 10-20 cm deep,thus root spatial configurations are related to nutrition uptake. Therefore,some parameters involved in description for root spatialconfiguration,such asthe anglesbetween primary root and the firstlateralrootsand the anglesbetween rootlinksin a root system,should be analyzed in fractal analysis.Data obtained from a complex root system are great,thus new software willbe developed foranalyzing them.

    Roottopology isanotherterm used fordelineation ofroot systems.Asdefined by Lynch(1995),the term refersto how individual root axes are connected to each other through branching.Unlike branching of above-ground parts,root branching shows greatspatiotemporalchanges,forexample, first-orderfine roots can be connected with second-orderand the third-order roots(Pregitzer et al.2002),and even with fourth-order roots(Wang etal.2006),leading to the complexity ofrootbranching.Regardlessofits complexity,root branching links can be classified into three types,i.e.exterior–exterior(EE),exterior–interior(EI),and interior–interior(II)(Fig.1,Fitter and Stickland 1991).

    Three topological parameters can be calculated to describe the relationships between links:

    Magnitude(a):number of exterior links.The total number of root tips categorized as EI and EE(Fig.1a)or total numbers of root tips categorized a EE(Fig.1b).

    Altitude(l):number of links in the longest unique path from the base link to an exterior link.In Fig.1a,from an exterior link labeled EE to the base link,the number of root links is 10,i.e.l=10.In Fig.1b,from any exterior link labeled EE to the base link,the number ofrootlinks is 4,i.e. l=4.

    Total exterior pathlength(pe):sum of numbers of links in all possible unique paths from the base link to all exterior links.In Fig.1a,pe=64;in Fig.1b,pe=32.

    Two topological indices can be used

    Altitude-slope:the slope of the regression of log10a on log10l for a given root system.In the plot with log10l as the x axis and log10a as the y axis,the slope of the regression is the altitude-slope for a set of root system.

    Pathlength-slope:the slope of the regression of log10peon log10l fora given rootsystem.In the plotwith log10l as the x axis and log10peas the y axis,the slope of the regression is the pathlength-slope for a given rootsystem.

    In addition,some parameters are used to describe the morphology ofrootsystems,such as roothairdensity,root diameter,the occurrence pattern of lateral roots,the distance from the tip to the lattermostlateralroot.Anatomical traits such as the sizes of epidermal cells in the elongation zone,the cell density of the meristem zone,and the size of meristem zone are not usually involved in the description of root systems.

    Similar to fractal analysis,root topology does not take root spatial configuration into consideration.

    Table 1 The plant species which were analyzed using fractal analysis

    Fig.1 Diagram showing the distinction between extreme branching patterns(a:herringbone;b:dichotomous).Exterior–exterior(EE); exterior–interior(EI);interior–interior(II)[e.g.a link between the two dashed lines in(b)cited from(Fitter and Stickland 1991]

    Experimentalmethods for measurementofrootsystems

    The complexity of rootsystem architecture raises obstacles to data acquisition that are addressed by advances in technology.Digital images help to quickly acquire data about root system architecture.Meanwhile,related software is helpful for processing these data.

    Root system analysis technologies based on scanners were developed,including WinRhizo and RootSnap.Specific root analysis software was also developed,including Multi-ADAPT(Ishikawa and Evans 1997),AMAPmod (Danjon et al.1999a,b,2008),Delta-T Scan and Win-RHIZO(Boumma etal.2000),REGR(Walter etal.2002), RootFlow(van der Weele et al.2003,KineRoot(Basu et al.2007),SmartRoot(International Atomic Energy Agency 2006;Draye 2008),RootLM(Qi et al.2007), Phytomorph(Miller etal.2007;Spalding,2009),RootNav (Pound et al.2013),RootTrace(French et al.2009),and Growth Tracer(Iwamoto etal.2013).RootFlow and REGR made use of optic flow-based techniques(Barron et al. 1994;Barron and Liptay 1994).All of these applications have their strengths and weaknesses.The combination of scanner and software was used to measure some root parameters using three-dimension techniques that provided more configuration information about root system architecture(Danjon and Reubens 2008).For entire root systems,some morphologicaltraits can be analyzed,including total root length,root average diameter,totalroot surface, project surface,root tips,root volume.Some parameters related to rootlinks can be measured,such as totalnumber of links in a rootsystem,their average length and diameter, volume,and branching angles.Topological parameters can also be measured,such as altitude,magnitude,and exterior path length.

    Some root analysis systems have their shortcomings, one of which is the fact that roots must be excavated and washed from soil cores before they can be scanned (Gregory 2006;Smit et al.2000).Excavation and washing must break some parts of the root system,leading to the underestimation of fine roots through breakage and loss of information on the spatial distribution and root system architecture.More seriously,data obtained laterare lack of the information about root spatialconfiguration.

    More advanced devices were developed.More than ten years ago,X-ray computed tomography(CT)was firstused to analyze rootsystems(Heeraman etal.1997;Pierretetal. 1999).Because the scanning process of X-ray CT is nondestructive,the technique can track root growth and changes in root system architecture.Based on these advantages,the technique has been developed and widely used(Gregory et al.2003;Lontoc-Roy et al.2005;Perret etal.2007;Tracy etal.2010a,b;2012a,b;Mooney etal. 2012;Mairhofer etal.2012,2013).

    X-ray CT can visualize the internal structure of opaque objects.X-ray CT scanners acquire a series of projections from different facets of a vessel that contains plants, measuring the attenuation of ionizing radiation passing through the vessel.These projections are combined to reconstruct a three-dimensional data set.Data values recorded at each voxel reflect the density of the imaged material and are usually mapped to greyscale intensity values for visualization purposes(Mooney 2002).But variations in the x-ray attenuation values of root material and the overlap in attenuation values between roots and soil caused by water and organic materials(especially nondecomposed litter)represent major challenges to data recovery.Software(such as RooTrack)has been developed to separate root systems from their soil environment in images obtained by X-ray CT and recover root system architecture traits(Mairhofer etal.2012,2013).

    In addition,as a complementary toolto other predictive techniques,gelgrowth systems with superior opticalclarity have been introduced to facilitate noninvasive twodimensional(2D;Iyer-Pascuzzi et al.2010)and threedimensional(3D;Fang et al.2009;Clark et al.2010) imaging.These methods are only used for rootsystems of seedlings,thus its applications are limited.

    At present,there are not available techniques used in field for in situ dynamic observation.Ground penetrating radar(GPR)should be usefulto investigate rootsystems of forest trees on forest ecosystem level(Nadezhdina and Cˇerma′k 2003;Butnor et al.2003;Barton and Montagu 2004;al Hagrey 2007).GPRs have not only the lowest wave length and resolution to detectsmalltargets butalso the highest wave attenuation that limits resolution and penetration in wet conducting media,thus they have been used to estimate single root segments or biomass with a relatively low precision(Butnor et al.2003;Barton and Montagu 2004;al Hagrey 2007).But,at present,the accuracy and resolution of GPRs are not enough for fine roots(rootdiameter1 mm),and more advanced GPRs are needed.Software applications have also been developed to analyze information collected by GRP,providing detailed investigation on rootsystems atthe ecosystem level.

    Based on the analyses mentioned above,two new techniques will be developed:one is the combination of continuous three-dimensionalimaging and fractalanalysis/ topology used in laboratories;another is in situ continuous multiple-site observatory root systems with automatic data transport used in ecosystem level.

    Novel plant materials used in root development

    Root development includes three main aspects,i.e.elongation of roots,branching(including proteoid roots),and differentiation of root epidermal cells(i.e.root hair formation,including dauciform roots;Playsted et al.2006; Shane et al.2006).Lateral root formation is the base of developmentof the whole rootsystem in which rootelongation enlarges the volume of soil explored by roots,and root hairs greatly increase the absorptive surface area for water and nutrients in soil.Of the three aspects,lateralroot formation seems more important,thus investigation on lateral root formation has been the focus of the root development research.While various types of advanced microscopes are used in studies of root development,new plant materials are also used.Many mutants related to specific genes that affect root development and many transgenic Arabidopsis lines with GFP or GUS in roottissues showed noveltraits,i.e.specific occurrence in a tissue in roots.Thus these transgenic plants are often used in studies of root development.Lateral root formation starts with a series of anticlinal and periclinal divisions of pericycle cells,a layerofroottissue surrounding the vasculature (Malamy and Benfey 1997;Kurup et al.2005).Thus, detection of the activity of pericycle cells near the xylem poles is important for lateral root formation.Quiescent centers(QC)in roottips maintain the activities and sizes of the meristemsin roots,so detection ofQC isalso important.

    In the MRC Laboratory of Molecular Biology,led by Jim Haseloff(http://data.plantsci.cam.ac.uk/Haseloff/),GAL4-GFP lines were produced by Agrobacterium-mediated transformation of the C24 Arabidopsis line using the binary vector pBIN m-gfp5-ER.The m-gfp5-ER gene is GAL4 responsive and is linked to a GAL4 gene,a foreign transcription activatorderived from the yeastGAL4 gene in the GAL4-GFP lines.Because ofthe traits of GFP,the patterns of GAL4 expression in the GAL4-GFP lines can be immediately and directly detected.Some lines in the GAL4-GFP setshow specific patternsofGAL4 expression in roots, thus they are widely used in studies on root development.

    Of allthe GAL4-GFP lines,J0121 seems to be the most useful for studies on root development.In J0121, GAL4::GFP expression is specific to 2–3 rootpericycle cell files adjacent to the xylem poles(Fig.2;Laplaze et al. 2005),thus the line can be used for detection of the first cell division of cells at the initial stage of lateral root formation.In J0192,GAL4::GFP is expressed in young lateralrootprimordia(Fig.2;Laplaze etal.2005),thus itis very useful for detecting the development of young lateral root primordial.After these two lines were produced,they have often been used in studies of root systems(Table 2).

    Mostrecently,a GAL4-based targeted activation tagging system in Arabidopsis has been established(Waki et al. 2013).Host plants that expressed a synthetic transcription activator GAL4:VP16(GV)in an organ-or tissue-specific mannerwere transformed with a T-DNA harboring tandem copies of UAS,a GAL4-binding sequence.Thus the activation tagging system is a powerful tool for discovering novel genes that affect root development.

    QC maintains the activity of root meristem and specific lines were produced to observe QC status(Table 2).GFP only occurs in QC25,thus QC25 is used in root development,especially used in monitoring the activity of QC and root meristem of plants treated with phytohormones and environmental stresses.

    In other GAL4-GFP lines,GFP specifically occurs in columella(Q1630),root epidermis(J2301,J0631,and J2921),lateralrootcap(J0951),and stele(J2501)(Table 2).

    Lateral roots originate from the pericycle cells opposite to xylem poles.These pericycle cells are distant from the root meristem zone and stop division.Therefore,the first step of lateral root formation is the recovery of the cell cycle ofsome pericycle cells.CYCB1;1 is a mitotic cyclin in Arabidopsis,and is expressed only around the G2/M transition in the cellcycle(Doerneretal.1996;Shauletal. 1996),therefore,CycB1;1::uid A reporterconstruct(Fig.3) is often used as the marker to detect the process of the cell cycle during lateralrootformation(Table 2;Casimiro etal. 2001;Aida et al.2004;Hutchison et al.2006;Ioio et al. 2007).

    Fig.2 GFP expression in the enhancer trap lines J0121(a–c)and J0192(d–g).(a,b,d,e,f,g)Longitudinalconfocalsections of roots and(c)projected confocal view of the top part of a hypocotyl of living plants showing GFP fluorescence(green)and counterstained with propidium iodide(red).a GFP expression starts in the pericycle cells of the elongation zone.No GFP fluorescence is visible in the root meristem.b Expression in pericycle cells adjacent to a xylem strand. c Expression in the hypocotyl epidermis.d Expression in a stage I primordium.e Expression in a stage IIprimordium.f Expression in a stage III primordium.g Expression in a stage V primordium.Cited from Laplaze et al.2005

    Table 2 Experimental materials often used in studies on root development

    Rootdevelopmentis affected by environmentalfactors, thus lateral root initiation is a probabilistic event,but its frequency is set by fluctuating levels of auxin response (Laskowski 2013).In Arabidopsis,the process of lateral root formation consists of two major stages:cell cycle reactivation in the xylem pericycle and establishment of a new meristem(Himanen etal.2002).Pericycle reactivation depends on local concentration of auxin in the roots, whereas the outgrowth of lateral roots is regulated by shoot-derived auxin(Bhalerao et al.2002).Therefore, detection of local concentration of auxin in roots is very important for lateral root formation and root system development.

    There are some auxin-responsive elements(AuxRE)in the promoters of auxin-responsive genes,such as IAA5 and IAA19 genes(Nakamura et al.2003),and AuxRE contains the TGTCTC sequence.ARF proteins can bind to AuxRE after Aux/IAA proteins are degraded and ARF proteins are released from Aux/IAA proteins,promoting auxin responses.A highly active synthetic AuxRE,referred to as DR5,was created by performing site-directed mutations in a natural composite AuxRE found in the soybean GH3 promoter(Ulmasov et al.1997).Because DR5 showed greater auxin responsiveness than a natural composite AuxRE(as shown in Fig.4),it became a useful reporter gene(acting as DR5::GFP or DR5::GUS)for studying auxin responses in wild-type plants and various mutants (Sabatini et al.1999;Friml et al.2002a,b;Ottenschla¨geret al.2003;Willemsen et al.2003;Laplaze et al.2007; Ohashi-Ito and Bergmann,2007;Petersson et al.2009).

    Fig.3 Schematic of the CycB1;1::uid A reporter construct(pCDG). The upper panel highlights functionalmotifs of cyclin CycB1;1.The lower panel shows the 1.8 kb genomic fragment,including approximately 1.2 kb of promoter sequence and the first three exons of CycB1;1 coding sequence up to amino acid 116,translationally fused to the E.coliuid A gene.Thick lines representpromoter sequences or introns,boxes representexons.Cited from Colo′n-Carmona etal.1999

    Fig.4 Histochemical staining for GUS activity in Arabidopsis seedlings transformed with DR5(97)-GUS.Seedlings were treated for24 h with 50 l M 1-NAA(right)or H2O(left)and then stained for GUS activity for*8 h(top)or 16 h(bottom).Cited from Ulmasov et al.(1997)

    SCARECROW(SCR)gene encodes a putative transcription factor(DiLaurenzio etal.1996)thatis firstexpressed in QC precursor cells during embryogenesis,after which it extends to the initial cells for the ground tissue(cortex and endodermis)(Wysocka-Diller et al.2000).Because SCR gene regulates an asymmetric celldivision thatis essential for generating the radial organization of the Arabidopsis roots(Di Laurenzio et al.1996)and is involved in positioning the stem cellniche in the Arabidopsis rootmeristem (Sabatinietal.2003),its fusion constructs with GFP or GUS are widely used to study rootdevelopment(Table 2).

    All the novel plant experimental materials provide us with information about root developmental processes, especially initiation of lateral roots and QC activity.Since root brain hypothesis have been accepted gradually (Balusˇka etal.2009,2010),some ofthe plantexperimental materials will be useful for investigation on the functions of root tips.In view of complexity of root brain,new plant experimental materials will be developed,especially those involved in neurotransmitters.

    Additionally,since root development is affected by other phytohormones,such as ethylene(Rahman et al. 2001;Stepanova et al.2007),cytokinin(Aloni et al.2006; Laplaze et al.2007),and nitric oxide(Correa-Aragunde et al.2004,2006;Sto¨hr and Stremlau 2006),novel transgenic plants,like the above-mentioned transgenic lines with DR::GFP and DR5::GUS,are needed for investigation on the effects of ethylene,cytokinin and nitric oxide on root development,especially their effects on lateral root formation.New techniques and experimentalmaterials are needed to promote study of rootdevelopment.

    Concluding remarks

    In view of multiple functions of roots,we have to face crypticity and high plasticity of rootsystems.Development of new techniques for data acquisition and analysis and experimental materials will help us overcome difficulties and understand more details about root functions and root dynamics.

    AcknowledgmentsWe thank Dr.Soo-Un Kim in Seoul National University for reviewing the manuscript.This work is supported by the projectof public benefits in China(No.201503221)and the open fund in the Institute of Root Biology,Yangtze University.

    Aida M,Beis D,Heidstra R,Willemsen V,Blilou I,Galinha C, Nussaume L,Noh YS,Amasino R,Scheres B(2004)The PLETHORA genes mediate patterning of the Arabidopsis root stem cellniche.Cell 119:109–120

    al Hagrey SA(2007)Geophysical imaging of root-zone,trunk,and moisture heterogeneity.J Exp Bot 58:839–854

    Aloni R,Aloni E,Langhans M,Ulirich CI(2006)Role of cytokinin and auxin in shaping root architecture:regulating vascular differentiation,lateral root initiation,root apical dominance and root gravitropism.Ann Bot 97:883–893

    Balusˇka F,Mancuso S,Volkmann D,Barlow PW(2009)The‘rootbrain’hypothesis of Charles and Francis Darwin:revival after more than 125 years.Plant Signal Behav 4:1121–1127

    Balusˇka F,Mancuso S,Volkmann D,Barlow PW(2010)Root apex transition zone:a signalling–response nexus in the root.Trends Plant Sci 15:402–408

    Barron JL,Liptay A(1994)Optical flow to measure minute increments in plant growth.Bioimaging 2:57–61

    Barron JL,Fleet DJ,Beauchemin SS(1994)Performance of optical flow techniques.Int J Comput Vis 12:43–77

    Barton CVM,Montagu KD(2004)Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions.Tree Physiol 24:1323–1331

    Basu P,Pal A,Lynch JP,Brown KM(2007)A novel image analysis technique for kinematic study of growth and curvature.Plant Physiol 145:305–316

    Bengough AG,McKenzie BM,HallettPD,Valentine TA(2011)Root elongation,water stress,and mechanicalimpedance:a review of limiting stresses and beneficialroottip traits.JExp Bot62:59–68

    Berntson GM(1994)Root systems and fractals:how reliable are calculations of fractal dimensions?Ann Bot 73:281–284

    Berntson GM,Woodward FI(1992)The rootsystem architecture and development of Senecio vulgaris in elevated CO2and drought. Funct Ecol 6:324–333

    Bhalerao RP,Eklof J,Ljung K,Marchant A,Bennett M,Sandberg G (2002)Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings.Plant J 29:325–332

    Birnbaum K,Shasha DE,Wang JY,Jung JW,Lambert GM,Galbraith DW,Benfey PN(2003)A gene expression map of the Arabidopsis root.Science 302:1956–1960

    Boumma TJ,Nielsen KL,KoutstaalB(2000)Sample preparation and scanning protocol for computerised analysis of root length and diameter.Plant Soil218:185–196

    Bushamuka VN,Zobel RW(1998)Differential genotypic and root type penetration of compacted soil layer.Crop Sci 38:776–781

    Busscher WJ,Lipiec J,Bauer PJ,Carter TE Jr(2000)Improved root penetration of soil hard layers by a selected genotype.Comm Soil Sci Plant Analysis 31:3089–3101

    Butnor JR,Doolittle JA,Johnsen KH,Samuelson L,Stokes T,Kress L(2003)Utility of ground-penetrating radar as a root biomass survey tool in forest systems.Soil Sci Soc Am J 67:1607–1615

    Casimiro I,Marchant A,Bhalerao RP,Beeckmand T,Dhooge S, Swarup R,Graham N,Inze D,Sandberg G,Casero PJ,Bennett M(2001)Auxin transport promotes Arabidopsis lateral root initiation.Plant Cell 13:843–852

    Clark RT,MacCurdy RB,Jung JK,Shaff JE,McCouch SR, Aneshansley DJ,Kochian LV(2010)Three-dimensional root phenotyping with a novel imaging and software platform.Plant Physiol 156:455–465

    Clausnitzer V,Hopmans JW(1994)Simultaneous modeling of transient three-dimensional root growth and soil water flow. Plant Soil 164:299–314

    Colo′n-Carmona A,You R,Haimovitch-Gal T,Doerne P(1999) Spatio-temporalanalysis of mitotic activity with a labile cyclin–GUS fusion protein.Plant J 20:503–508

    Correa-Aragunde N,Graziano M,Lamattina L(2004)Nitric oxide plays a central role in determining lateral root development in tomato.Planta 218:900–905

    Correa-Aragunde N,Graziano M,Chevalier C,Lamattina L(2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato.J Exp Bot 57:581–588

    Costa C,Dwyer LM,Dutilleul P,Foroutan-pour K,Liu A,Hamel C, Smith DL(2003)Morphology and fractal dimension of root systems of maize hybrids bearing the leafy trait.Can J Bot 81:706–713

    Danjon F,Barker DH,Drexhage M,Stokes A(2008)Using threedimensional plant root architecture in models of shallow-slope stability.Ann Bot 101:1281–1293

    Danjon F,Bert D,Godin C,Trichet P(1999a)Structural root architecture of 5-year-old Pinus pinaster measured by 3D digitising and analysed with AMAPmod.Plant Soil217:49–63

    Danjon F,Reubens B(2008)Assessing and analyzing 3D architecture of woody root systems,a review of methods and applications in tree and soil stability,resource acquisition and allocation.Plant Soil 303:1–34

    Danjon F,Sinoquet H,Godin C,Colin F,Drexhage M(1999b) Characterisation of structural tree root architecture using 3D digitising and AMAPmod software.Plant Soil 211:241–258

    Di Iorio A,Lasserre B,Scippa GS,Chiatante D(2005)Rootsystem architecture of Quercus pubescens trees growing on different sloping conditions.Ann Bot95:351–361

    Di Laurenzio L,Wysockadiller J,Malamy JE,Pysh L,Helariutta Y, Freshour G,Hahn MG,Feldmann KA,Benfey PN(1996)The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root.Cell 86:423–433

    Ding Z,FrimlJ(2010)Auxin regulates distalstem celldifferentiation in Arabidopsis roots.Proc Natl Acad SciUSA 107:12046–12051

    Doerner P,J?rgensen J-E,You R,Steppuhn J,Lamb C(1996)Control of root growth and development by cyclin expression.Nature 380:520–523

    Draye X.2008.Xavier Draye’s profile.http://www.uclouvain.be/en-30461.Accessed 16 June 2009

    Dubrovsky JG,Gambetta GA,Hernadez-Barrera A,Shishkova S, Gonzalez I(2006)Lateral root initiation in Arabidopsis: developmental window,spatial patterning,density and predictability.Ann Bot 97:903–915

    Eghball B,Settimi JR,Maranville JW,Parkhurst AM(1993)Fractal analysis for morphological description of corn roots under nitrogen stress.Agron J 85:287–289

    Fang S,Yan X,Liao H(2009)3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research.Plant J 60:1096–1108

    Fitter AH,Stickland(1991)Architectural analysis of plant root systems 2.Influence of nutrient supply on architecture in contrasting plant species.New Phytol 118:383–389

    Fitter AH,Stickland TR(1992)Fractal characterization of root system architecture.Funct Ecol 6:632–635

    French A,Ubeda-Tomas S,Holman TJ,Bennett MJ,Pridmore T (2009)High-throughput quantification of root growth using a novel image-analysis tool.Plant Physiol 150:1784–1795

    Friml J,Benkova E,Blilou I,Wisniewska J,Hamann T,Ljung K, Woody S,Sandberg G,Scheres B,Jurgens G,Palme K(2002a) AtPIN4 mediates sink-driven auxin gradients and rootpatterning in Arabidopsis.Cell 108:661–673

    Friml J,Wisniewska J,Benkova E,Mendgen K,Palme K(2002b) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis.Nature 415:806–809

    Gahoonia TS,Nielsen NE(2004)Root traits as tools for creating phosphorus efficient crop varieties.Plant Soil 260:47–57

    Gan Y,Bernreiter A,Filleur S,Abram B,Forde BG(2012) Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation ofroot development.Plant Cell Physiol 53:1003–1016

    Gregory PJ(2006)Plantroots:their growth,activity,and interaction with soils.Blackwell Publishing,Oxford

    Gregory PJ,Hutchison DJ,Read DB,Jenneson PM,Gilboy WB, Morton EJ(2003)Non-invasive imaging of roots with high resolution X-ray micro-tomography.Plant Soil 255:351–359

    Gruber BD,Giehl RF,von Friedel S,Wiren N(2013)Plasticity of the Arabidopsis root system under nutrient deficiencies.Plant Physiol 163:161–179

    Heeraman DA,Hopmans JW,Clausnitzer V(1997)Three dimensional imaging of plant roots in situ with X-ray computed tomography.Plant Soil189:167–179

    Henry A,Gowda VRP,Torres RO,McNally KL,Serraj R(2011) Variation in root system architecture and drought response in rice(Oryza sativa):phenotyping of the OryzaSNP panel in rainfed lowland fields.Field Crops Research 120:205–214

    Hill JO,Simpson RJ,Moore AD,Chapman DF(2006)Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition.Plant Soil 286:7–19

    Himanen K,Boucheron E,Vanneste S,de Almeida Engler J,Inze D, Beeckman T(2002)Auxin-mediated cellcycle activation during early lateral root initiation.Plant Cell 14:2339–2351

    Hutchison CE,Li J,Argueso C,Gonzalez M,Lee E,Lewis MW, Maxwell BB,Perdue TD,Schaller GE,Alonso JM,Ecker JR, Kieber JJ(2006)The Arabidopsis histidine phosphotransfer proteins are redundantpositive regulators of cytokinin signaling. Plant Cell 18:3073–3087

    International Atomic Energy Agency(2006)Mutational analysis of root characters in food plants.International Atomic Energy Agency,Vienna

    Ioio RD,Linhares FS,Scacchi E,Casamitjana-Martinez E,Heidstra R,Costantino P,Sabatini S(2007)Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation.Curr Biol 17:678–682

    Ishikawa H,Evans ML(1997)Novel software for analysis of root gravitropism:comparative response patterns of Arabidopsis wild-type and axr1 seedlings.Plant,Cell Environ 20:919–928

    Iwamoto A,Kondo E,Fujihashi H,Sugiyama M(2013)Kinematic study of root elongation in Arabidopsis thaliana with a novel image-analysis program.J Plant Res 126:187–192

    Iyer-PascuzziAS,Symonova O,Mileyko Y,Hao Y,Belcher H,Harer J,Weitz JS,Benfey PN(2010)Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    Jain A,Poling MD,Karthikeyan AS,Blakeslee JJ,Peer WA, Titapiwatanakun T,Murphy AS,Raghothama KG(2007) Differentialeffects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis.Plant Physiol 144:232–247

    Kaspar TC,Bland WL(1992)Soil temperature and rootgrowth.Soil Sci 154:290–299

    Kurup S,Runions J,Kohler U,Laplaze L,Hodge S,Haseloff J(2005) Marking cell lineages in living tissues.Plant J 42:444–453

    Laplaze L,Parizot B,Baker A,Ricaud L,Martiniere A,Auguy F, Franche C,Nussaume L,Bogusz D,Haseloff J(2005)GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana.J Exp Bot 56:2433–2442

    Laplaze L,Benkov E,Casimiro I,Maes L,Vanneste S,Swarup R, Weijers D,Calvo V,Parizot B,Herrera-Rodriguez MB,Offringa R,Graham N,Doumas P,Firml J,Bougsz D,Beeckman T, Bennett M(2007)Cytokinins actdirectly on lateralrootfounder cells to inhibit root initiation.Plant Cell 19:3889–3900

    Laskowski M(2013)Lateral root initiation is a probabilistic event whose frequency is set by fluctuating levels of auxin response. J Exp Bot 64:2609–2617

    Linkohr BI,Williamson LC,Fitter AH,Leyser HMO(2002)Nitrate and phosphate availability and distribution have differenteffects on root system architecture of Arabidopsis.Plant J 29:751–760

    Lontoc-Roy M,Dutilleul P,Prasher SO,Han L,Smith DL(2005) Computed tomography scanning for three-dimensional imaging and complexity analysis of developing root systems.Can J Bot 83:1434–1442

    Lynch J(1995)Root Architecture and Plant Productivity.Plant Physiol 109:7–13

    Mackay AD,Barber SA(1984)Soil temperature effects on root growth and phosphorus uptake by corn.Soil Sci Soc Am J 48:818–823

    Mairhofer S,Zappala S,Tracy SR,Sturrock C,Bennett M,Mooney SJ,Pridmore T(2012)RooTrak:automated recovery of threedimensional plant root architecture in soil from X-ray microcomputed tomography images using visual tracking.Plant Physiol 158:561–569

    Mairhofer S,Zappala S,Tracy S,Sturrock C,Bennett MJ,Mooney SJ,Pridmore TP(2013)Recovering complete plant root system architectures from soil via X-ray l-Computed Tomography. Plant Methods 9:8.doi:10.1186/1746-4811-9-8

    Malamy JE,Benfey PN(1997)Organization and cell differentiation in lateralroots of Arabidopsis thaliana.Development124:33–44

    Mandelbrot B(1975)Les Objets Fractals:Forme Hasard et Dimension.Flammarion,Paris

    Manschadi AM,Christopher J,deVoil P,Hammer GL(2006)The role of root architectural traits in adaptation of wheat to waterlimited environments.Funct Plant Biol 33:823–837

    Manschadi AM,Hammer GL,Christopher JT,deVoil P(2008) Genotypic variation in seedling root architectural traits and implications for droughtadaptation in wheat(Triticum aestivum L.).Plant Soil 303:115–129

    Miller ND,Parks BM,Spalding EP(2007)Computer-vision analysis of seedling responses to light and gravity.Plant J 52:374–381

    Mooney SJ(2002)Three-dimensionalvisualization and quantification of soil macroporosity and water flow patterns using computed tomography.Soil Use Manag 18:142–151

    Mooney SJ,Pridmore TP,Helliwell J,Bennett MJ(2012)Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil.Plant Soil 352:1–22

    Nadezhdina N,Cˇerma′k J(2003)Instrumentalmethods for studies of structure and function of root systems of large trees.J Exp Bot 54:1511–1521

    Nakamura A,Higuchi K,Goda H,Fujiwara MT,Sawa S,Koshiba T, Shimada Y,Yoshida S(2003)Brassinolide induces IAA5, IAA19,and DR5,a synthetic auxin response element in Arabidopsis,implying a cross talk point of brassinosteroid and auxin signaling.Plant Physiol 133:1843–1853

    Nielsen KL,Lynch JP,Weiss HN(1997)Fractal geometry of bean root systems:correlation between spatial and fractal dimension. Amer J Bot 84:26–33

    Nielsen KL,Miller CR,Beck D,Lynch JP(1999)Fractalgeometry of root systems:field observations of contrasting genotypes of common bean(Phaseolus vulgaris L.)grown under different phosphorus regimes.Plant Soil206:181–190

    Ohashi-Ito K,Bergmann DC(2007)Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134:2959–2968

    Oppelt AL,Kurth W,Dzierzon H,jentschke G,Godbold DL(2000) Structure and fractal dimensions of root systems of four cooccurring fruit tree species from Botswana.Ann For Sci 57:463–475

    Ottenschla¨ger I,Wolff P,Wolverton C,Bhalerao RP,Sandberg G, Ishikawa H,Evans M,Palme K(2003)Gravity-regulated differential auxin transport from columella to lateral root cap cells.Proc Natl Acad Sci USA 100:2987–2991

    Peret B,Clement M,Nussaume L,Desnos T(2011)Root developmentaladaptation to phosphate starvation:better safe than sorry. Trends Plant Sci 16:442–450

    Perret JS,Al-Belushi ME,Deadman M(2007)Non-destructive visualization and quantification of roots using computed tomography.Soil Biol Biochem 39:391–399

    Pierret A,Capowiez Y,Moran CJ,Kretzschmar A(1999)X-ray computed tomography to quantify tree rooting spatial distributions.Geoderma 90:307–326

    Pierret A,Latchackak K,Chathanvongsa P,Sengtaheuanghoung O, Valentin C(2007)Interactions between root growth,slope and soil detachment depending on land use:a case study in a small mountain catchment of Northern Laos.Plant Soil 301:51–64

    Petersson SV,Johansson AI,Kowalczyk M,Makoveychuk A,Wang JY,Moritz T,Grebe M,Benfey PN,Sandberg G,Jung K(2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis.Plant Cell 21:1659–1668

    Playsted CWS,Johnston ME,Ramage CM,Edwards DG,Cawthray GR,Lambers H(2006)Functional significance of dauciform roots:exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei(Cyperaceae).New Phytol 170:491–500

    Pound MP,French AP,Atkinson JA,Wells DM,Bennett MJ, Pridmore T(2013)RootNav:navigating images of complex root architectures.Plant Physiol 162:1802–1814

    Pregitzer KS,deforest JL,Burton AJ,Hendrick RL(2002)Fine root architecture of nine northern American trees.Ecol Monogr 72:293–309

    Qi X,Qi J,Wu Y(2007)RootLM:a simple color image analysis program for length measurement of primary roots in Arabidopsis.Plant Root 1:10–16

    Rahman A,Amakawa T,Goto N,Tsurumi S(2001)Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots.Plant Cell Physiol 42:301–307

    Sabatini S,Beis D,Wolkenfelt H,Murfett J,Guilfoyle T,malamy J, Benfey P,Leyser O,Bechtold N,Weisbeek P,Scheres B(1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root.Cell 99:463–472

    Sabatini S,Heidstra R,Wildwater M,Scheres B(2003)SCARECROW is involved in positioning the stem cell niche in the Arabidopsis rootmeristem.Genes Develop 17:354–358

    Shan LS,Li Y,Ren W,Su SP,Dong QL,Geng DM(2013)Root architecture of two desert plants in central Hexi Corridor of Northwest China.Chinese J Appl Ecol 24:25–31

    Shane MW,Cawthray GR,Cramer MD,Kuo J,Lambers H(2006) Specialized‘dauciform’roots of Cyperaceae are structurally distinct,but functionally analogous with‘cluster’roots.Plant, Cell Environ 29:1989–1999

    Shaul O,Mironov V,Burssens S,Van Montagu M,Inze′D(1996) Two Arabidopsis cyclin promoters mediate distinctive transcriptional oscillation in synchronized tobacco BY-2 cells.Proc Natl Acad Sci USA 93:4868–4872

    Shen J,Li C,Mi G,Li L,Yuan L,Jiang R,Zhang F(2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China.J Exp Bot 64:1181–1192

    Smit AL,Bengough AG,Engels C,van Noordwijk M,Pellerin S,van de Geijn SC(2000)Rootmethods:a handbook.Springer-Verlag, Berlin

    Spalding EP(2009)Phytomorph.http://phytomorph.wisc.edu/. Accessed 16 June 2009

    Stepanova AN,Yun J,Likhacheva AV,Aonso JM(2007)Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Sto¨hr C,Stremlau S(2006)Formation and possible roles of nitric oxide in plant roots.J Exp Bot 57:463–470

    Sugimoto K,Jiao Y,Meyerowitz EM(2010)Arabidopsis regeneration from multiple tissues occurs via a root development pathway.Develop Cell 18:463–471

    Sun H-L,Li S-C,Xiong W-L,Yang Z-R,Cui B-S,Yang T(2008) Influence of slope on root system anchorage of Pinus yunnanensis.Ecol Engin 32:60–67

    Swarup R,Kramer EM,Perry P,Knox K,Leyser HMO,Haseloff J, Beemster GTS,Bhalerao R,Bennett MJ(2005)Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal.Nat Cell Biol 7: 1057–1065

    Tatsumi J,Yamauchi A,Kono Y(1989)Fractalanalysis of plantroot systems.Ann Bot 64:499–503

    Tracy S,Black C,Roberts J,Mooney S(2010a)Visualising the effect of compaction on rootarchitecture in soilusing X-ray Computed Tomography.In:19th World Congress of Soil Science,Soil Solutions for a Changing World.1–6 August 2010,Brisbane, Australia

    Tracy SR,Roberts JA,Black CR,McNeillA,Davidson R,Mooney SJ (2010b)The x-factor:visualizing undisturbed rootarchitecture in soils using x-ray computed tomography.J Exp Bot 61:311–313

    Tracy SR,Black CR,Roberts JA,McNeill A,Davidson R,Tester M, Samec M,Korosak D,Sturrock C,Mooney SJ(2012a) Quantifying the effect of soil compaction on three varieties of wheat(Triticum aestivum L.)using X-ray micro computed tomography(CT).Plant Soil 353:195–208

    Tracy SR,Black CR,Roberts JA,Sturrock C,Mairhofer S,Craigon J, Mooney S(2012b)Quantifying the impactof soilcompaction on root system architecture in tomato(Solanum lycopersicum)by X-ray micro-computed tomography.Ann Bot 110:511–519

    Ulmasov T,Murfett J,Hagen G,Guilfoyle TJ(1997)Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements.Plant Cell 9:1963–1971

    van der Weele CM,Jiang HS,Palaniappan KK,Ivanov VB, Palaniappan K,Baskin TI(2003)A new algorithm for computationalimage analysis of deformable motion athigh spatial and temporal resolution applied to root growth:roughly uniform elongation in the meristem and also,after an abruptacceleration, in the elongation zone.Plant Physiol 132:1138–1148

    Vidal EA,Araus V,Lu C,Parry G,Green PJ,Coruzzi GM,Gutierrez RA(2010)Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana.Proc Natl Acad Sci USA 107:4477–4482

    Waki T,Miyashima S,Nakanishi M,Ikeda Y,Hashimoto T, Nakajima K(2013)A GAL4-based targeted activation tagging system in Arabidopsis thaliana.Plant J 73:357–367

    Walk TC,Van Erp E,Lynch JP(2004)Modelling applicability of fractal analysis to efficiency of soil exploration by roots.Ann Bot 94:119–128

    Walter A,Silk WK,Schurr U(2000)Effectof soilpH on growth and cation deposition in the root tip of Zea mays L.J Plant Growth Regul 19:65–76

    Walter A,Spies H,Terjung S,Ku¨sters R,Kirchge?ner N,Schurr U (2002)Spatio-temporal dynamics of expansion growth in roots: automatic quantification of diurnal course and temperature response by digital image sequence processing.J Exp Biol 53:689–698

    Wang Z,Guo D,Wang X,Gu J,Mei L(2006)Fine rootarchitecture, morphology,and biomass of different branch orders of two Chinese temperate tree species.Plant Soil 288:155–171

    Wang H,Siopongco J,Wade LJ,Yamauchi A(2009)Fractalanalysis on root systems of rice plants in response to drought stress. Environ Exp Bot 65:338–344

    White PJ,George TS,Dupuy LX,Karley AJ,Valentine TA,WieselL, Wishart J(2013)Root traits for infertile soils.Front Plant Sci 4:193.doi:10.3389/fpls.2013.00193

    Willemsen V,Friml J,Grebe M,van de Toorn A,Palme K,Scheres B (2003)Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function.Plant Cell 15:612–625

    Williamson LC,Ribrioux SPCP,Fitter AH,Leyser HMO(2001) Phosphate availability regulates root system architecture in Arabidopsis.Plant Physiol 126:875–882

    Wu C,Wei X,Sun H-L,Wang Z-Q(2005)Phosphate availability alters lateral root anatomy and root architecture of Fraxinus mandshurica rupr.seedlings.J Integ Plant Biol 47:292–301

    Wysocka-Diller JW,Helariutta Y,Fukaki H,Malamy JE,Benfey PN (2000)Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603

    Zhang H,Forde BG(1998)An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture.Science 279:407–409

    17 September 2013/Accepted:15 April 2014/Published online:15 January 2015

    Project funding:This work is supported by the project of public benefits in China(No.201503221)and the open fund in the Institute of Root Biology,Yangtze University.

    The online version is available athttp://www.springerlink.com

    Corresponding editor:Chai Ruihai

    J.Wang

    Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101,China

    e-mail:jbwang@igsnrr.ac.cn

    College of Horticulture and Gardening,Yangtze University, Jingzhou 434025,Hubei,China

    e-mail:wuchuchu2001@126.com

    天天躁狠狠躁夜夜躁狠狠躁| 欧美中文综合在线视频| 咕卡用的链子| 每晚都被弄得嗷嗷叫到高潮| 久久狼人影院| 中文字幕人妻丝袜制服| 日本vs欧美在线观看视频| 久久久久久久久免费视频了| 九色亚洲精品在线播放| 久久精品国产a三级三级三级| 18禁国产床啪视频网站| 久久99一区二区三区| 国产极品粉嫩免费观看在线| 看免费av毛片| 999精品在线视频| av欧美777| 黄色视频,在线免费观看| 麻豆av在线久日| 亚洲第一欧美日韩一区二区三区 | 精品欧美一区二区三区在线| 国产成+人综合+亚洲专区| 久久久久久人人人人人| 久久久水蜜桃国产精品网| 久久久久久久久久久久大奶| 婷婷丁香在线五月| 欧美性长视频在线观看| 新久久久久国产一级毛片| 亚洲精品美女久久久久99蜜臀| 人成视频在线观看免费观看| 午夜激情久久久久久久| 国产亚洲精品一区二区www | 久久人人爽人人片av| 午夜福利视频在线观看免费| 国产伦人伦偷精品视频| 国产成人欧美在线观看 | √禁漫天堂资源中文www| av电影中文网址| 女人被躁到高潮嗷嗷叫费观| 在线精品无人区一区二区三| 国产精品 国内视频| 久久久久久亚洲精品国产蜜桃av| 欧美人与性动交α欧美软件| 国产精品影院久久| 99精国产麻豆久久婷婷| 女人精品久久久久毛片| av电影中文网址| 自线自在国产av| 久久久久精品人妻al黑| av福利片在线| 美女福利国产在线| 亚洲少妇的诱惑av| 免费观看人在逋| 日韩制服骚丝袜av| 国产在视频线精品| 亚洲精品国产av蜜桃| 亚洲久久久国产精品| 最近最新免费中文字幕在线| 久久ye,这里只有精品| 国产老妇伦熟女老妇高清| 国产成人系列免费观看| 亚洲一码二码三码区别大吗| 欧美另类亚洲清纯唯美| 成年人午夜在线观看视频| videos熟女内射| 国产精品.久久久| 久久久国产成人免费| 中国国产av一级| 午夜激情av网站| 国产又爽黄色视频| 欧美xxⅹ黑人| 黑人猛操日本美女一级片| 曰老女人黄片| 欧美激情极品国产一区二区三区| 性少妇av在线| 91九色精品人成在线观看| 嫩草影视91久久| 国产三级黄色录像| 操出白浆在线播放| 99久久99久久久精品蜜桃| 欧美日韩亚洲高清精品| 欧美黑人欧美精品刺激| 别揉我奶头~嗯~啊~动态视频 | 肉色欧美久久久久久久蜜桃| 亚洲av男天堂| 王馨瑶露胸无遮挡在线观看| 日韩制服丝袜自拍偷拍| 国内毛片毛片毛片毛片毛片| 美女主播在线视频| netflix在线观看网站| 国产深夜福利视频在线观看| 一个人免费在线观看的高清视频 | 亚洲三区欧美一区| 深夜精品福利| 国产熟女午夜一区二区三区| 91精品伊人久久大香线蕉| 老熟妇仑乱视频hdxx| 捣出白浆h1v1| 99热网站在线观看| 欧美人与性动交α欧美软件| 人妻 亚洲 视频| 大型av网站在线播放| 久久久久国产一级毛片高清牌| 日韩免费高清中文字幕av| 91成人精品电影| 99精国产麻豆久久婷婷| 熟女少妇亚洲综合色aaa.| 欧美性长视频在线观看| 日韩欧美一区二区三区在线观看 | 欧美97在线视频| 成年美女黄网站色视频大全免费| 亚洲精品国产一区二区精华液| 老司机在亚洲福利影院| 在线精品无人区一区二区三| 久久精品久久久久久噜噜老黄| 亚洲精品久久午夜乱码| 少妇粗大呻吟视频| 欧美日本中文国产一区发布| 如日韩欧美国产精品一区二区三区| 久久国产精品人妻蜜桃| 亚洲国产欧美日韩在线播放| 日韩熟女老妇一区二区性免费视频| 日本一区二区免费在线视频| 色播在线永久视频| 国产日韩欧美在线精品| 一级片免费观看大全| 国产男人的电影天堂91| 欧美成人午夜精品| h视频一区二区三区| 免费观看av网站的网址| 婷婷丁香在线五月| 狂野欧美激情性bbbbbb| 精品福利观看| 99re6热这里在线精品视频| 欧美精品人与动牲交sv欧美| 午夜免费鲁丝| 涩涩av久久男人的天堂| 欧美激情高清一区二区三区| 久久久国产一区二区| 热99国产精品久久久久久7| 啦啦啦免费观看视频1| av超薄肉色丝袜交足视频| av天堂久久9| 纯流量卡能插随身wifi吗| 五月开心婷婷网| 成人国语在线视频| 国产精品一区二区精品视频观看| 高清视频免费观看一区二区| 免费不卡黄色视频| 亚洲熟女毛片儿| 精品人妻熟女毛片av久久网站| 亚洲色图 男人天堂 中文字幕| 久久久久久久精品精品| 丝袜喷水一区| 制服诱惑二区| 亚洲va日本ⅴa欧美va伊人久久 | 老司机午夜十八禁免费视频| 欧美性长视频在线观看| 老汉色av国产亚洲站长工具| 大片电影免费在线观看免费| 亚洲专区国产一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 99精国产麻豆久久婷婷| 操出白浆在线播放| 国产免费视频播放在线视频| 一级a爱视频在线免费观看| 亚洲伊人色综图| 国产精品一区二区在线观看99| 超色免费av| 搡老乐熟女国产| 亚洲一区中文字幕在线| 精品一区二区三卡| 纵有疾风起免费观看全集完整版| 三级毛片av免费| 丁香六月欧美| 婷婷色av中文字幕| 日韩三级视频一区二区三区| 两性夫妻黄色片| 国产精品一区二区在线不卡| 亚洲欧美清纯卡通| 亚洲国产欧美日韩在线播放| 午夜福利一区二区在线看| 中文字幕人妻丝袜制服| 免费在线观看黄色视频的| 搡老乐熟女国产| 欧美性长视频在线观看| 乱人伦中国视频| 午夜福利,免费看| 69av精品久久久久久 | 成年女人毛片免费观看观看9 | 国产在线视频一区二区| 亚洲五月婷婷丁香| 午夜久久久在线观看| 久久精品亚洲熟妇少妇任你| 欧美黄色片欧美黄色片| 成年女人毛片免费观看观看9 | 国产精品一区二区免费欧美 | 老司机午夜福利在线观看视频 | 99国产极品粉嫩在线观看| 制服人妻中文乱码| 久久久久久久大尺度免费视频| 狠狠婷婷综合久久久久久88av| 亚洲精品国产色婷婷电影| 日韩欧美国产一区二区入口| 最近最新中文字幕大全免费视频| 午夜福利视频精品| 欧美变态另类bdsm刘玥| 视频区图区小说| 我要看黄色一级片免费的| 国产免费av片在线观看野外av| 美女主播在线视频| 在线 av 中文字幕| 国产免费现黄频在线看| 免费av中文字幕在线| 免费在线观看影片大全网站| a级毛片在线看网站| 午夜免费鲁丝| 啦啦啦免费观看视频1| 免费人妻精品一区二区三区视频| 国产在视频线精品| 国产精品九九99| av又黄又爽大尺度在线免费看| 水蜜桃什么品种好| 亚洲av电影在线进入| 午夜久久久在线观看| 纯流量卡能插随身wifi吗| 狠狠狠狠99中文字幕| 国产精品一区二区在线不卡| 亚洲av成人不卡在线观看播放网 | 999久久久精品免费观看国产| 91成年电影在线观看| 国产亚洲欧美精品永久| 日韩欧美国产一区二区入口| 精品福利永久在线观看| 王馨瑶露胸无遮挡在线观看| 十八禁网站免费在线| 亚洲第一欧美日韩一区二区三区 | av在线老鸭窝| 成人手机av| 亚洲av成人一区二区三| 无遮挡黄片免费观看| 又大又爽又粗| 午夜福利视频精品| 国产一卡二卡三卡精品| 国产亚洲欧美精品永久| 人人妻,人人澡人人爽秒播| 免费女性裸体啪啪无遮挡网站| 热99re8久久精品国产| 日日夜夜操网爽| 欧美在线黄色| 亚洲精品久久久久久婷婷小说| 制服人妻中文乱码| 涩涩av久久男人的天堂| 日本一区二区免费在线视频| 啦啦啦啦在线视频资源| 美女大奶头黄色视频| 亚洲国产欧美网| 热99久久久久精品小说推荐| 自拍欧美九色日韩亚洲蝌蚪91| 国产一级毛片在线| 亚洲av国产av综合av卡| 久久久久网色| 人人妻人人澡人人爽人人夜夜| 成人三级做爰电影| 丁香六月天网| 中文欧美无线码| 99国产精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 免费不卡黄色视频| 老司机亚洲免费影院| 国产一区有黄有色的免费视频| 男女之事视频高清在线观看| 欧美国产精品一级二级三级| 蜜桃国产av成人99| 国产精品.久久久| av又黄又爽大尺度在线免费看| 国产精品1区2区在线观看. | 99久久精品国产亚洲精品| 亚洲中文日韩欧美视频| av线在线观看网站| 香蕉丝袜av| 午夜久久久在线观看| 亚洲精品国产区一区二| 久久精品人人爽人人爽视色| 夜夜夜夜夜久久久久| 亚洲av成人一区二区三| 久久久国产欧美日韩av| 亚洲七黄色美女视频| 国产亚洲欧美精品永久| 一级黄色大片毛片| 宅男免费午夜| 两性夫妻黄色片| 国产1区2区3区精品| 自线自在国产av| 国产av精品麻豆| 欧美黄色淫秽网站| 超碰成人久久| 1024香蕉在线观看| 最新的欧美精品一区二区| 黑人欧美特级aaaaaa片| 999久久久精品免费观看国产| 美女高潮到喷水免费观看| 久久久久久亚洲精品国产蜜桃av| 欧美激情久久久久久爽电影 | 亚洲成人免费电影在线观看| 日本黄色日本黄色录像| 色婷婷av一区二区三区视频| 老司机影院成人| 亚洲国产精品999| 精品国产一区二区久久| 久久精品亚洲熟妇少妇任你| 美女脱内裤让男人舔精品视频| 久久99热这里只频精品6学生| 午夜福利一区二区在线看| 中文字幕色久视频| av在线app专区| 国产欧美日韩一区二区精品| 日韩一区二区三区影片| 欧美在线一区亚洲| 国产在视频线精品| 老司机影院毛片| 搡老乐熟女国产| 欧美在线黄色| 爱豆传媒免费全集在线观看| 黄色 视频免费看| av网站免费在线观看视频| 在线观看舔阴道视频| www.999成人在线观看| 国产男女内射视频| 欧美精品高潮呻吟av久久| 午夜精品久久久久久毛片777| av免费在线观看网站| 精品国产一区二区三区久久久樱花| 久久青草综合色| 少妇被粗大的猛进出69影院| 婷婷丁香在线五月| 国产成人系列免费观看| 性少妇av在线| 亚洲av成人不卡在线观看播放网 | 日本91视频免费播放| 国产欧美日韩一区二区精品| 亚洲熟女毛片儿| 电影成人av| 欧美 亚洲 国产 日韩一| 国产在线免费精品| 啦啦啦视频在线资源免费观看| 另类亚洲欧美激情| 美女扒开内裤让男人捅视频| 国产精品香港三级国产av潘金莲| 婷婷丁香在线五月| 熟女少妇亚洲综合色aaa.| 精品人妻1区二区| 亚洲天堂av无毛| 亚洲五月色婷婷综合| 国产伦人伦偷精品视频| 久久国产亚洲av麻豆专区| 深夜精品福利| 两个人看的免费小视频| 热99久久久久精品小说推荐| 久久久精品94久久精品| 在线永久观看黄色视频| svipshipincom国产片| 天天影视国产精品| 最新在线观看一区二区三区| 99国产极品粉嫩在线观看| 久久香蕉激情| 黄色 视频免费看| 大香蕉久久成人网| 亚洲精品第二区| 欧美在线一区亚洲| 高清欧美精品videossex| 99精国产麻豆久久婷婷| 日韩免费高清中文字幕av| 精品国产乱码久久久久久男人| 久久精品国产综合久久久| 国产成人精品在线电影| 99久久99久久久精品蜜桃| 免费高清在线观看日韩| 99久久99久久久精品蜜桃| 国产免费现黄频在线看| 精品卡一卡二卡四卡免费| 啦啦啦 在线观看视频| 久久青草综合色| 亚洲精品美女久久av网站| 欧美久久黑人一区二区| 精品少妇黑人巨大在线播放| 精品国产乱子伦一区二区三区 | 91精品国产国语对白视频| 日本黄色日本黄色录像| 黄色毛片三级朝国网站| 国产三级黄色录像| 99国产精品99久久久久| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| 90打野战视频偷拍视频| netflix在线观看网站| 老司机影院毛片| 99久久99久久久精品蜜桃| 免费高清在线观看日韩| 又黄又粗又硬又大视频| 亚洲精品中文字幕一二三四区 | av欧美777| www.精华液| 一区福利在线观看| 丰满人妻熟妇乱又伦精品不卡| 80岁老熟妇乱子伦牲交| 91大片在线观看| 精品乱码久久久久久99久播| 日本av手机在线免费观看| 亚洲久久久国产精品| 看免费av毛片| 人人妻人人澡人人爽人人夜夜| 精品卡一卡二卡四卡免费| 成在线人永久免费视频| 美国免费a级毛片| 亚洲九九香蕉| 亚洲va日本ⅴa欧美va伊人久久 | 黑人操中国人逼视频| 大陆偷拍与自拍| 天天躁日日躁夜夜躁夜夜| 日本黄色日本黄色录像| 国产人伦9x9x在线观看| 丝袜喷水一区| 精品国产乱码久久久久久小说| 国产日韩欧美视频二区| 亚洲av国产av综合av卡| 蜜桃国产av成人99| 日韩有码中文字幕| 人人妻,人人澡人人爽秒播| 国产97色在线日韩免费| 免费少妇av软件| 大码成人一级视频| 午夜免费观看性视频| svipshipincom国产片| 国产精品久久久人人做人人爽| 午夜成年电影在线免费观看| 国产91精品成人一区二区三区 | 蜜桃国产av成人99| 欧美人与性动交α欧美精品济南到| 999精品在线视频| 久久香蕉激情| 国产在线一区二区三区精| 老司机午夜十八禁免费视频| 欧美av亚洲av综合av国产av| svipshipincom国产片| 国产欧美日韩一区二区三 | 国产成人系列免费观看| 黑人猛操日本美女一级片| 欧美激情 高清一区二区三区| 日本av手机在线免费观看| 五月开心婷婷网| 一区二区三区乱码不卡18| 最近最新中文字幕大全免费视频| 侵犯人妻中文字幕一二三四区| 大香蕉久久成人网| 99国产精品一区二区三区| 欧美xxⅹ黑人| 精品少妇一区二区三区视频日本电影| 这个男人来自地球电影免费观看| 12—13女人毛片做爰片一| 亚洲av男天堂| 国产亚洲精品第一综合不卡| 一本色道久久久久久精品综合| 天天影视国产精品| 亚洲精品国产色婷婷电影| 欧美日本中文国产一区发布| 高清欧美精品videossex| 色精品久久人妻99蜜桃| 国产欧美日韩一区二区三区在线| 精品久久蜜臀av无| kizo精华| 亚洲国产欧美网| 男女下面插进去视频免费观看| 日韩一区二区三区影片| 国产麻豆69| 国产又爽黄色视频| 人人澡人人妻人| 人人妻人人澡人人爽人人夜夜| 色婷婷久久久亚洲欧美| 又大又爽又粗| 99久久人妻综合| 美女扒开内裤让男人捅视频| 国产欧美日韩精品亚洲av| 91九色精品人成在线观看| 伊人亚洲综合成人网| 999精品在线视频| 亚洲免费av在线视频| 在线永久观看黄色视频| 真人做人爱边吃奶动态| 满18在线观看网站| 性色av一级| 日本撒尿小便嘘嘘汇集6| 一区二区日韩欧美中文字幕| 免费在线观看日本一区| 99国产综合亚洲精品| 国产精品一区二区精品视频观看| av福利片在线| 人人妻,人人澡人人爽秒播| 欧美中文综合在线视频| 男女床上黄色一级片免费看| 亚洲av片天天在线观看| 狠狠狠狠99中文字幕| 一级黄色大片毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 一个人免费看片子| 一级毛片电影观看| 国产亚洲欧美在线一区二区| 超碰成人久久| 亚洲精品久久久久久婷婷小说| 999久久久国产精品视频| 成人国语在线视频| 久久毛片免费看一区二区三区| 久久久久久久精品精品| 国产亚洲精品久久久久5区| 曰老女人黄片| tocl精华| 少妇精品久久久久久久| 国产人伦9x9x在线观看| 女人久久www免费人成看片| 91九色精品人成在线观看| 欧美精品一区二区大全| 韩国高清视频一区二区三区| 色婷婷av一区二区三区视频| 欧美黑人精品巨大| xxxhd国产人妻xxx| 91av网站免费观看| 日韩一区二区三区影片| 99久久国产精品久久久| 精品一区二区三卡| 精品一区二区三区av网在线观看 | kizo精华| 午夜91福利影院| av网站免费在线观看视频| 热re99久久精品国产66热6| 亚洲欧美成人综合另类久久久| 一个人免费看片子| 91大片在线观看| 成人亚洲精品一区在线观看| 美女国产高潮福利片在线看| 亚洲天堂av无毛| av在线app专区| 欧美国产精品一级二级三级| 欧美日韩中文字幕国产精品一区二区三区 | 日日爽夜夜爽网站| 亚洲精品一区蜜桃| 免费av中文字幕在线| 在线观看人妻少妇| 男女边摸边吃奶| 热99国产精品久久久久久7| 老司机影院毛片| 午夜91福利影院| 日韩欧美免费精品| 99久久99久久久精品蜜桃| 老鸭窝网址在线观看| 亚洲一区中文字幕在线| 亚洲色图 男人天堂 中文字幕| 久久精品亚洲熟妇少妇任你| 91国产中文字幕| 亚洲精品国产av蜜桃| 久9热在线精品视频| 老司机靠b影院| 国产区一区二久久| 欧美午夜高清在线| 中文字幕高清在线视频| 久久女婷五月综合色啪小说| 在线十欧美十亚洲十日本专区| 亚洲人成电影观看| 精品国产超薄肉色丝袜足j| 亚洲国产av影院在线观看| 侵犯人妻中文字幕一二三四区| 亚洲国产av新网站| 精品人妻在线不人妻| 看免费av毛片| 成人亚洲精品一区在线观看| 水蜜桃什么品种好| 久久久精品国产亚洲av高清涩受| 老熟妇仑乱视频hdxx| av网站在线播放免费| 久久久久精品人妻al黑| 一本大道久久a久久精品| 性色av乱码一区二区三区2| 蜜桃国产av成人99| 国产成人啪精品午夜网站| 国产在线观看jvid| 少妇猛男粗大的猛烈进出视频| 亚洲精品自拍成人| 妹子高潮喷水视频| 国产激情久久老熟女| 国产免费现黄频在线看| 国产免费一区二区三区四区乱码| 汤姆久久久久久久影院中文字幕| 亚洲欧美色中文字幕在线| 久久 成人 亚洲| 午夜福利乱码中文字幕| 天天躁日日躁夜夜躁夜夜| 亚洲天堂av无毛| 人妻 亚洲 视频| 丰满迷人的少妇在线观看| 欧美日韩亚洲综合一区二区三区_| 啦啦啦啦在线视频资源| 美女扒开内裤让男人捅视频| 亚洲精品一二三| 岛国在线观看网站| 亚洲伊人久久精品综合| 国产又爽黄色视频| 99久久综合免费| 香蕉国产在线看| 伊人久久大香线蕉亚洲五| 搡老乐熟女国产| 久久99一区二区三区| 国产视频一区二区在线看| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻人人澡人人爽人人夜夜| 搡老熟女国产l中国老女人| 欧美日韩视频精品一区| 精品一品国产午夜福利视频|