邱 春,岳書(shū)波,劉承蘭
(1. 四川建筑職業(yè)技術(shù)學(xué)院,四川德陽(yáng) 618000; 2. 四川大學(xué)水力學(xué)與山區(qū)河流開(kāi)發(fā)保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,四川成都 610065)
?
溢流堰表孔弧形閘門(mén)開(kāi)啟過(guò)程非恒定流水力特性
邱 春1,2,岳書(shū)波2,劉承蘭1
(1. 四川建筑職業(yè)技術(shù)學(xué)院,四川德陽(yáng) 618000; 2. 四川大學(xué)水力學(xué)與山區(qū)河流開(kāi)發(fā)保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,四川成都 610065)
采用RNGκ-ε紊流模型結(jié)合動(dòng)網(wǎng)格技術(shù)對(duì)某水利工程Y型寬尾墩泄洪表孔弧形閘門(mén)開(kāi)啟過(guò)程進(jìn)行了三維動(dòng)態(tài)數(shù)值模擬研究。為了解閘門(mén)開(kāi)啟過(guò)程中各相對(duì)開(kāi)度的水力要素特性,采用6種不同的開(kāi)啟總時(shí)間,給出各開(kāi)啟總時(shí)間對(duì)應(yīng)的閘后流速、壓強(qiáng)等水力要素對(duì)閘門(mén)開(kāi)啟速度的依賴關(guān)系,并定義了反弧及消力池3個(gè)壓強(qiáng)分布區(qū)域。研究表明,閘門(mén)開(kāi)啟總時(shí)間較小時(shí),閘后水流的滯后效應(yīng)明顯,各對(duì)應(yīng)相對(duì)開(kāi)度時(shí)閘后水面線偏低;開(kāi)啟過(guò)程中溢流堰反弧處最大流速、沖擊區(qū)最大壓強(qiáng)等都會(huì)遠(yuǎn)大于恒定情況時(shí)的對(duì)應(yīng)值。沖擊區(qū)最大壓強(qiáng)及其與調(diào)節(jié)區(qū)平均壓強(qiáng)的差值隨開(kāi)啟速度的增大迅速增加,且需經(jīng)過(guò)較長(zhǎng)時(shí)間才逐漸回到正常值。開(kāi)啟速度較小時(shí),各水力要素增加較為平緩。將閘后水面線等計(jì)算結(jié)果與試驗(yàn)結(jié)果進(jìn)行對(duì)比,吻合良好,驗(yàn)證了數(shù)值方法的可靠性,可為類(lèi)似水工閘門(mén)運(yùn)行提供借鑒。
三維動(dòng)態(tài)數(shù)值模擬; 開(kāi)啟過(guò)程; 非恒定流; 動(dòng)網(wǎng)格; 弧形閘門(mén); 消力池
水工閘門(mén)是水利工程中擋水和控制流量的重要設(shè)備,由于閘門(mén)運(yùn)行方式的不合理引起下游沖刷破壞的案例時(shí)有發(fā)生。因此了解閘門(mén)啟閉過(guò)程中水流水力特性,對(duì)于選擇合適的開(kāi)啟速度,防止消能設(shè)施發(fā)生破壞有著重要意義。
水利工程中水流多為明流水氣二相流,其邊界條件及過(guò)程較復(fù)雜,給試驗(yàn)數(shù)據(jù)測(cè)量帶來(lái)了較大困難,作為模型試驗(yàn)的補(bǔ)充,直接動(dòng)態(tài)數(shù)值模擬更容易獲得過(guò)程中各時(shí)刻水力要素特性。文獻(xiàn)[1]對(duì)蓄水池閘門(mén)開(kāi)啟過(guò)程中水體流動(dòng)進(jìn)行了模擬,但和實(shí)際情況有一定偏差;文獻(xiàn)[2]對(duì)孔板泄洪洞事故閘門(mén)動(dòng)水下門(mén)過(guò)程進(jìn)行了試驗(yàn)研究,并分析了中閘室噪音和振動(dòng)的成因;文獻(xiàn)[3]對(duì)梯形渠道中閘門(mén)不同調(diào)控方式引起的非恒定流進(jìn)行了數(shù)值模擬;文獻(xiàn)[4]用試驗(yàn)方法研究了湖南鎮(zhèn)水電站閘門(mén)不同開(kāi)啟組合下水舌擴(kuò)散形態(tài)對(duì)下游的影響,并制定了最優(yōu)閘門(mén)開(kāi)啟組合;文獻(xiàn)[5]通過(guò)模擬不同長(zhǎng)度的單一渠段的非恒定流響應(yīng)過(guò)程,認(rèn)為渠段穩(wěn)定時(shí)間、水位變化速率與渠段運(yùn)行方式有關(guān);文獻(xiàn)[6]采用動(dòng)網(wǎng)格技術(shù)對(duì)弧形閘門(mén)開(kāi)啟過(guò)程數(shù)值模擬進(jìn)行了初步探索。本文采用RNGk-ε雙方程紊流模型結(jié)合動(dòng)網(wǎng)格技術(shù)對(duì)某水利工程溢流表孔Y型寬尾墩加消力池非恒定流進(jìn)行了三維動(dòng)態(tài)數(shù)值模擬,重點(diǎn)分析閘門(mén)開(kāi)啟速度對(duì)非恒定流壓強(qiáng)等水力特性的影響,定義了反弧及消力池中3個(gè)壓強(qiáng)分布區(qū)域,并重點(diǎn)分析了3個(gè)區(qū)域的壓強(qiáng)滯后分布規(guī)律及可能對(duì)反弧和消力池底板造成的危害。分析表明文中所用方法對(duì)于一般小型灌區(qū)閘門(mén)啟閉同樣適用。
RNGk-ε雙方程模型控制方程如下:
(1)
(2)
(3)
(4)
采用有限體積法對(duì)上述方程進(jìn)行離散,時(shí)間和空間均采用二階精度格式,壓力速度耦合采用壓力隱式算子分割法PISO算法。采用VOF法[7]捕捉自由水面,該方法的k-ε紊流模型方程(1~4)與單相流形式相同,但ρ和μ是體積分?jǐn)?shù)的函數(shù),可由下式表示:
ρ=αwρa(bǔ)+(1-αw)ρa(bǔ)
(5)
μ=αwμw+(1-αw)μa
(6)
式中:αw為水的體積分?jǐn)?shù);ρw和ρa(bǔ)分別水和氣的密度;μw和μa分別為水和氣的分子黏性系數(shù)。動(dòng)網(wǎng)格模型用于描述邊界或流體內(nèi)部物體的變形及運(yùn)動(dòng),對(duì)于通量φ的積分形式的守恒方程如下:
第二種意見(jiàn)中,雇員可以向雇主主張賠償責(zé)任,也可向侵權(quán)第三人主張賠償責(zé)任。雇主承擔(dān)無(wú)過(guò)錯(cuò)責(zé)任后,可向侵權(quán)第三人主張。根據(jù)雇主轉(zhuǎn)承責(zé)任的性質(zhì),雇主向第三人追償范圍,應(yīng)以侵權(quán)第三人應(yīng)承擔(dān)賠償范圍為限。因此,雇主與侵權(quán)第三人的責(zé)任承擔(dān)性質(zhì)是對(duì)外連帶,對(duì)內(nèi)按份的連帶責(zé)任。然而,在《侵權(quán)責(zé)任法》條文理解與適用中,雇主與侵權(quán)第三人承擔(dān)責(zé)任方式實(shí)質(zhì)上是不真正連帶。想要確定此處的責(zé)任方式,應(yīng)先弄清連帶責(zé)任與不真正連帶責(zé)任的區(qū)別。
(7)
本文采用某實(shí)際工程溢流堰表孔單孔1∶50比尺建立計(jì)算區(qū)域(如圖1),模型區(qū)域長(zhǎng)6.32 m,寬0.4 m,高1.79 m;模型尾坎高0.2 m,弧形閘門(mén)寬0.3 m,半徑0.51 m,堰頂水頭H=0.4 m,模型坐標(biāo)原點(diǎn)位于溢流堰中心線縱剖面與堰頂交匯處。采用Y型寬尾墩加消力池聯(lián)合消能工,類(lèi)似工程恒定流研究[8-9]較多。本文對(duì)弧形門(mén)開(kāi)啟過(guò)程閘門(mén)區(qū)、寬尾墩、消力池水體進(jìn)行了整體模擬,閘門(mén)區(qū)域采用非結(jié)構(gòu)網(wǎng)格,其余均為六面體結(jié)構(gòu)網(wǎng)格,水氣交界面和關(guān)鍵部位網(wǎng)格進(jìn)行了加密以準(zhǔn)確捕捉自由水面。
庫(kù)區(qū)進(jìn)口分為上下兩部分,下部為水流進(jìn)口,利用自定義程序(UDF)來(lái)保證庫(kù)區(qū)水位不變,上部為空氣進(jìn)口,均為壓力進(jìn)口。庫(kù)區(qū)和溢洪道上部均為壓力進(jìn)口,溢洪道出口為壓力出口,壁面采用無(wú)滑移邊界條件。文中共模擬了6種開(kāi)啟角速度,對(duì)應(yīng)的開(kāi)啟總時(shí)間T分別為:3,10,15, 30, 60和120 s,為方便分析,文中分析時(shí)用開(kāi)啟總時(shí)間T代替開(kāi)啟速度。
為滿足閘門(mén)區(qū)網(wǎng)格快速變形的需要,動(dòng)網(wǎng)格更新采用彈簧光順?lè)ê途植恐貥?gòu)法,每5個(gè)時(shí)間步長(zhǎng)更新一次網(wǎng)格。圖2給出了T=120 s時(shí)過(guò)程中各相對(duì)開(kāi)度(e)對(duì)應(yīng)的溢洪道中心線縱剖面閘門(mén)區(qū)網(wǎng)格圖,可見(jiàn)整個(gè)計(jì)算過(guò)程網(wǎng)格質(zhì)量良好。閘門(mén)開(kāi)啟速度由UDF控制,開(kāi)啟時(shí)均為勻速開(kāi)啟。
圖1 模型整體區(qū)域及部分尺寸(單位:m)Fig.1 Whole region and main size of a model (unit: m)
圖2 不同相對(duì)開(kāi)度時(shí)閘門(mén)區(qū)中心線縱剖面網(wǎng)格 (T=120 s)Fig.2 Grids along middle section of a spillway under different opening (T=120 s)
圖3給出6種開(kāi)啟總時(shí)間T時(shí)兩種相對(duì)開(kāi)度的水面線。由圖3(a)可見(jiàn),e=0.3時(shí),T=3 s和10 s由于下泄流量滯后于閘門(mén)開(kāi)啟速度,因此水面線在溢流壩反弧段明顯低于其他情況,e=0.5時(shí),只有T=3 s對(duì)應(yīng)的水面線明顯偏低,與反弧段最高水面相差達(dá)0.36 m,在消力池中相差約0.2 m。T>10 s時(shí),各種情況的水面在溢流壩及反弧段均差別變小,但消力池中水面仍差別偏大,整個(gè)開(kāi)啟過(guò)程中,以T=15 s與120 s為例,閘門(mén)開(kāi)啟過(guò)程中消力池水面相差最大達(dá)0.1 m。在小開(kāi)度時(shí)(e<0.3),下泄水流較少,對(duì)消力池中水體影響也較小,水面橫向分布偏于平穩(wěn),之后隨著下泄水流縱向拉開(kāi),其沖擊作用變強(qiáng),池中水流紊動(dòng)混摻逐漸變強(qiáng),水面橫向出現(xiàn)較大波動(dòng)。對(duì)于T=30,60和120 s時(shí)的水面在小開(kāi)度時(shí)尚有差異,隨開(kāi)度增大,水面波動(dòng)增強(qiáng),但差別變小。
由于開(kāi)啟過(guò)程的非恒定性,流速和壓力的直接測(cè)量比較困難且存在很大不確定性。因此本文采用比較水面線的方法來(lái)驗(yàn)證數(shù)模結(jié)果的可靠性。圖4分別給出了T=120 s過(guò)程中e=0.3及0.5兩種相對(duì)開(kāi)度的水面線與實(shí)測(cè)結(jié)果比較,吻合良好,說(shuō)明數(shù)模結(jié)果準(zhǔn)確。
圖3 6種開(kāi)啟總時(shí)間對(duì)應(yīng)的兩種相對(duì)開(kāi)度的溢流堰中線水面線Fig.3 Water surface profile along middle section of a spillway at e=0.3 and e=0.5 at six total opening times
圖4 溢流堰中線水面線對(duì)比Fig.4 Comparison of water surface profile along middle section of a spillway
圖5給出了過(guò)程中e=0.7時(shí)4種開(kāi)啟總時(shí)間對(duì)應(yīng)的溢流堰及消力池中線縱剖面速度等值線??梢?jiàn)4種情況的最大流速均出現(xiàn)在溢流堰反弧處,最大值為4.4,4.3,4.3和 4.2 m/s。研究結(jié)果表明,對(duì)于T較大的情況,隨e逐漸變大,流速變化較平穩(wěn),最大流速也較小。
圖5 溢流堰中線縱剖面速度等值線Fig.5 Velocity distribution along middle section of a spillway
本文根據(jù)消力池底板所受壓強(qiáng)的特點(diǎn),將壓強(qiáng)作用范圍分為3個(gè)區(qū)域:下泄水流直接沖擊區(qū)、緊隨其后的調(diào)節(jié)區(qū)及靜壓區(qū)。結(jié)果表明,6種開(kāi)啟總時(shí)間,過(guò)程中靜壓區(qū)壓強(qiáng)分布比較均勻,說(shuō)明下泄水流對(duì)此區(qū)的影響較小,水體相對(duì)平靜,以靜水壓力為主。
開(kāi)啟時(shí)間T較小(T=3~15 s),e也較小時(shí),ΔP小于其他情況;隨著閘門(mén)開(kāi)度的增大,ΔP迅速增大。當(dāng)T=3 s時(shí),ΔP最大達(dá)6 800 Pa,T=10 s時(shí)最大為4 100 Pa,而T>30 s時(shí),ΔP明顯偏小,最大值僅為2 900 Pa左右??梢?jiàn)當(dāng)開(kāi)啟總時(shí)間T越大時(shí),ΔP越小。
表1 反弧及消力池底板壓強(qiáng)
為更直觀地說(shuō)明各種開(kāi)啟總時(shí)間T時(shí)的沖擊區(qū)最大壓強(qiáng)變化情況,圖6給出了沖擊區(qū)最大壓強(qiáng)隨開(kāi)啟時(shí)間的變化關(guān)系曲線。結(jié)合表1可知,T=3,10和15 s與其他開(kāi)閘總時(shí)間T相比,在各對(duì)應(yīng)相對(duì)開(kāi)度時(shí),其沖擊區(qū)最大壓強(qiáng)偏小,但閘門(mén)全開(kāi)后會(huì)有一較大的壓強(qiáng)增長(zhǎng),且T越小,隨后的沖擊區(qū)最大壓強(qiáng)越大。由圖6可見(jiàn),T=3 s時(shí)消力池底板在4 s時(shí)間內(nèi)壓強(qiáng)由2 000 Pa增長(zhǎng)到9 200 Pa,增幅非常大,此后經(jīng)較長(zhǎng)時(shí)間后壓強(qiáng)才會(huì)逐漸回落至正常值,開(kāi)閘時(shí)必須避免這種情況。T>30 s時(shí)Pmax則隨時(shí)間逐漸增大至接近恒定狀態(tài)值。
圖6 反弧及消力池底板沖擊區(qū)最大壓強(qiáng)隨時(shí)間變化曲線Fig.6 Variation of maximum pressure on the floor of anti-arc and stilling basin with time
從圖6中可看出消力池底板所受的滯后最大壓強(qiáng)分布。當(dāng)T=3 s時(shí),閘門(mén)全開(kāi)后由于滯后水流的沖擊,在前端沖擊區(qū)最大壓強(qiáng)達(dá)到9 200 Pa,緊隨其后的調(diào)節(jié)區(qū)壓強(qiáng)卻只有約2 400 Pa,壓差較大為6 800 Pa,消力池后部靜壓區(qū)壓強(qiáng)平均約為4 000 Pa。而對(duì)于另外兩種開(kāi)啟總時(shí)間T的壓強(qiáng)差分別為4 100和3 600 Pa。
對(duì)于消力池而言,調(diào)節(jié)區(qū)是高速水流偏轉(zhuǎn)和急劇擴(kuò)散的低壓區(qū),一般來(lái)說(shuō)此區(qū)域受到的時(shí)均動(dòng)水壓強(qiáng)合力向上,也是消力池中最先失穩(wěn)的部位。
對(duì)于本文工程T≥30 s時(shí)過(guò)程中各水力要素值變化已偏于平穩(wěn),與恒定情況時(shí)各對(duì)應(yīng)開(kāi)度的值相比差別較??;基本可以忽略滯后作用對(duì)水流的影響。結(jié)合文中的壓強(qiáng)分布規(guī)律,閘門(mén)開(kāi)啟速度越大,沖擊區(qū)最大壓強(qiáng)與調(diào)節(jié)區(qū)平均壓強(qiáng)差值也越大,調(diào)節(jié)區(qū)消力池底板越容易發(fā)生破壞,在類(lèi)似工程閘門(mén)運(yùn)行時(shí),除了要求下游消力池初始水深不能太低,實(shí)際操作中閘門(mén)開(kāi)啟速度應(yīng)以不出現(xiàn)較大的滯后動(dòng)水沖擊壓強(qiáng)為宜,否則必須考慮壓差ΔP可能對(duì)反弧及消力池底板造成危害,并采取相應(yīng)的防護(hù)措施。
表2為T(mén)=30 s時(shí)溢流堰中線縱剖面上兩測(cè)點(diǎn)(x=0.442和0.702 m)的數(shù)值模擬與實(shí)測(cè)壓強(qiáng)結(jié)果的對(duì)比,整個(gè)開(kāi)啟過(guò)程中相對(duì)誤差最大約為6.8%,表明數(shù)模結(jié)果準(zhǔn)確。
表2 數(shù)值模擬及模型試驗(yàn)結(jié)果對(duì)比
采用6種不同的開(kāi)啟速度,研究了堰上弧形閘門(mén)開(kāi)啟速度對(duì)閘后水流的影響,給出水面線及流速隨開(kāi)啟速度的定性變化關(guān)系。根據(jù)開(kāi)啟過(guò)程中壓強(qiáng)分布特點(diǎn),將反弧及消力池底板分為沖擊區(qū)、調(diào)節(jié)區(qū)及靜壓區(qū)3部分;指出開(kāi)啟總時(shí)間越小,閘后水流的非恒定性越強(qiáng);分析了消力池沖擊區(qū)最大動(dòng)水壓強(qiáng)與開(kāi)啟總時(shí)間的關(guān)系及其對(duì)底板可能造成的危害。
[1]朱仁慶, 楊松林, 王志東. 閘門(mén)開(kāi)啟過(guò)程中水體流動(dòng)的數(shù)值模擬[J]. 華東船舶工業(yè)學(xué)院學(xué)報(bào), 1998, 12(3): 18- 21. (ZHU Ren-qing, YANG Song-lin, WANG Zhi-dong. Numerical simulation of water flowing during opening of flood gate[J]. Journal of East China Shipbuilding Institute, 1998, 12(3): 18- 21. (in Chinese))
[2] WANG Wei, YANG Yong-quan, XU Wei-lin, et al. Experimental investigation of emergency gate shutting for orifice tunnel[J]. Journal of Hydrodynamics, 2002(3): 29- 34.
[3]韓宇, 呂宏興, 余國(guó)安. 兩種運(yùn)行方式下灌溉渠道的非恒定流數(shù)值模擬[J]. 長(zhǎng)江科學(xué)院院報(bào), 2010, 27(3): 29- 33. (HAN Yu, LV Hong-xing, YU Guo-an. Numerical simulation of unsteady flow in irrigation canals with two operation modes[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(3): 29- 33. (in Chinese))
[4]王均星, 陳曉勇, 尹浩, 等. 湖南鎮(zhèn)水電站水工模型試驗(yàn)研究[J]. 水力發(fā)電學(xué)報(bào), 2008, 27(5): 103- 108. (WANG Jun-xing, CHEN Xiao-yong, YIN Hao, et al. Study on the hydraulic model tests of Hunanzhen hydropower station[J]. Journal of Hydroelectric Engineering, 2008, 27(5): 103- 108. (in Chinese))
[5]范杰, 王長(zhǎng)德, 管光華, 等. 渠道非恒定流水力學(xué)響應(yīng)研究[J]. 水科學(xué)進(jìn)展, 2006, 17(1): 55- 60. (FAN Jie, WANG Chang-de, GUAN Guang-hua, et al. Study on the hydraulic reaction of unsteady flows in open channel [J]. Advances in Water Science, 2006, 17(1): 55- 60. (in Chinese))
[6]邱春, 刁明軍, 徐蘭蘭. 溢流堰表孔弧形閘門(mén)開(kāi)啟過(guò)程水力特性3維數(shù)值模擬[J]. 四川大學(xué)學(xué)報(bào): 工程科學(xué)版, 2012, 44(3): 19- 25. (QIU Chun, DIAO Ming-jun, XU Lan-lan. 3-D numerical simulation of hydraulic characteristics during the opening process of radial gate for overflow weir[J]. Journal of Sichuan University(Engineering Science Edition), 2012, 44(3): 19- 25. (in Chinese))
[7] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundary[J]. Journal of Computational Physics, 1981, 39(1): 201- 225.
[8]倪漢根. 寬尾墩-消力池的簡(jiǎn)化計(jì)算方法[J]. 水利學(xué)報(bào), 1998(6): 19- 24. (NI Han-gen. A simplified hydraulic calculation method for flaring gate pier-stilling basin[J]. Journal of Hydraulic Engineering, 1998(6): 19- 24. (in Chinese))
[9]葛旭峰, 王長(zhǎng)新, 李琳. 陡坡后消力池內(nèi)水躍的數(shù)值模擬[J]. 水利水運(yùn)工程學(xué)報(bào), 2012(3): 70- 74. (GE Xu-feng, WANG Chang-xin, LI Lin. Turbulence model of hydraulic jump in a post-steep plunge pool[J]. Hydro-Science and Engineering, 2012(3): 70- 74. (in Chinese))
Analysis of hydraulic characteristics of unsteady flow duringopening of radial gate located on overflow weir
QIU Chun1, 2, YUE Shu-bo2, LIU Cheng-lan1
(1.SichuanCollegeofArchitectureTechnology,Deyang618000,China; 2.StateKeyLaboratoryofHydraulicsandMountainRiverEngineering,SichuanUniversity,Chengdu610065,China)
The RNGκ-εturbulent model and dynamic mesh technology were applied to simulation of the unsteady flow of the flaring gate pier and the stilling basin during the radial gate opening. Six different total opening times were used to achieve the detailed hydraulic properties of different opening velocities. The opening velocities of the radial gate were homogeneous of every total opening time. The relationships between the opening velocities and pressures, flow velocities and other hydraulic characteristics were obtained by using six corresponding total opening times. Hysteresis effect was apparent while the total opening time was relatively small, and a water surface profile corresponding to different relative openings was also lower than those of other total opening times. The maximum flow velocity appeared at the ogee section of the overflow weir at the opening process no matter which total opening time was. The maximum velocity and the pressure on the impact region were much larger than the corresponding value at a constant situation. The slab of the ogee section and stilling basin was divided into three regions according to the distribution of pressurs; the relationships between the maximum pressure and the opening velocity was obtained. The velocities and the maximum pressure on the impact region in the stilling basin were much higher than those corresponding to the constant conditions while the opening velocities were relatively lower. The maximum pressure and differences between the maximum pressure on the impact region and an average pressure of the adjusting region increased with the increasing of the opening velocities, and fell to a normal value after long time. A gentle increase in pressures and other hydraulic characteristics would appear under the lower opening velocities. The water surface profile and other results of numerical simulation were in good agreement with the model test data, which shows that the numerical method is reliable. The analysis results can provide an important basis for operation of the similar radial gate located on the hydroproject.
3-D dynamical numerical simulation; opening process; unsteady flow; dynamic mesh; radial gate; stilling basin
10.16198/j.cnki.1009-640X.2015.06.006
邱春, 岳書(shū)波, 劉承蘭. 溢流堰表孔弧形閘門(mén)開(kāi)啟過(guò)程非恒定流水力特性[J]. 水利水運(yùn)工程學(xué)報(bào), 2015(6): 40-46. (QIU Chun, YUE Shu-bo, LIU Cheng-lan. Analysis of hydraulic characteristics of unsteady flow during opening of radial gate located on overflow weir[J]. Hydro-Science and Engineering, 2015(6): 40-46.)
2015-03-05
德陽(yáng)市重點(diǎn)科學(xué)技術(shù)研究項(xiàng)目(2014ZZ095-3)
邱 春(1976—),男, 江蘇徐州人,工程師,博士,主要從事工程水力學(xué)研究。E-mail: qiu3216@163.com
TV663+2
A
1009-640X(2015)06-0040-07