余 洋,周 璇,張志東
(河北工業(yè)大學 理學院,天津 300401)
?
扭曲向列相薄盒中線缺陷的研究
余 洋,周 璇,張志東*
(河北工業(yè)大學 理學院,天津 300401)
在扭曲向列相中,基于Landau-de Gennes理論,利用二維松弛迭代方法,研究了s=±1/2扭曲向錯的有序重構,給出了隨著盒厚減小缺陷核的雙軸結構。在臨界值dc*≈ 9ξ(ξ是序參數(shù)變化的相干長度),有序重構結構是穩(wěn)定態(tài),而帶缺陷結構是亞穩(wěn)態(tài),此時系統(tǒng)缺陷結構和雙軸性開始沿基板方向擴散。相對于沒有初始向錯的情況,本征值交換為穩(wěn)定解對應的盒厚較大。在臨界盒厚dc≈ 7ξ,系統(tǒng)發(fā)生雙軸性轉變,雙軸性結構擴散到整個液晶盒,形成雙軸壁。在盒厚d≈ 9ξ時力達到極大值,而d≈ 7ξ時力達到極小值。對于非對稱弱錨泊邊界條件,隨著錨泊強度的降低,弱錨泊邊界將向錯逐漸驅出邊界。
有序重構;扭曲向錯線;雙軸性參數(shù);Landau-de Gennes 理論
有序重構(order reconstruction)描寫液晶中指向矢不連續(xù)變化[1]。液晶中有序重構最早在盒中使用電學方法得到實驗檢驗[2-3],隨后使用雙光子共聚焦實驗得到進一步證實[4]。原子力顯微鏡(AFM)實驗表明,有序重構可以在液晶薄盒中實現(xiàn)(盒厚為~10 nm),并伴隨有缺陷產(chǎn)生[5]。在單軸向列相中,通常觀察到的缺陷是典型的強度s=1的點缺陷以及s=±1/2的線缺陷[6]。根據(jù)轉動軸的方向,缺陷又可以分為兩種類型[7]:一種為轉動軸平行于向錯線的楔形向錯 ,另一種為轉動軸垂直于向錯線的扭曲向錯。
有序重構又稱本征值交換,即在向列序的張量描述中,兩個具有正交指向矢的單軸態(tài)互相交換,中間不存在本征矢的轉動,但本征值隨位置變化,中間層附近存在很強的雙軸結構[1,8]。Schopohl和Sluckin首次在s=±1/2的楔形向錯中研究了本征值交換(有序重構)[1],證實了向錯核內(nèi)雙軸性的存在。隨后激起了不同邊界條件下向列相向錯核結構的一系列理論和實驗研究[9-12]。
我們首次通過Landau-de Gennes理論研究向列相薄盒中強度為(-1/2)的扭曲向錯。研究中液晶盒左右設為自由邊界條件,上基板為強錨泊,下基板分別為強錨泊和弱錨泊。針對強錨泊液晶薄盒,研究三種平衡態(tài)解。第一種是帶有線缺陷結構的形變解,第二種是純扭曲結構解,第三是本征值交換結構解。針對單側弱錨泊液晶薄盒,研究帶有線缺陷結構的形變解,給出缺陷中心位置隨約化錨泊強度系數(shù)的變化。
2.1 自由能密度
在Landau-de Gennes理論中[13],我們用二階對稱無跡的序參數(shù)張量Q來描述液晶的取向序。在主軸系中,序參數(shù)張量可以表示為[14]:
(1)
其中:λi和ei分別為Q的第i個本征值和本征矢。在各向同性相中,Q為零張量。當系統(tǒng)處于單軸態(tài)時,Q的兩個本征值相等,可以表示為
(2)
其中:S為單軸向列相序參數(shù),n為指向矢,Ι為單位張量。當Q的所有本征值都不相等時,系統(tǒng)處于雙軸態(tài)。雙軸性的大小通過雙軸性參數(shù)β2確定[15]:
(3)
液晶系統(tǒng)的Landau-de Gennes自由能密度可以表示為
其中:
(4)
彈性自由能密度fe用序參數(shù)梯度形式來表示:
(5)
系數(shù)Li與展曲、彎曲和扭曲彈性常數(shù)有關。為了簡化,我們使用單一彈性常數(shù)近似,展曲、扭曲和彎曲彈性常數(shù)用K表示,K取決于標量序參量S的二次方,即K=2S2L1。彈性自由能密度簡化為:
(6)
關于液晶基板引起的邊界條件,用fs表示表面自由能密度,它描述接近基板的液晶層與基板之間的相互作用:
(7)
這里錨泊強度Ws=W/S,而W是Frank彈性理論中的錨泊強度,Qs為基板上易取向方向的序參數(shù)張量[16]。弱錨泊邊界條件表示如下:
(8)
其中:νk是垂直于基板的外法線方向的第k個分量。對于強錨泊邊界條件,在邊界處直接取
Q=Qs.
(9)
(10)
(11)
(12)
2.2 幾何模型
圖1 幾何模型Fig.1 Geometry of the problem
我們研究s=±1/2的扭曲向錯,向錯線平行于z軸。在上下基板y=±d/2處,扭曲角為φ-d/2=0和φ+d/2=π/2。這里φ是指向矢與x軸的夾角。在下基板,
(13)
而在上基板
(14)
2.3 數(shù)值方法
(15)
(16)
(17)
在數(shù)值計算中,我們發(fā)現(xiàn)給出4×10-10s的時間步長足以保證數(shù)值過程的穩(wěn)定性。此外,運行2×106步,系統(tǒng)足以達到平衡態(tài)。
在這一部分,我們給出數(shù)值計算的結果。根據(jù)文獻[20]給定的材料參數(shù),我們有A=0.108×105J/m3K,B=-1.325×105J/m3,C=0.544×105J/m3和L1=0.563×10-12J/m。在模擬中,
3.1 強錨泊邊界條件
圖2 對于不同盒厚的薄TN層通過cos2φ描述平均分子取向.φ是長軸平均分子取向(即指向矢)與 x軸的夾角.(a) d = 15ξ; (b) d = 10ξ; (c) d = 8ξ 和 (d) d = 7ξ.Fig.2 Average molecular orientation described by cos2φ in a thin TN layer with different cell gaps d. φ is the angle between the average orientation of molecular long axis (i.e.the director) and the x axis. (a) d = 15ξ; (b) d = 10ξ; (c) d = 8ξ and (d) d = 7ξ.
圖3 含有初始線缺陷的扭曲向列相薄盒中不同盒厚d的雙軸性β2.(a) d = 15ξ; (b) d = 10ξ;(c) d = 8ξ 和 (d) d = 7ξ. Fig.3 Biaxiality β2 for different cell gaps d in a thin TN nematic layer with an initial line defect. (a) d = 15ξ; (b) d = 10ξ; (c) d = 8ξ and (d) d = 7ξ.
圖4 對于3種不同的結構自由能作為d/ξ的函數(shù).(b)是(a)的局部放大.Fig.4 Free energy as a function of d/ξ for three different structures. (b) is a partial enlargement of (a).
3.2 力
對達到不同盒厚的平衡狀態(tài),我們通過F=數(shù)值,力f由F對盒厚d的負導數(shù)計算。力曲線由圖5給出。對于盒厚d>9ξ,隨著d的減小,力是排斥力,并隨著盒厚減小逐漸增大,除了缺陷附近的小區(qū)域內(nèi),系統(tǒng)都是單軸態(tài)(參見圖3a和b)。當盒厚減小到d≈9ξ以下,力仍然為排斥的,卻突然明顯減小,這清楚的表明盒內(nèi)向列相結構已改變。對于d<9ξ,系統(tǒng)中的缺陷結構沿著x擴散,非零雙軸性在系統(tǒng)內(nèi)部傳播(圖3c)。在d≈7ξ,力達到局部最小,此時完全形成雙軸層(圖3d)。
圖5 存在缺陷的TN層通過Landau-de Gennes理論計算出力.Fig.5 Force calculated by the Landau-de Gennes theory for a TN cell with a defect
圖6 TN盒x-y平面內(nèi)s=-1/2向錯的雙軸性等高圖(約化錨泊強度系數(shù)分別為5、1、0.75、0.61)Fig.6 Biaxiality contours of s=-1/2 disclination in the x-y plane of a TN cell.(The reduced anchoring strength coefficient swere 5, 1, 0.75, 0.61)
圖7 TN盒x-y平面內(nèi)s=-1/2向錯的指向矢取向等高圖(約化錨泊強度系數(shù)分別為5、1、0.75、0.61) Fig.7 Director orientation contours of s=-1/2 disclination in the x-y plane of a TN cell.(The reduced anchoring strength coefficient swere 5, 1, 0.75, 0.61)
圖9 TN盒x-y平面內(nèi)s=-1/2向錯的雙軸性等高圖(約化錨泊強度系數(shù)分別為0.6、0.5、0.4、0.3)Fig.9 Biaxiality contours of s=-1/2 disclination in the x-y plane of a TN cell.(The reduced anchoring strength coefficient swere 0.6, 0.5, 0.4, 0.3)
圖10 TN盒x-y平面內(nèi)s=-1/2向錯的指向矢取向等高圖(約化錨泊強度系數(shù)分別為0.6、0.5、0.4、0.3)Fig.10 Director orientation contours of s=-1/2 disclination in the x-y plane of a TN cell.(The reduced anchoring strength coefficient s were 0.6, 0.5, 0.4, 0.3)
圖11 約化錨泊強度系數(shù)s與角度φ之間的關系Fig.11 Relationship between the reduced anchoring strength coefficient s and the angle φ
溫度變化會改變平衡態(tài)序參數(shù),由此我們預測液晶系統(tǒng)的有序重構行為將受到溫度的影響;另外我們模擬的TN系統(tǒng)中不含手性劑,對于含手性劑的扭曲手性向列相(TCN)液晶系統(tǒng),有序重構行為將受到系統(tǒng)手性大小(即手性添加劑的濃度)的影響,這些是我們以后工作的研究方向。對于液晶分子的取向排列,使用傾斜蒸鍍法可以實現(xiàn)平行沿面排列,它是將金屬、氧化物、氟化物等無機物材料在與基板的法線方向成某個角度的方向上進行蒸鍍的工藝,目的是形成一種傾斜排列的取向層,此取向層與液晶層有明顯的分界面。傾斜蒸鍍法取向層具有優(yōu)異的光熱穩(wěn)定性,并且可以避免摩擦取向技術的缺陷。
當系統(tǒng)發(fā)生雙軸性轉變,液晶盒形成雙軸壁時,液晶系統(tǒng)將呈現(xiàn)雙軸向列相的特性[27],相對于常規(guī)TN 液晶盒顯示,雙軸系統(tǒng)具有高品質、快反應、能耗低等特性。缺陷的相關研究對向列相液晶中亞微米膠體粒子的調節(jié)作用具有一定的理論指導意義,可以為膠體微組裝提供有序模板,并為新型雙穩(wěn)液晶器件[28]以及藍相液晶器件的研究[29]與開發(fā)提供可靠的理論依據(jù)。
[1] Schopohl N, Sluckin T J. Defect core structure in nematic liquid crystals [J].Phys.Rev.Lett,1987,59(22): 2582-2584.
[2] Martinot-Lagarde P, Dreyfus-Lambez H, Dozov I. Biaxial melting of the nematic order under a strong electric field [J].Phys.Rev.E,2003,67(5): 051710(1-4).
[3] Barberi R, Ciuchi F, Durand G E,etal. Electric field induced order reconstruction in a nematic cell [J].Eur.Phys.J.E, 2004, 13(1): 61-71.
[4] Salter P S, Carbone G, Botcherby E J,etal. Liquid crystal director dynamics imaged using two-photon fluorescence microscopy with remote focusing [J].Phys.Rev.Lett,2009,103(25): 257803(1-4).
[5] Carbone G, Lombardo G, Barberi R. Mechanically induced biaxialtransition in a nanoconfined nematic liquid crystal with a topological defect [J].Phys.Rev.Lett,2009,103:167801(1-4).
[6] Kléman M.Points,LinesandWalls:inLiquidCrystals,MagneticSystemsandVariousDisorderedMedia[M]. New York(NY): Wiley,1983.
[7] Kurik M V, Lavrentovich O D. Defects in liquid crystals: homotopy theory and experimental studies [J].Sov.Phys.Usp.,1988,31(196): 196-224.
[8] Palffy-Muhoray P,Gartland E C,Kelly J R. A new configurational transition in inhomogeneous nematics [J].Liq.Cryst.,1994,16(4): 713-718.
[9] Rosso R, Virga E G. Metastable nematic hedgehogs [J].J.Phys.A, 1996, 29(14): 4247-4264.
[10] Kralj S, Virga E G, ?umer S. Biaxial torus around nematic point defects [J].Phys.Rev.E, 1999, 60(2): 1858-1866.
[11] Ambro?i M, Kralj S, Virga E G. Defect-enhanced nematic surface order reconstruction [J].Phys.Rev.E,2000,75(3): 031708(1-9).
[12] Kralj S, Rosso R, Virga E G. Finite-size effects on order reconstruction around nematic defects [J].Phys.Rev.E, 2010, 81(2): 021702(1-15).
[13] De Gennes P G, Prost J.ThePhysicsofLiquidCrystals [M]. Oxford: Oxford University Press, 1993.
[14] Virga E G.VariationalTheoriesforLiquidCrystals[M]. London: Chapman Hall, 1994.
[15] Kaiser P, Wiese W, Hess S. Stability and instability of an uniaxial alignment against biaxial distortions in the isotropic and nematic phases of liquid crystals [J].JNon-Equilib.Thermodyn., 1992,17(2): 153-169.
[16] Lombardo G, Ayeb H, Barberi R. Dynamical numerical model for nematic order reconstruction [J].Phys.Rev.E, 2008,77(5): 051708(1-10).
[17] Pires D, Galerne Y.Recording of virtual disclination lines by means of surface polymerization in a nematic liquid crystal [J].Mol.Cryst.Liq.Cryst., 2005, 438(1): 1681-1686.
[18] Guzmán O, Abbott N L, De Pablo J J. Quenched disorder in a liquid-crystal biosensor: adsorbed nanoparticles at confining walls [J].J.Chem.Phys., 2005,122(18): 184711(1-10).
[19] Zhou X, Zhang Z D. Dynamics of order reconstruction in a nanoconfined nematic liquid crystal with a topological defect [J].Int.J.Mol.Sci., 2013,14(12): 24135-24153.
[20] Qian T Z, Sheng P. Orientational states and phase transitions induced by microtextured substrates [J].Phys.Rev.E,1997,55(6): 7111-7120.
[21] 路麗霞,張志東,周璇.混合排列向列相液晶薄盒中-1/2向錯引起的有序重構的擴散 [J].物理學報,2013,62(22):226101(1-7). Lu L X, Zhang Z D, Zhou X. Diffusion of order reconstruction induced by -1/2 wedge disclination in a thin hybrid nematic liquid-crystal cell [J].Acta.phys.sin, 2013, 62(22): 226101(1-7). (in Chinese)
[22] Zhou X, Zhang Z D. Dynamics of order reconstruction in nanoconfined twisted nematic cells with a topological defect [J].Liq.Cryst., 2014, 41(9):1219-1228.
[23] Bisi F, Gartland E C, Rosso R,etal. Order reconstruction in frustrated nematic twisted cells [J].Phys.Rev.E, 2003, 68(2): 021707(1-11).
[24] Yang F, Sambles J R,Bradberry G W. Half-leaky guided wave determination of azimuthal anchoring energy and twist elastic constant of a homogeneously aligned nematic liquid crystal [J].J.Appl.Phys., 1999,85(2): 728-733.
[25] Li X T, Pei D H, Kobayashi S,etal. Measurement of azimuthal anchoring energy at liquid crystal/photopolymer interface [J].Jpn.J.Appl.Phys., 1997, 36: L432-L434.
[26] Hallam B T, Yang F,Sambles J R. Quantification of the azimuthal anchoring of a homogeneously aligned nematic liquid crystal using fully-leaky guided modes [J].Liq.Cryst., 1999, 26(5):657-662.
[27] Lee G S, Cho J S, Kim J C,etal. Direct confirmation of biaxiality in a bent-core mesogen through the measurement of electro-optic characteristics [J].J.Appl.Phys., 2009, 105(9): 094509(1-7).
[28] 范志新,劉洋,楊磊,等. 聚合物分散液晶的電場誘導定向聚合實驗研究 [J]. 液晶與顯示,2012,27(4): 434-438. Fan Z X,Liu Y,Yang L,etal. Experiment research on electric field induced stereo regular polymerization of polymer dispersed liquid crystal [J].ChineseJournalofLiquidCrystalsandDisplays, 2012,27(4): 434-438.(in Chinese)
[29] 倪水彬,朱吉亮,鐘恩偉,等. 藍相液晶光電特性研究 [J].液晶與顯示, 2012,27(6):719-723. Ni S B, Zhu J L, Zhong E W,etal. Electro-optic property research of blue phase liquid crystals [J].ChineseJournalofLiquidCrystalsandDisplays, 2012, 27(6):719-723. (in Chinese)
Study of line defects in a thin twisted nematic cell
YU Yang, ZHOU Xuan, ZHANG Zhi-dong*
(SchoolofScience,HebeiUniversityofTechnology,Tianjin300401,China)
Within the Landau-de Gennes theory, the order reconstruction ofs=±1/2 twist disclinations in a twisted nematic cell is investigated, using the two-dimensional relaxation iterative method. The biaxial structure of the defect core as the cell gap decreasing is explored. At a critical value ofdc*≈ 9ξ(hereξis the characteristic length for order-parameter changes), the exchange solution is stable, while the defect core solution becomes metastable, where the system starts to stretch the defect structure and the biaxiality starts to propagate inside of the cell. Comparing to the case with no initial disclination, the value at which the exchange solution becomes stable increases relatively. At a critical separation ofdc≈ 7ξ, the system undergoes a biaxial transition, and the defect core merges into a biaxial wall with large biaxiality. The force reaches a maximum atd≈ 9ξ, and a local minimum atd≈ 7ξ. For weak anchoring boundary conditions, because of the weakened frustration, the asymmetric boundary conditions repel the defect to the weak anchoring boundary as the anchoring strength coefficient decreasing.
order reconstruction; twist disclination line; biaxial parameter; Landau-de Gennes theory
2014-09-01;
2014-09-18.
國家自然科學基金(No.11374087,No.11447179)
1007-2780(2015)02-0213-11
O753.2
A
10.3788/YJYXS20153002.0213
余洋(1988-),男,內(nèi)蒙古呼倫貝爾人,碩士研究生,從事液晶物理方面的學習和研究。E-mail: 276515208@qq.com
*通信聯(lián)系人,zhidong_zhang1961@163.com