• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of transgenic Bt cotton on rhizospheric soil microbial communities

    2015-06-09 09:21:17劉根林
    江蘇林業(yè)科技 2015年4期
    關鍵詞:根際品系碳源

    劉根林

    (江蘇省林業(yè)科學研究院,江蘇 南京 211153)

    Effects of transgenic Bt cotton on rhizospheric soil microbial communities

    After cultivation of 2 transgenicBtcotton lines(99BC-4,99BC-8)and their non-Btrecipient Simian3(SM3)in rhizoboxes,the rhizospheric soils during blooming period were sampled.Biolog characterization revealed that during the whole laboratory incubation for 168 h,AWCDsof the rhizospheric soil microbial communities exhibited differential sigmoidals of C substrate utilization with incubation time,and the soils showed lowerAWCDsin GP2 plate than in GN2 plate and EcoPlate,meaning that the G+bacteria in the soils possessed a weaker C source metabolic ability.Functional diversity analysis indicated that the rhizospheric soils of 99BC-8 and SM3 had a larger richness and diversity of,and centered more dominant species in the microbial communities,reflecting a high metabolic potential and functional diversity.Principal Component Analysis(PCA)identified that the first 2 PCs accounted respectively for 35.59%,19.37%in GN2 plate,and 30.57%,18.89%in GP2 plate of total variation.It can be deduced that Bt endotoxin likely stimulated the growth of some specific microbes by using the preferential C sources,which likely dominated the soil microbial responses,though inconsistent in 2 transgenicBtlines.

    TransgenicBtcotton;Biolog;Soil;Microbial community;PCA

    1 Introduction

    TransgenicBtcottons,into which theCrygene encoding insecticidal Cry1Ac Bt toxic protein was introduced,have been grown worldwide for their resistance to cotton bollworm(e.g.Helicoverpa armig-era)[1-2].However,along with the increasing potential for widespread commercial use and the potential benefits of transgenic crops,more and more concerns have been triggered about their potentially ecological and environmental risks[3-7].Although risk assessments have been extensively conducted,whether or notthe risk imposed on soil environment has occurred still remains controversial[3-6].Here the effects of transgenicBtcotton on rhizospheric soil microbial communities are reported after cultivation in China.

    2 Materials and Methods

    2.1 Rhizobox design and soil sampling and processing

    Trial site,cotton variety,rhizobox used for cultivation and soil sampling&processing were referred as[8].Each sample was immediately put in a sterile plastic bag and transported to the laboratory in a cooled box,then sieved(2 mm)and homogenized in a rotary cylinder,and finally,stored at 4℃before used for Biolog characterization.

    2.2 Biolog characterization

    Biolog method was used by direct incubation of soil suspensions in GP2,GN2 MicroPlates and Eco-Plate(Biolog Inc.,Hayward,Calif.),containing respectively 95,95 and 31 different C sources in individual wells to determine changes in the utilization rate of individual substrates.Each fresh sample(10 g)was suspended in 100 mL saline solution(0.9%NaCl),reciprocally shaken at room temperature for 30 min at 120 rpm.After centrifugation at 1 000 g for 10 min,the pellet was suspended in 100 mL above-mentioned saline solution.Each suspension(5 mL)was used to make a 10-fold dilution series up to 10-3,from which 150 μL of supernatant was inoculated into each well of GP2,GN2 plates and EcoPlate.One well without C source in each plate was used as control well.The plates were incubated in the dark at 25℃in a sealed polyethylene bag and read at 590 nm at start and then every 12 h for 7 d using ELISA plate reader.

    2.3 Statistical analysis

    All the experiments were performed at least 3 repetitive independent treatments.An analysis of variance was carried out by using the SPSS13 software. The values are expressed as means±SD.The significant differences among the means were calculated by using LSD-test.Statistical significance threshold was set to less than 0.05 forpvalue.

    The Average Well Color Development(AWCD) method proposed by Garland and Mills[9]was used for analysis of the Biolog data.AWCDat a particular time was calculated using the following equation.

    whereCiis OD for thei-th well with C source andRis that for the control well without C source.nmeans the number of C sources contained in each plate,i.e.,95,95 and 31 respectively.The number of positive wells in each plate is described asS(richness).The functional diversity indices of microbial communities were referred from[10-12].The indices concerned were calculated from the data at 72 h of incubation when even the slowly-growing microbes could utilize the C sources in the wells and since for the more slowly utilized C sources,longer incubation times would be required to examine the full extent of C source us.Shannon diversity index was calculated using the following equation.

    And Shannon evenness index was calculated as

    SE=H’/lnSwhile McIntosh evenness index calculated as

    Principal Components Analysis(PCA)of normalized data to elucidate the pattern of variation of soil microbial community profile was also performed using the SPSS 13 software.The plot of the PC scores for samples was used to display differences in metabolic diversity patterns.Relationships among samples were obtained by plotting scores of their first 2 PCs in 2 dimen-sions,that is,samples with similarAWCDdata sets were located close to one another while dissimilar data sets far apart.

    3 Results

    3.1 AWCD variation of soil microbial communities

    AWCDsin GP2,GN2 plates and EcoPlate reflect sole-C-source metabolic competence and the activities of Gram-negative(G-),Gram-positive(G+)bacteria in and overall activity of soil microbial community. As shown in Fig.1,during the whole incubation for 168 h,AWCDsfor 99BC-4,99BC-8 and SM3 had a steady rise in all 3 plates with incubation time,but exhibited differential sigmoidals of C substrate use,and the soils showed lowerAWCDsin GP2 plate than in GN2 plate and EcoPlate,revealing that the G+bacteria in the soils possessed a weaker C source metabolic ability.The twoBtcotton lines performed inconsistently for theAWCDssince in all 3 plates,AWCDsfor 99BC-4 were always significantly lower than those for 99BC-8 and SM3,suggesting that the metabolic activity of either G+or G-bacteria in 99BC-4 rhizospheric soil were significantly decreased compared with those in its non-Btrecipient,and furthermore,significant differences also emerged betweenAWCDsfor 99BC-8 and SM3 in the partial process of incubation,i.e.,at the point of 24thh from start in GN2 plate;from 24thh to 84thh in GP2 plate;and from 36thh to 72ndh in Eco-Plate.By comparing Fig.1-a with Fig.1-b,within the incubation from 48thh to 84thh,no significant differences in GN2 plate betweenAWCDsfor 99BC-8 and SM3 but significantly higherAWCDsfor SM3 than for 99BC-8 in GP2 plate,indicating that there appeared lower ratio of G+to G-bacteria for 99BC-8 than for SM3.It is well in accordance with the observation forBtand non-Btmaize[13].Based on these results,it is speculated that the species and composition of the root exudates(Bt endotoxin included[8])can play some selective role,to a certain degree,for both G+/G-bacteria and other microbes,and their periodic growth as well in the rhizospheric soil microbial community,which is among the most important biological characteristics for the rhizosphere.In addition,a higher Bt endotoxin content for 99BC-8(though the significance of difference not related)[8],maybe leads to more microbes occurring,it seems then not difficult to understand higherAWCDsfor 99BC-8 compared with those for 99BC-4.

    Fig.1 AWCD kinetics for 99BC-4,99BC-8 and SM3 on Biolog-GN2(a),-GP2(b)and-Eco(c)Plates.*indicatessignificantdifferences(p<0.05)between AWCDs for 99BC-8/SM3 and 99BC-4.**indicates significant differences between any two of three(p<0.05).

    3.2 Functional diversity index variation of soil microbial communities

    Functional diversity index between any two of three variations for 99BC-4,99BC-8 and SM3 are presented in Table 1.It is clearly indicated that in GP2,GN2 plates and EcoPlate,S,H’andUfor99BC-4 had always remarkably lower values than those for 99BC-8 and SM3,which inferred that the catabolic diversity for 99BC-4 was reduced compared with that for SM3 whilst for 99BC-8,it was not the same case. 1/DandMEwere able,to a certain degree,to distinguish the difference among the utilization of C sources by different rhizospheric microbial communities.1/Ddiffered in GP2 plate in the same way asH’,and had significant difference between 99BC-8 and 99BC-4 in GN2 plate,but no significant difference in EcoPlate. ForME,no significant difference was found in GP2 plate,significant differences observed the same way as for 1/Din GN2 plate,and significant differences the same way as forUin EcoPlate.In both GP2 and GN2 plates,SEfor 3 microbial communities reflected the opposite differences toH’,but either no significant difference in EcoPlate.In GP2,GN2 plates and Eco-Plate,Gfor 99BC-4 was significantly reduced compared with those for 99BC-8 and SM3,and besides,in GP2 plate,Gfor 99BC-8 also significantly reduced in comparison with that for SM3.

    Table 1 Diversity and evenness indices for 99BC-4,99BC-8 and SM3

    3.3 Principal components analysis of metabolic function of soil microbial communities

    PCA of each data set for 99BC-4,99BC-8 and SM3 resulted in a PC score plot in which soil groups were separately located(Fig.2,3).In each of the following 2 PC score plots(that in EcoPlate not shown),it was observed that on one hand,the soils were significantly divided into 2 groups along the positive direction of PC1 axis.PC1 scores differed significantly between 99BC-8,SM3 soil groups and 99BC-4 soil,and 99BC-4 soil had always a higher score for PC1 and showed a greater response to C sources in GP2,GN2 MicroPlates that correlated positively to PC1,compared with lower PC1 scores for the other soils.On the other hand,the soils were also significantly divided into 2 groups along the positive direction of PC2 axis.99BC-8 soil located at the positive side,was greatly distinguished from 99BC-4,SM3 soil groups at the negative side,and showed a greater response to C sources in both MicroPlates that correlated positively to PC2, compared to lower PC2 scores for the other soils.The first 2PCsaccountedrespectivelyfor35.59%,19.37%in GN2 plate,and 30.57%,18.89%in GP2 plate of total variation.Variation explained by 2 pairs of the first and second PC axes reached 54.96%,49.46%respectively,indicating a better discrimination power of the microbial communities and metabolically functional diversity from different lines.

    In other words,the PCA patterns shown in theAWCDdata sets were strongly related to the use of individual C sources in GN2,GP2 plates.In GN2 plate,separation of the soil samples into 2 groups along PC1 was significantly affected by carbohydrates,carboxylic acids and amino acids.Substrates affecting the PC2 were carbohydrates and carboxylic acids.Some C sources,such as β-Methyl-D-glucoside(-0.971),Maltose(-0.915),Sucrose(0.939),D-Gluconic acid(0.969),L-Alanyl-glycine(-0.970),L-Threonine(0.932),Phenyethyl-amine(-0.953),Bromosuccinic acid(0.944)and α-D-Glucose-1-phosphate(-0.937)had greater influence than the other substrates on the axis PC1.Thus,these C sources were primarily responsible for the separation along the PC1 axis.Similarly,Gentloblose(-0.813),Xylitol(0.861),β-Hydroxybutyric acid(0.957),L-Proline(-0.778),L-Alanine(-0.775)and α-Cyclodextrin(0.846)had the greatest influence on the PC2 axis and,thus,were important variables in the separation along the PC2 axis.In addition,in GP2 plate,separation along PC1 was significantly affected by carbohydrates and carboxylic acids.Substrates affecting the PC2 were carbohydrates.The G+bacteria for 99BC-4 were more likely to use such C sources as L-Alanyl-glycine(0.938),Xylitol(0.851),α-Methyl-D-glucoside(0.828),β-Hydroxybutyric acid(0.824)and Mannan(0.763)while the G+bacteria for 99BC-8,SM3 more likely to utilize some C sources such as p-Hydroxy-phenylacetic acid(-0.980),D-Galactose(-0.932),D-Mannose(-0.912)and D-Glucose-6-phosphate(-0.764).Similarly,the G+bacteria for 99BC-8 were more likely to metabolize such C sources as Turanose(0.885)and L-Pyroglutamic acid(0.883)whilst the G+bacteria for 99BC-4,SM3 more to catalyze the following C sources as Palatinose(-0.898)and α-Ketoglutaric acid(-0.784).It could be then,drawn that the C sources like β-Hydroxybutyric acid and Xylitol were more likely utilized by both the G+bacteria for 99BC-4 and the G-bacteria for 99BC-8.

    Fig.2 Principal components analysis of carbon utilization for 99BC-4,99BC-8 and SM3 in GN2 plate

    4 Discussion

    Fig.3 Principal components analysis of carbon utilization for 99BC-4,99BC-8 and SM3 in GP2 plate

    Btcottons can produce crystal toxic protein for protecting themselves against the insectsHelicoverpa ar-migera,even suppressing these bollworm in multiple crops in area withBtcotton[2],which seems to justify the large-scale release of these transgenic cotton varieties.Nevertheless,the ecological and environmental risks of them,such as the impacts on non-target organisms,are widely concerned with[7].

    Since Bt protein can be released into soil from different crop sectors[14-16],and wastes from the animals living onBtcotton vegetative parts[17],the potential risks ofBtcotton on the soil microbial communities should be paid more attention.

    There exist some interactions between crop root exudates and rhizospheric soil microbial communities. Some rhizospheric microbes can affect root exudates through changing the content level of the allelopathic compounds,and vice versa,the allelopathic compounds can also affect non-target soil rhizospheric microbial communities.Although microbial biomass indicated microbial community size,Biolog was a method of analyzing the potential metabolic diversity of soil microbial community.Biolog has been widely used in assessing microbial metabolic diversity in agricultural soils.Over the years,increased understanding of the Biolog assay has demonstrated the reproducibility of Biolog profiles and supported the theory that shifts in Biolog metabolic diversity patterns are related to shifts in community composition.

    TheAWCDreflects the sole-C-source utilization ability of the soil microbial community and soil microbial activity[9].H’is a measure of actual richness and evenness of the microbial community,Uis characterized of the diversity of C source utilization competence of mi-crobial community,Sis a reflection of the total number of C substrates utilized generally and defined as the number of different groups of microbes found occurring,whilstSEreflects the comparability of substrate utilization between all utilized substrates,and the expected distribution of microbial groups within the community[18-19].1/Dis an indicator of dominant types of microbes whereasGemphasizes the differences of the microbial community between in utilizing single C substrate.According to our results,it can be deduced that the rhizospheric soil samples of 99BC-8 and SM3 showed a larger richness and diversity of,and centered more dominant species in the microbial communities,with a lower comparability of metabolized substrates,thus reflecting a high metabolic potential and functional diversity in soil microbial communities,though there emerged differences between them,involving a greater quantity of microbes without activity within 99BC-8 rhizospheric soil sample.But more likely it is the releasing of Bt endotoxin into rhizospheric soil from transgenicBtcotton that selectively or in varying degrees,affected both G+/G-bacteria and other microbes,and their growth at different stages in the rhizospheric soil.In other words,the presence of Bt endotoxin likely stimulated the growth of some specific microbes by using their preferential C sources,which seemed to dominate the microbial responses in the soil although inconsistent responses in the two transgenicBtlines.For instance,β-Hydroxybutyric acid and Xylitol were more likely utilized by the G+bacteria for 99BC-4 and the G-bacteria for 99BC-8.As for the microbial communities and metabolically functional diversity,the soil samples were discriminated from one another rationally.

    Correlations between soil microbial functional diversity and organic C have been reported[20].The importance of organic C in influencing the variation of soil microbial functional diversity was also concerned[21]. Another report held that there was a significantly positive correlation between the total soil microbial number,AWCD,Cmic,andH’[22].However,rather than supporting these assumptions,from this study,the positive correlation is not involved withCmic.Of course,further investigations(for example,using different soil types and microbial diversity analysis techniques)of the relationship would be necessary to substantiate this conclusion.

    Moreover,the data obtained showed that there was,to some extent,a positive correlation between Fe content[8],S,AWCD,andH’,Ualthough redundancy analysis(RDA)was not used to visualize the relationships between microbial parameters and soil chemical properties.

    Biolog technique has widely been used in part for its simplicity,availability of automated measuring apparatus,and yield of a great deal of information about an important functional attribute of microbial communities.Frankly speaking,however,the fundamental basis of using such an approach for ecological studies has been questioned on account of its dependence on inefficient extraction,the physiological status of inoculated cells,the subsequent growth of cells,the relevance and concentrations of the C substrates used[23],and still,the complicated data analysis[24],the degree to which the results reflect function rather than structure[25].Nevertheless,such methods have been shown in some cases to be as sensitive as or more sensitive than measuring microbial biomass and respiration[26],and they have been used to detect the effects of important environmental changes on sensitive ecosystems[27],even if the effects have likely come from the changes in the physio-biochemical properties of transgenicBtcottons for genetic amendments,rather than from the direct action of the expression product,Bt protein[28].

    5 Conclusions

    The widely planting of transgenic crops has made a research hit of the risks potentially imposed to soil microbes and agro-ecosystem.Combined with the earlier study[8],it is concluded that in the rhizospheric soils which had been planted by transgenicBtcotton lines(99BC-4,99BC-8),Cry1Ac Bt toxic protein changed soil nutrient conditions such as increasing N,Ca,Zn,Co and Cu but decreasing K and Mg contents.Bt endotoxin triggered more non-target soil microbes appearing in the rhizosphere,significantly raising Cmic,to degrade more rapidly such a cotton-re-leased allelopathic compound,but inhibited severely the growth of the microbes at work in 99BC-8 rhizospheric soil.Bt endotoxin affected selectively microbial composition,alteredtheutilizationpatternsofC sources,promoted the microbial functional diversity,and consequently,evolved into a better discrimination among the transgenicBtlines and their non-Btrecipient from one another.

    To sum up,transgenicBtcottons pose effects on soil ecosystem,especially on rhizospheric soil nutrition and microbial communities.And the possibility of aftermath effects from transgenic crops cannot be excluded and environmental impact assessments must be examined on a case-by-case basis.We are,hereby,more inclined to hold that the research on the safety of transgenic crops is also a long-term and arduous task,which relies on systematic accumulative work for dozens of years.

    [1] Mendelson M,Kough J,Vaituzis Z,et al.Are Bt crops safe[J]?Nature Biotechnology,2003,21(9):1003-1009.

    [2] Wu K M,Lu Y H,Feng H Q,et al.Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton[J].Science,2008,321(5896):1676-1678.

    [3] Marvier M,McCreedy C,Regetz J,et al.A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates[J].Science,2007,316(5830):1475-1477.

    [4] Icoz I,Saxena D,Andrew D A,et al.Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis[J].Journal of Environmental Quality,2008,37(2):647-662.

    [5] Lilley A K,Mark J B,Cartwright C,et al.Life in earth:the impact of GM plants on soil ecology[J]?Trends in Biotechnology,2006,24(1):9-14.

    [6] Cartwright C D,Lilley A K.Mechanisms for investigating changes in soil ecology due to GMO releases[R].Defra report EPG 1/5/214:Department for Environment,Food and Rural Affairs,2004.

    [7] Wolfenbarger L L,Phifer R P.The ecological risks and benefits of genetically engineered plants[J].Science,2000,290(5499):2088-2093.

    [8] Liu G L.Different effects of transgenic Bt cotton on rhizospheric soil nutrition and soil enzyme activities[J].Jiangsu Forestry Science&Technology,2015,42(1):16-22.

    [9] Garland J L,Mills A L.Classification and characterization of heterotrophic bacterial communities on the basis of patterns of community-level sole-carbon-source utilization[J].Applied Environmental Microbiology,1991,57:2351-2359.

    [10]Zak J C,Willing M R,Moorhead D L,et al.Functional diversity of microbial communities:A quantitative approach[J].Soil Biology&Biochemistry,1994,26(9):1101-1108.

    [11]Hackett C A,Griffiths B S.Statistical analysis of the time-course of Biolog substrate utilization[J].Journal of Microbiological Method,1997,30(1):63-69.

    [12]Lupwayi N Z,Arsha M A,Rice W A,et al.Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management[J].Applied Soil Ecology,2001,16(3):251-161.

    [13]Xue K,Luo H F,Qi H Y,et al.Changes in soil microbial community structure associated with two types of genetically engineered plants analyzing by PLFA[J].Journal of Environmental Sciences -China,2005,17(1):130-134.

    [14]Saxena D,Flores S,Stotzky G.Transgenic plants:insecticidal toxin in root exudates from Bt corn[J].Nature,1999,402(6761):480.

    [15]Losey J E,Rayor L S,Carter M E.Transgenic pollen harms monarch larvae[J].Nature,1999,399(6733):214.

    [16]Zwahlen C,Hilbeck A,Gugerli P,et al.Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field[J].Molecular Ecology,2003a,12(3):765-775.

    [17]Wandeler H,Bahylova J,Nentwig W.Consumption of two Bt and six non-Bt corn varieties by the woodlouse Porcellio scaber[J]. Basic Applied Ecology,2002,3(4):357-365.

    [18]Fuller M E,Scow K M,Lau S,et al.Trichloroethylene(TCE)and toluene effects on the structure and function of the soil community[J].Soil Biology&Biochemistry,1997,29(1):75-89.

    [19]Derry A M,Staddon W J,Kevan P G,et al.Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon-source-utilization[J].Biodiversity and Conservation,1999,8(2):205-221.

    [20]Degens B P,Schipper L A,Sparling G P,et al.Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities[J].Soil Biology&Biochemistry,2000,32(2):189-196.

    [21]Huang Z Q,Xu Z H,Chen C R.Effect of mulching on labile soil organic matter pools,microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia[J].Applied Soil Ecology,40(2),2008:229-239.

    [22]Lin R Y,Rong H,Zhou J J,et al.Impact of allelopathic rice seedlings on rhizospheric microbial populations and their functional diversity[J].Acta Ecologica Sinica,2007,27(9):3644-3654.

    [23]Konopka A,Oliver L,Turco R F.The use of carbon substrate utilization patterns in environmental and ecological microbiology[J]. Microbial Ecology,1998,35(2):103-115.

    [24]Garland J L.Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization[J].Soil Biology&Biochemistry,1996,28(2):213-221.

    [25]Garland J L.Analysis and interpretation of community-level physiological profiles in microbial ecology[J].FEMS Microbiological Ecology,1997,24(4):289-300.

    [26]Johnson D,Leake J R,Lee J A,et al.Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands[J].Environmental Pollution,1998,103(2/3):239-250.

    [27]Johnson D,Campbell C D,Lee J A,et al.Arctic microorganisms respond more to elevated UV-B radiation than CO2[J].Nature,2002,416(6876):82-83.

    [28]Donegan K K,Palm C J,Fieland V J,et al.Changes in levels,species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var.kurstaki endotoxin[J].Applied Soil Ecology,1995,2(2):111-124.

    LIU Gen-lin

    (Jiangsu Academy of Forestry,Nanjing 211153,China)

    轉基因Bt棉對根際土壤微生物群落的影響

    根際箱中種植2個轉基因Bt棉品系99BC-4,99BC-8及其非Bt受體泗棉3(SM3)后,于花期采集其根際土壤。BIOLOG檢測顯示,整個168 h的實驗室培養(yǎng)期間,根際土壤微生物群落的每孔顏色平均變化率(AWCD)隨著時間的推移呈現出差異性的S型曲線;AWCD值顯示,GP2板低于GN2板和ECO板,意味著供試土壤內革蘭氏陽性菌對碳源的利用能力較低。功能多樣性分析表明,99BC-8和SM3根際土壤微生物群落的豐富度高、多樣性強,集中了較多的主導微生物種,因而表現出高代謝能力和功能多樣性。PCA得出,GN2板前2個主成分分別占總變量的35.59%和19.37%,GP2板前2個主成分分別占30.57%和18.89%。推理認為,Bt毒蛋白可能刺激了某些微生物利用優(yōu)勢碳源以促其生長,主導著土壤微生物的反應,雖然在2個轉基因Bt棉品系根際土壤中其表現不一致。

    轉基因Bt棉;Biolog微生物鑒定系統(tǒng);土壤;微生物群落;主成分分析

    S154.36

    A

    1001-7380(2015)04-0028-07

    2015-04-12;

    2015-06-21

    劉根林(1963-),男,江蘇姜堰人,高級工程師,博士,主要從事農林土壤微生物群落的分子生物學研究。

    劉根林

    (江蘇省林業(yè)科學研究院,江蘇 南京 211153)

    10.3969/j.issn.1001-7380.2015.04.007

    猜你喜歡
    根際品系碳源
    貴州黑山羊新品系選育
    10個團豆新品系在綏陽縣的田間性狀及產量表現
    農技服務(2023年2期)2023-03-15 00:43:08
    緩釋碳源促進生物反硝化脫氮技術研究進展
    根際微生物對植物與土壤交互調控的研究進展
    不同碳源對銅溜槽用鋁碳質涂抹料性能的影響
    昆鋼科技(2021年6期)2021-03-09 06:10:20
    4個地被菊新品系對濕熱脅迫的耐受性研究
    園林科技(2020年2期)2020-01-18 03:28:18
    黃花蒿葉水提物對三七根際尖孢鐮刀菌生長的抑制作用
    促植物生長根際細菌HG28-5對黃瓜苗期生長及根際土壤微生態(tài)的影響
    中國蔬菜(2016年8期)2017-01-15 14:23:38
    四甘醇作碳源合成Li3V2(PO4)3正極材料及其電化學性能
    電源技術(2016年9期)2016-02-27 09:05:25
    湖北省白肋煙新品系比較研究
    作物研究(2014年6期)2014-03-01 03:39:03
    国内精品一区二区在线观看| 国产成人精品无人区| 一区二区三区高清视频在线| 亚洲av片天天在线观看| 久久草成人影院| 99在线视频只有这里精品首页| 90打野战视频偷拍视频| 午夜影院日韩av| 亚洲色图av天堂| 观看免费一级毛片| 狂野欧美白嫩少妇大欣赏| 免费看美女性在线毛片视频| 日韩 欧美 亚洲 中文字幕| 全区人妻精品视频| 亚洲av中文字字幕乱码综合| 人妻久久中文字幕网| 日本一二三区视频观看| av在线天堂中文字幕| 日韩 欧美 亚洲 中文字幕| 国产极品精品免费视频能看的| 最新在线观看一区二区三区| 俄罗斯特黄特色一大片| 国产蜜桃级精品一区二区三区| 欧美日韩综合久久久久久 | 日韩欧美一区二区三区在线观看| 国产高清视频在线播放一区| 观看免费一级毛片| 亚洲人成电影免费在线| 舔av片在线| 日本与韩国留学比较| 日本免费一区二区三区高清不卡| 激情在线观看视频在线高清| 校园春色视频在线观看| 国产免费男女视频| 精品久久蜜臀av无| 精品一区二区三区视频在线 | 在线视频色国产色| 欧美三级亚洲精品| 日韩欧美在线乱码| 精品国内亚洲2022精品成人| 午夜激情福利司机影院| 久久中文字幕一级| 国产黄a三级三级三级人| 日韩成人在线观看一区二区三区| 亚洲熟女毛片儿| 特级一级黄色大片| 男女那种视频在线观看| 日韩欧美在线二视频| 女人被狂操c到高潮| 免费看十八禁软件| 成人特级av手机在线观看| 色噜噜av男人的天堂激情| 免费看光身美女| 中文字幕高清在线视频| 精品国内亚洲2022精品成人| 三级毛片av免费| 欧美黑人巨大hd| 中文字幕人妻丝袜一区二区| 国产三级在线视频| 18禁观看日本| 国产亚洲精品av在线| 久久人妻av系列| 亚洲国产中文字幕在线视频| 日本一二三区视频观看| 日本免费a在线| 九九热线精品视视频播放| 国产蜜桃级精品一区二区三区| 人人妻,人人澡人人爽秒播| 又紧又爽又黄一区二区| 亚洲中文日韩欧美视频| 深夜精品福利| 村上凉子中文字幕在线| 黄色日韩在线| 在线观看免费视频日本深夜| 美女免费视频网站| 欧美成人性av电影在线观看| 久久草成人影院| 一级毛片精品| 日韩精品青青久久久久久| 亚洲18禁久久av| 亚洲精华国产精华精| 狂野欧美白嫩少妇大欣赏| 一级毛片高清免费大全| 精品电影一区二区在线| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| 中文字幕高清在线视频| 午夜福利18| 俄罗斯特黄特色一大片| 亚洲avbb在线观看| 九九在线视频观看精品| 美女黄网站色视频| 又大又爽又粗| 看免费av毛片| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久二区二区91| 亚洲欧美精品综合久久99| 成人国产综合亚洲| 少妇丰满av| 国产野战对白在线观看| 成人亚洲精品av一区二区| 久久国产精品人妻蜜桃| 男女那种视频在线观看| 中亚洲国语对白在线视频| 亚洲无线在线观看| 亚洲精品中文字幕一二三四区| 琪琪午夜伦伦电影理论片6080| 国产精品,欧美在线| 免费高清视频大片| 国产高清视频在线观看网站| 长腿黑丝高跟| 亚洲熟妇熟女久久| 国产成人福利小说| 色综合站精品国产| 搡老妇女老女人老熟妇| 一级作爱视频免费观看| 99在线视频只有这里精品首页| 一夜夜www| 国产精品爽爽va在线观看网站| 久久久久九九精品影院| 性欧美人与动物交配| 小蜜桃在线观看免费完整版高清| 欧美绝顶高潮抽搐喷水| 亚洲片人在线观看| 两性夫妻黄色片| 啦啦啦韩国在线观看视频| 亚洲 国产 在线| 观看美女的网站| 亚洲av电影不卡..在线观看| 国产极品精品免费视频能看的| 国产黄a三级三级三级人| 精品无人区乱码1区二区| 无限看片的www在线观看| 日韩成人在线观看一区二区三区| 性色avwww在线观看| 午夜精品一区二区三区免费看| 日韩人妻高清精品专区| 51午夜福利影视在线观看| 在线播放国产精品三级| 日韩精品青青久久久久久| 51午夜福利影视在线观看| 黄色丝袜av网址大全| 日本黄色视频三级网站网址| 国产精品自产拍在线观看55亚洲| 亚洲男人的天堂狠狠| 熟女电影av网| 听说在线观看完整版免费高清| 成年女人毛片免费观看观看9| 国产精品1区2区在线观看.| 亚洲精品色激情综合| 女警被强在线播放| 手机成人av网站| 久久久久久久久久黄片| 亚洲一区高清亚洲精品| 在线观看免费视频日本深夜| 久久精品综合一区二区三区| 亚洲精品乱码久久久v下载方式 | av在线天堂中文字幕| 免费看日本二区| 婷婷精品国产亚洲av| 岛国视频午夜一区免费看| 女警被强在线播放| 精品不卡国产一区二区三区| 天天添夜夜摸| 久久人妻av系列| 此物有八面人人有两片| 又大又爽又粗| 超碰成人久久| 十八禁网站免费在线| 国内精品久久久久久久电影| 成人国产综合亚洲| 亚洲无线在线观看| 国产成人啪精品午夜网站| 国产99白浆流出| 久久中文字幕一级| 精品久久久久久久久久久久久| 日本黄大片高清| 久久中文字幕人妻熟女| 九色国产91popny在线| 午夜福利在线在线| 久久久久国内视频| 搡老熟女国产l中国老女人| 麻豆久久精品国产亚洲av| 国产精品一区二区三区四区久久| 久久久久国产一级毛片高清牌| 亚洲成人免费电影在线观看| 国产精品九九99| www国产在线视频色| 精品不卡国产一区二区三区| 一个人免费在线观看的高清视频| 欧美中文综合在线视频| 久久欧美精品欧美久久欧美| 嫁个100分男人电影在线观看| 亚洲午夜理论影院| 久久久成人免费电影| 国产真实乱freesex| 天天一区二区日本电影三级| 国产三级黄色录像| 一本精品99久久精品77| 丁香欧美五月| 一进一出抽搐动态| h日本视频在线播放| 国产三级黄色录像| 久久伊人香网站| 成人av一区二区三区在线看| 99久久无色码亚洲精品果冻| 少妇的逼水好多| 男女做爰动态图高潮gif福利片| 精品一区二区三区视频在线 | 无遮挡黄片免费观看| 在线观看午夜福利视频| 免费在线观看视频国产中文字幕亚洲| 欧美日韩中文字幕国产精品一区二区三区| 伦理电影免费视频| 91av网一区二区| 久久午夜亚洲精品久久| 久久久久国产精品人妻aⅴ院| 日本精品一区二区三区蜜桃| 日韩欧美在线二视频| 12—13女人毛片做爰片一| 亚洲七黄色美女视频| 亚洲人成网站高清观看| av国产免费在线观看| 久久性视频一级片| 国产精品国产高清国产av| 亚洲精品美女久久久久99蜜臀| 国产视频内射| 亚洲熟女毛片儿| 国产一区二区三区在线臀色熟女| 日本一本二区三区精品| 热99在线观看视频| 亚洲一区高清亚洲精品| 大型黄色视频在线免费观看| 国产精华一区二区三区| 国产精品乱码一区二三区的特点| 亚洲国产欧洲综合997久久,| 成人18禁在线播放| www日本黄色视频网| 亚洲色图 男人天堂 中文字幕| 好看av亚洲va欧美ⅴa在| 国产精品免费一区二区三区在线| 特大巨黑吊av在线直播| 久久欧美精品欧美久久欧美| 真人一进一出gif抽搐免费| 亚洲自偷自拍图片 自拍| 亚洲国产欧洲综合997久久,| 国产av一区在线观看免费| 999久久久国产精品视频| 成人午夜高清在线视频| 香蕉久久夜色| 90打野战视频偷拍视频| 国产成人av激情在线播放| 久久香蕉精品热| 午夜影院日韩av| 精品国产三级普通话版| 他把我摸到了高潮在线观看| 国产黄色小视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 成人午夜高清在线视频| 色精品久久人妻99蜜桃| 国产亚洲精品久久久com| 熟女少妇亚洲综合色aaa.| 国产精品一区二区免费欧美| 99国产精品一区二区三区| 老熟妇仑乱视频hdxx| 香蕉av资源在线| 我要搜黄色片| 一级作爱视频免费观看| 天堂网av新在线| 九九在线视频观看精品| 黄色女人牲交| a级毛片在线看网站| 欧美成人免费av一区二区三区| 国产亚洲精品一区二区www| 久久欧美精品欧美久久欧美| 床上黄色一级片| 欧美一级毛片孕妇| 最好的美女福利视频网| 一进一出抽搐动态| 午夜福利在线观看免费完整高清在 | 亚洲 欧美一区二区三区| 一区福利在线观看| 99久久综合精品五月天人人| 日本与韩国留学比较| 国产欧美日韩一区二区精品| 成年女人看的毛片在线观看| 久久久久国内视频| 亚洲精品一卡2卡三卡4卡5卡| 国内毛片毛片毛片毛片毛片| 亚洲av中文字字幕乱码综合| 国产精品一区二区三区四区久久| 国产 一区 欧美 日韩| 91av网一区二区| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区视频在线观看免费| 久久精品91无色码中文字幕| 国产黄片美女视频| 国产精品自产拍在线观看55亚洲| 国产激情欧美一区二区| 国产精品一区二区三区四区久久| 久久国产精品人妻蜜桃| 宅男免费午夜| 久久伊人香网站| 美女大奶头视频| 熟女人妻精品中文字幕| 99久久99久久久精品蜜桃| 国产毛片a区久久久久| 亚洲中文字幕日韩| 成人特级黄色片久久久久久久| 在线观看一区二区三区| 免费搜索国产男女视频| 成人亚洲精品av一区二区| 大型黄色视频在线免费观看| 禁无遮挡网站| 色老头精品视频在线观看| 亚洲精品美女久久久久99蜜臀| 国产精品久久电影中文字幕| 色老头精品视频在线观看| 天堂动漫精品| 国产精品亚洲av一区麻豆| 欧美激情久久久久久爽电影| 国产91精品成人一区二区三区| 亚洲人与动物交配视频| 国产1区2区3区精品| 国产三级在线视频| 99riav亚洲国产免费| 久久久久久久久中文| 一区福利在线观看| 搡老熟女国产l中国老女人| 精品国产三级普通话版| 在线观看日韩欧美| 99国产精品一区二区三区| 岛国视频午夜一区免费看| 色视频www国产| 黄色成人免费大全| 丰满的人妻完整版| 国产淫片久久久久久久久 | 国产精品一及| 日韩高清综合在线| 亚洲成av人片在线播放无| 亚洲激情在线av| 很黄的视频免费| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看一区二区三区| 国产亚洲精品久久久com| netflix在线观看网站| 最新中文字幕久久久久 | 国产亚洲精品一区二区www| 国产91精品成人一区二区三区| 国产视频内射| 精品国产超薄肉色丝袜足j| 久久久精品欧美日韩精品| 国产av一区在线观看免费| 午夜福利在线在线| 一边摸一边抽搐一进一小说| 99久久精品一区二区三区| avwww免费| 久99久视频精品免费| 婷婷亚洲欧美| 国产一区二区激情短视频| 美女扒开内裤让男人捅视频| 18禁观看日本| 午夜福利在线观看吧| 搡老熟女国产l中国老女人| 九色成人免费人妻av| 国产激情久久老熟女| 亚洲成人久久性| 99国产精品一区二区蜜桃av| 制服人妻中文乱码| 日韩免费av在线播放| 国产精品 国内视频| 久久精品国产综合久久久| 色综合亚洲欧美另类图片| 国产成人一区二区三区免费视频网站| 亚洲熟女毛片儿| 最近最新中文字幕大全免费视频| 国产精品野战在线观看| 最新中文字幕久久久久 | 精品久久久久久成人av| 国产精品永久免费网站| 又粗又爽又猛毛片免费看| 亚洲国产精品成人综合色| 好看av亚洲va欧美ⅴa在| 亚洲国产欧美人成| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久,| 日韩高清综合在线| 国产伦在线观看视频一区| 女生性感内裤真人,穿戴方法视频| 日韩欧美在线二视频| 国产精品影院久久| 日韩有码中文字幕| 99视频精品全部免费 在线 | 欧美最黄视频在线播放免费| 国产又色又爽无遮挡免费看| av片东京热男人的天堂| 不卡一级毛片| 国产黄色小视频在线观看| 欧美最黄视频在线播放免费| 亚洲熟妇中文字幕五十中出| 久久伊人香网站| 美女免费视频网站| xxxwww97欧美| 老熟妇乱子伦视频在线观看| 舔av片在线| 日日摸夜夜添夜夜添小说| 热99在线观看视频| 欧美成人免费av一区二区三区| 久久久久亚洲av毛片大全| 这个男人来自地球电影免费观看| 久久久久国产精品人妻aⅴ院| 国产伦人伦偷精品视频| 小蜜桃在线观看免费完整版高清| 亚洲,欧美精品.| www.精华液| 精品人妻1区二区| 99在线视频只有这里精品首页| 熟女电影av网| 啪啪无遮挡十八禁网站| 国产1区2区3区精品| 草草在线视频免费看| 亚洲欧美激情综合另类| 精品福利观看| 偷拍熟女少妇极品色| 国产欧美日韩精品亚洲av| 男女之事视频高清在线观看| 色综合欧美亚洲国产小说| 老熟妇乱子伦视频在线观看| 香蕉丝袜av| 亚洲 欧美一区二区三区| 香蕉av资源在线| 熟女少妇亚洲综合色aaa.| 欧美日本亚洲视频在线播放| 操出白浆在线播放| 国产一级毛片七仙女欲春2| 欧美黑人巨大hd| 国产亚洲精品av在线| 国产午夜精品久久久久久| 亚洲人成网站高清观看| 久久精品国产亚洲av香蕉五月| 欧美黄色淫秽网站| 久久欧美精品欧美久久欧美| 久9热在线精品视频| 99国产精品一区二区三区| 男女做爰动态图高潮gif福利片| e午夜精品久久久久久久| 黑人巨大精品欧美一区二区mp4| 亚洲av成人av| 欧美国产日韩亚洲一区| 亚洲欧美日韩无卡精品| 国产成人一区二区三区免费视频网站| 国产极品精品免费视频能看的| 视频区欧美日本亚洲| 精品久久久久久久末码| 欧美乱色亚洲激情| 91av网站免费观看| 成人永久免费在线观看视频| 九色国产91popny在线| 18禁黄网站禁片免费观看直播| av片东京热男人的天堂| 欧美+亚洲+日韩+国产| 午夜精品久久久久久毛片777| 中文亚洲av片在线观看爽| 色播亚洲综合网| www日本在线高清视频| 十八禁网站免费在线| 黑人欧美特级aaaaaa片| 国产精品久久久人人做人人爽| 法律面前人人平等表现在哪些方面| www日本黄色视频网| 亚洲一区高清亚洲精品| 午夜影院日韩av| 精品无人区乱码1区二区| 伊人久久大香线蕉亚洲五| 狂野欧美白嫩少妇大欣赏| 99久久国产精品久久久| 国产三级在线视频| 久久久久精品国产欧美久久久| 变态另类丝袜制服| 日本熟妇午夜| 日本一二三区视频观看| 欧美又色又爽又黄视频| 法律面前人人平等表现在哪些方面| 国产高清视频在线观看网站| 国产午夜精品论理片| 中亚洲国语对白在线视频| 国产高潮美女av| 国产视频内射| 国产欧美日韩一区二区三| 日日摸夜夜添夜夜添小说| 一夜夜www| 亚洲熟女毛片儿| 国产成人一区二区三区免费视频网站| 男女下面进入的视频免费午夜| xxx96com| 免费大片18禁| 成人特级黄色片久久久久久久| 午夜激情福利司机影院| 色噜噜av男人的天堂激情| 午夜精品一区二区三区免费看| 俄罗斯特黄特色一大片| 国产亚洲精品久久久久久毛片| 久99久视频精品免费| 五月伊人婷婷丁香| 亚洲在线观看片| 舔av片在线| 变态另类成人亚洲欧美熟女| 一进一出抽搐动态| 久久亚洲精品不卡| 国产av麻豆久久久久久久| 最近最新中文字幕大全免费视频| 三级国产精品欧美在线观看 | 97碰自拍视频| 色尼玛亚洲综合影院| 国产av不卡久久| 亚洲专区字幕在线| 桃红色精品国产亚洲av| 免费看a级黄色片| 精品久久久久久久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 白带黄色成豆腐渣| 亚洲成人久久爱视频| 在线观看一区二区三区| 免费一级毛片在线播放高清视频| 久久久久久久精品吃奶| 日韩免费av在线播放| 熟女少妇亚洲综合色aaa.| 亚洲熟妇熟女久久| 成人国产综合亚洲| 日韩有码中文字幕| 婷婷六月久久综合丁香| 午夜日韩欧美国产| 18禁裸乳无遮挡免费网站照片| 亚洲真实伦在线观看| 国产av一区在线观看免费| 国产精品爽爽va在线观看网站| 免费av不卡在线播放| 狂野欧美白嫩少妇大欣赏| 草草在线视频免费看| 看黄色毛片网站| 成人无遮挡网站| 国产精品影院久久| 最新美女视频免费是黄的| 免费看美女性在线毛片视频| 999久久久精品免费观看国产| 美女高潮的动态| 深夜精品福利| 亚洲国产精品合色在线| 熟女人妻精品中文字幕| 黄色女人牲交| 91九色精品人成在线观看| 嫁个100分男人电影在线观看| 亚洲乱码一区二区免费版| 亚洲人成网站高清观看| 日日干狠狠操夜夜爽| 国产精品综合久久久久久久免费| 亚洲avbb在线观看| 综合色av麻豆| 日韩中文字幕欧美一区二区| 免费看日本二区| 99在线人妻在线中文字幕| 欧美日韩瑟瑟在线播放| 国产美女午夜福利| 一进一出好大好爽视频| 国产精品99久久久久久久久| 精品欧美国产一区二区三| 神马国产精品三级电影在线观看| 最近最新中文字幕大全电影3| av在线天堂中文字幕| 国产一级毛片七仙女欲春2| 特大巨黑吊av在线直播| 欧美一区二区国产精品久久精品| 欧美日韩综合久久久久久 | 日韩欧美 国产精品| 亚洲国产精品久久男人天堂| 最近视频中文字幕2019在线8| 欧美日韩综合久久久久久 | 久久欧美精品欧美久久欧美| 国产综合懂色| 日日干狠狠操夜夜爽| 男人舔女人的私密视频| www.熟女人妻精品国产| 变态另类丝袜制服| 一级黄色大片毛片| 国产日本99.免费观看| 国产成年人精品一区二区| 国产毛片a区久久久久| 精品一区二区三区四区五区乱码| 久久久久久久久久黄片| 色老头精品视频在线观看| 精品无人区乱码1区二区| 欧美黄色片欧美黄色片| 国产精品一区二区三区四区免费观看 | 热99在线观看视频| 亚洲狠狠婷婷综合久久图片| 国产成人精品久久二区二区免费| 久久久国产精品麻豆| 日本熟妇午夜| 国产成人影院久久av| 国内少妇人妻偷人精品xxx网站 | 亚洲国产精品合色在线| 久久九九热精品免费| 日本五十路高清| 日本三级黄在线观看| 十八禁网站免费在线| 国产亚洲精品一区二区www| 亚洲五月天丁香| 国产精品一区二区精品视频观看| 免费观看的影片在线观看| 日本五十路高清| svipshipincom国产片| 欧美黑人欧美精品刺激| 9191精品国产免费久久| 国产精品日韩av在线免费观看| 亚洲欧美日韩东京热|